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A b s t r a c t  

The set of solutions to a collection of polynomial equa- 
tions is referred to as an algebraic set. An algebraic set 
that cannot be represented as the union of two other 
distinct algebraic sets, neither containing the other, is 
said to be irreducible. An irreducible algebraic set is 
also known as an algebraic variety. This paper deals 
with geometric computations with algebraic varieties. 
The main results are algorithms to (1) compute the de- 
gree of an algebraic variety, (2) compute the rational 
parametric equations (a rational map from points on 
a hyperplane) for implicitly defined algebraic varieties 
of degrees two and three. These results are based on 
sub-algorithms using multi-polynomial resultants and 
multi-polynomial remainder sequences for constructing 
a one-to-one projection map of an algebraic variety to a 
hypersurface of equal dimension, as well as, an inverse 
rational map from the hypersurface to the algebraic va- 
riety. These geometric computations arise naturally in 
geometric modeling, computer aided design, computer 
graphics, and motion planning, and have been used in 
the past for special cases of algebraic varieties, i.e. al- 
gebraic curves and surfaces. 

1 I n t r o d u c t i o n  

Background: Current research in geometric modeling 
is engaged in extending the geometric coverage of solid 
modelers using polynomial equations of arbitrarily high 
degree. Effectively manipulating these geometric rep- 
resentations require the ability to manipulate the un- 
derlying systems of equations [5, 24]. 
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The set of solutions (or zero set Z(S)) of a collection 
S of polynomial equations 

31 : f l ( Z l  ..... Zn) : 0 

Sm: fm(Zl ..... z , )  = 0 (1) 

is referred to as an algebraic set. Algorithms for manip- 
ulating algebraic sets are crucial components for proof 
systems deciding existential and universal theories of 
polynomial equations, see for e.g. [36]. An algebraic 
set that cannot be represented as the union of two other 
distinct algebraic sets, neither containing the other, is 
said to be irreducible. An irreducible algebraic set is 
also known as an algebraic variety. 

One computational method for manipulating alge- 
braic sets Z(S) is that of GrSbner basis manipulations 
[111. Given the set of polynomials S = {$1 ..... Sin}, the 
GrSbner basis algorithms provide a deterministic iter- 
ative method for determining whether a polynomial P 
lies in the set of all polynomials of the form ~ AiSi (the 
ideal of S). It collectively manipulates the combinato- 
rial structure of the entire set S of polynomials and in 
doing so, indirectly provides answers to questions about 
the zero set Z(S). 

Geometric problems dealing with zero sets Z(S), such 
as the intersection of surfaces, or the decision whether a 
surface contains a set of curves, are often first versed in 
an Meal-theoretic form and then solved using GrSbner 
basis manipulations. One of the main difficulties in- 
volved in using the indirect GrSbner basis technique is 
that the method may be extremely slow for even small 
geometric problems. In the worst case, this method re- 
quires exponential space and may have running time 
that is double exponential in the number of variables 
in probh'm [33]. Even in special cases where this dou- 
ble exponential behavior is not observed, deriving tight 
upper bounds on the method's running time is difficult. 

In this paper, we present an alternative technique 
for answering various geometric questions on algebraic 
varieties of degrees two and three. (We shall define 
tile degree of the algebraic variety in section 3). The 
technique of constructing rational maps of algebraic 
varieties with hyperplanes, that we present, deals di- 
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rectly with the zero sets of polynomial equations (rather 
than just the combinatorial structure of the polyno- 
mials). Such rational maps yield simpler algorithms 
for computing intersections[9], shading, displaying and 
texture mapping[7], and in general solving systems of 
algebraic equations[10]. It is based, though not en- 
tirely, on lesser known constructs of algebraic geometry, 
namely the multi-polynomial resultant[32] and multi- 
polynomial remainder sequences (a generalization of 
remainder sequences of two polynomials, see for e.g., 
[23, 31]). These computations can be done in time sin- 
gle exponential in the number of indeterminates of the 
equations. 

Main Results: In section 3 we present a method of 
computing the degree of an algebraic variety. This es- 
sentially relies on a way of computing a hypersurface bi- 
rational to the given variety, via a valid projection direc- 
tion along which the projection map is one-to-one. In 
section 4 we show how to construct the rational inverse 
of the one-to-one projection map between the hypersur- 
face and the algebraic variety, using multi-polynomial 
remainder sequences. In section 5 we build on the ear- 
lier result of one-to-one maps and present an algorithm 
to construct the rational parametric equations (a ratio- 
nal map from points on a hyperplane) for implicitly de- 
fined algebraic varieties of degrees two and three. This 
is based on sub-algorithms for parameterizing arbitrary 
dimension (> 3) hypersurfaces of these degrees. 

Prior Work: Much of the work in algorithmic alge- 
braic geometry dealing with algebraic curves, and to a 
limited extent with algebraic varieties, is classical, dat- 
ing to the pre-1920's, see[15, 22, 26, 27] However, it 
was not till the fundamental work of[28, 43] that  al- 
gebraic geometry found a firm footing, free of the fala- 
cies which the earlier classical methods were often trou- 
bled with. Modern algebraic geometry, equipped with 
the preciseness of commutative algebra, has its main 
drawback in being abstract and non-constructive. Re- 
cent interest, stemming largely from geometric model- 
ing, graphics, robotics, and other geometric manipu- 
lation applications, has seen a resurgence in construc- 
tive algorithm design activity, dealing with algebraic 
varieties[ll, 12, 16, 17, 36, 40]. 

Various algorithms have been given for constructing 
the rational parametric equations of implicitly defined 
algebraic curves and surfaces of low degree[2, 3, 41]. 
Computational methods have also been given for con- 
structing parametric equations of the intersection space 
curves of two degree two surfaces by[29] using the fact 
that the pencil of quadrics contains a ruled surface and 
by[35], via the computation of eiqenvalues of matrices of 
quadratic forms. The parameterization algorithms pre- 
sented in [4] are applicable for irreducible rational plane 
algebraic curves of arbitrary degree, and irreducible ra- 
tional space curves arising from the intersection of two 

algebraic surfaces of arbitrary degree. The parameteri- 
zation techniques, essentially, reduce to solving systems 
of homogeneous linear equations and the computation 
of Sylvester resultants, see for e.g.[37]. For non-rational 
curves, parameterization algorithms which are valid in 
local neighborhoods of points, singular or otherwise, are 
given in[6]. 

The parametric definition of a curve or surface is 
a standard example of a rational map. Inverting a 
parametrization of a surface has applications in areas 
such as sorting points along a parametric curve[25]. Bi- 
rational maps have been used in resolving the singular 
(nonsmooth) points of algebraic curves and surfaces[i]. 
In particular, [9] uses this idea in the robust tracing 
of algebraic plane curves. Moreover, [4] use birational 
maps in determining whether an algebraic space curve 
has a rational parameterization. From a mathemati- 
cal point of view, current at tempts to classify surfaces 
and higher dimensional geometric objects usually are 
restricted to classifications up to birationality [42]. 

2 N o t a t i o n  a n d  P r e l i m i n a r i e s  

A point in complex projective space C P "  is 
given by a nonzero homogeneous coordinate vector 
(Xo, X1 . . . .  ,Xn )  of n + 1 complex numbers. A 
point in complex affine space C A  n is given by the 
non-homogeneous coordinate vector (Xl,X~,. . . ,Xn) = 
(.~_~. ~ .~.u.~ of n complex numbers. The set Xo' X o ' ' ' ' '  Xo/ 
of points Z ~ ( f )  of C A "  whose coordinates sat- 
isfy a single non-homogeneous polynomial equation 
f ( z l , Z 2  . . . .  , zn)  = 0 of degree d, is called an n - 1 
dimension, affine hypersurface of degree d. The hyper- 
surface Z~( f )  is also known as a flat or a hyperplane, a 
Z~( f )  is known as a quadric hypersurface, and a Z~( f )  
is known as a cubic hypersurface. The hypersurface 
Z~ is a plane curve of degree d, a Z $  is known as a 
surface of degree d, and Zd 4 is known as a threefold of 
degree d. A hypersurface Z~ is reducible or irreducible 
based upon whether f ( x l ,  z2 .... , xn) = 0 factors or not, 
over the field of complex numbers. An algebraic variety 
V " { f l  ..... f , }  is then an irreducible common intersec- 
tion of a collection of hypersurfaces Z~ (fi). 

An irreducible rational hypersurface Z2( f ) ,  can ad- 
ditionally be defined by rational parametric equations 
which are given as (zl  = G l ( U l ,  u2  . . . . .  u n - 1 ) ,  22  : 

G~(ul ,us  . . . .  , u . - 1 )  . . . .  , ~ .  = G . ( U l , ~  . . . . .  ~.-1)) ,  
where G1, G2, . . . ,  G ,  are rational functions of degree 
d in u = (ul, us . . . . .  u , -1) ,  i.e., each is a quotient of 
polynomials in u of maximum degree d. 

Multi-polynomial Resullant: If F1 : 0 .... ,Fn = 0 
are homogeneous polynomial equations in n variables, 
then the resultant R(F1 ..... F , )  is a polynomial in the 
coefficients of the Fi that vanishes if and only if the 
Fi have a common zero in projective space. For this 
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reason, the resultant is also often called the eliminant. 
Geometrically, the resultant vanishes if and only if the 
n hypersurfaces Z~(Fi) have a common intersection in 
projective space. 

The resultant of several equations has several differ- 
ent characterizations. Probably the most elegant was 
discovered by Macaulay [32]. He shows that the multi- 
polynomial resultant can be expressed as the quotient of 
the determinant of two matrices whose entries are coef- 
ficients of the polynomials. In the case of two equations, 
the matrix for the denominator always has determinant 
1 and the matrix for the numerator is the traditional 
Sylvester matrix[37]. 

Multi-polynomial Remainder Sequence: Consider 
first two polynomial equations f l ( z l , . . . ,  x,)  = 0 and 
f2(xl  . . . . .  xn) = 0. Treating them as polynomials in 
xn, the psuedo-remainder ( f l / f 2 )  = g(xl . . . . .  x , )  for 
degree(f2) < degree(f,), is the result of one step of 
psuedo-division in the ring C of coefficient polynomials 
in n - 1 variables (Zl . . . . .  z , - l ) ,  i.e. otfl = /~f2 - g 
with c~, f kC  and degree(g) < degree(f2). Repeating 
the psuedo-division with f2 and g and ensuring that 
the factors oc and/3 are 'primitve', one can compute a 
subresultant polynomial remainder sequence (p.r.s): 

fl,f2,g = Sk-l,... ,El,So (2) 

where Si is the psuedo-remainder of the two polynomi- 
als preceding it in the sequence and is known as the i th 
subresultant of f l  and f2, with respect to z , ,  see for 
e.g [23, 31]. Here So is a polynomial independent of x ,  
and is the resultant of fl  and f2, with respect to xn. 

For the set of polynomial equations 1, treating them 
as polynomials in x , ,  we select the polynomial, say f~, 
of minimum degree in xn. We then compute the sub- 
resultant psuedo-remainder for each pair ( f i / f~)  = gi, 
1 < i < rn and i ¢ k, yielding a new system of equa- 
tions gi and fk- We repeat the above, first selecting 
from the new system, a polynomial of minimum de- 
gree in z , ,  and then computing pairwise subresultant 
psuedo-remainders. Eventually, we obtain a system of 
m -  1 polynomial equations, say S m-1 

A(~I,.--,~--0 =0 
...  

/ r n - -  1 ( ' 1  . . . .  , X n - - 1 )  = 0 ( 3 )  

independent of z , .  
The above is then one (macro) step of the multi- 

equational polynomial remainder sequence (m.p.r.s). 
For the new set of polynomial equations (3), treating 
them as polynomials in Xn_l, we repeat the entire pro- 
cess above and obtain yet another reduced system S m- 2 
of m -  2 polynomial equations, all independent of x~_ 1, 
and so on. This sequence of systems of multi-equational 
polynomial equations 

S = S m,S m - l , s m - 2 , . . . , S  1,S O (4) 

is what we term the multi-equational polynomial re- 
mainder sequence. 

3 B i r a t i o n a l  H y p e r s u r f a c e  a n d  

D e g r e e  C o m p u t a t i o n  

A map of the form 

Yl : ~ b l ( X 0 ,  Z l ,  . . . ,  ~rn)Yo 

y. = ¢.(z0, Zl ..... xm)y0, 

where the ¢i = H~txo,...,~,) are ratios of homogeneous 
polynomials of equal degree in the xj is referred to 
as a rational map. In general, a rational map may 
be thought of as a function that transforms some set 
of points X in (xo...xm) space to set of points Y in 
(Yo...Y,) space. Note that the denominators are polyno- 
mials and can have zeros. Thus the map may not be de- 
fined at all points. We denote this  map by ¢ : X ~ Y. 

A rational map ¢ : X ~ Y is called birational if it 
admits an inverse. That is, there exists a rational map 
¢ : Y --~ X such that ¢ (X)  has the same dimension as 
Y, ¢(Y) has the same dimension as X, ¢4  = 1 almost 
everywhere, and 4¢ = 1 almost everywhere. Two sets 
X and Y are said to be birational if there exists a 
birational map between X and Y. 

A classical theorem from algebraic geometry states 
that "Any algebraic variety Z (S )  is birational with a 
hypersurface Z(h) of appropriate dimension" (see [21], 
Prop.I.4.9). 

Def in i t ion  1 The degree of the algebraic variety Z(S)  
is then defined as the corresponding degree of the bira- 
tionally equivalent hypersurface Z(h).  

The construction of the hypersurface h for a given 
variety S can be done straightforwardly using multi- 
polynomial resultants. (Computationally, as we shall 
show in the next section, under certain assumptions 
on the variety, this can also be achieved using multi- 
polynomial remainder sequences). Given m indepen- 
dent equations in n variables (1), let S be the algebraic 
variety of dimension n - m defined by these equations, 
i.e. Z(S )  is the complete intersection of the m poly- 
nomial equations. We may construct a generic linear 
projection onto n - m +  1 of the variables. The image of 
this projection is the hypersurface H in these n - m + 1 
variables. Determining, the dimension of an arbitrary 
variety is a non-trivial problem. However, various solu- 
tions have been offered, for e.g., see [20, 34]. 

To find a generic linear projection, the following gen- 
eral procedure can be adopted. Consider the linear pro- 
jective coordinate transformation 

Y 0 - - - - a l 0 x 0  'I- a l l X l  --t- . . .  -q- alnZn 
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Yn----anozo -5 anlxl q- ... q- annXn 

The linear coordinate transformation transforms the 
original homogenized variety Y { F i ( z o  .... .  x , )}  into, a 
bilinearly related variety S : V{Fi(y0, ---, Y,)}, i = 
1,..., m (w.l.g.). 

Let R(/~i ..... Fro) be the irreducible resultant poly- 
nomial corresponding to the projection hypersurface H 
of the variety S. Irreducibility of H follows from the 
irreducibility of S and the projection mapping[21]. Let 
k be the multiplicity of polynomial R (i.e. there exists 
a factor Ri such that  R~ divides R but R[  +1 does not). 
Then by applying ([18],Theorem 8.4.13), we see that  
the projection map is generically k to one. To make 
the map one-to-one we choose the coefficients of the 
linear projective transformation, al j ,  i , j  = O..n such 
that  (i) the determinant  of hi j ,  is non zero (making the 
map well defined) and (ii)  the diseriminant of the poly- 
nomial R ( ] i ,  ..., ]m) to be non zero. As "bad" values 
for aij which do not satisfy (i) and (ii) above, satisfy 
a set of hypersurface conditions, any random choice of  
values will in general suffice with probability 1, see [39]. 

4 B i r a t i o n a l  M a p  C o m p u t a t i o n  

The earlier section gave a way of constructing a hy- 
persurface H is a one-to-one projection of the original 
algebraic variety S, or a bilinearly related variety S. We 
now show how such a one-to-one map can be inverted, 
yielding a birational map between H and S. 

T h e o r e m  1 Let X and Y be two irreducible n- 
dimensional varieties and ¢ a rational map from X to 
Y that is generically one-to-one. Then under ¢ ,  X and 
Y are birational. 

This follows from ([21], Cor. 1.4.5). Hence, since the 
map from S to H is one-to-one, there exists an inverse 
rational map from H to S. Such an inverse rational 
map from the irreducible polynomial R to the Ci 's  may 
be recovered by using the Theorem of the Primitive El- 
ement ([43], section II.9). This construction for m = 2 
is described in [4, 19]. A more general version for unre- 
stricted m is described in [16]. Using multi-polynomial 
resultants[14], this algorithm runs in time single expo- 
nential in m and n. 

We now present an alternate method using the multi- 
polynomial remainder sequence of section (2) on the 
original polynomial system (1). We assume that  the 
hypersurfaces fi  = 0 1 < i < m intersect transversally. 
First, consider the subresultant polynomial remainder 
sequence (p.r.s) (2) : f l ,  f~, g = S k - 1 , . . . ,  $1, So. If  the 
projection direction xn is birational, and the hypersur- 
faces f l  = 0 and f2 = 0 have a transversal intersection, 

we show in [~ that  

Sl(Zl . . . .  , xn )  = h l ( Z l , . . . , X n _ l ) Z n  

+h0(z l  . . . . .  zn-1)  

So(x1 . . . . .  z , - l )  = h ( x l , . . . , z , _ ~ )  

That  is, the last polynomial So is independent of xn, 
and is the resultant of f l  and f2 with respect to z , .  
More important ly  the next-to-last polynomial $1 is lin- 
ear in zn.  It is referred to as the subresultant of f l  
and f2 with respect to x , .  The subresultant equa- 
tion $1 = 0 then provides the rational inverse map 

h°/ ........... / 
Z n =- h,tzl,...,z~_, ). 

Similarly, comput ing the multi-polynomial remainder 
sequence (m.p.r.s) (4), under a birational projection di- 
rection z , ,  yields after the first macro step, a reduced 
system (3) independent of zn as well as the inverse map 

z ,  = h, tz , . . . . , z . - , )"  h°lz' ..... z " - ' l  After the second macro step, under 
a birational projection direction z , - 1 ,  we obtain a re- 
duced system independent of x , - 1  as well as the inverse 

h2/zl . . . . . . . .  2/ and so on. Start ing with m map z , - 1  = h3<~1,...,~.-2)' 
equations in (1), and after rn - 1 steps, n _> m _> 2, 
with the elimination order of  z , ,  z , _ , , . . . ,  z , - m + 2  one 
obtains the rational projection as well as the rational 
inverse map: 

..... = 0 

h2ra-4(Zl ..... Zn--m+l) 

Z,--,n+2 = h2m-3(Zl,... ,Z,-rn+l) 

h 2 ( z x , . . . , z , - 2  i" 
Zn-1 "~ h j ( z l  . . . . .  z n - 2 )  

h0(Xl . . . . .  
z, : h l (Z l  . . . . .  z,-1) 

(5) 

5 P a r a m e t e r i z i n g  V a r i e t i e s  

Having an explicit birational mapping (projection and 
inverse maps) between the variety S and a hypersurface 
H of equal dimension, the problem of computing the ra- 
tional parametric equations of  algebraic varieties S then 
reduces to the problem of parameterizing birationally 
related hypersurfaces H. We now provide such rational 
parameterization algorithms for degree bounded hyper- 
surfaces of any dimension. 

5.1 Parameterizing Hypersurfaces of 
Bounded Degree 

Q u a d r l e  H y p e r s u r f a c e s  Z~( f ) ,  n _> 2 
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Geometric Idea: A line through a fixed point on 
Z~(f) intersects Z~(f) in, at most, 1 additional point. 
The coordinates of this additional point are then ratio- 
nal functions of the parameters of the line. 

Algebraic Technique: 

1. Pick a point on Z~(f) and translate Z~(f) to the 
origin via a linear change of coordinates. 

2. Map the origin to infinity along the X ,  axis via 
another linear change of coordinates. 

3. The transformed equation of the hypersurface, 
must now be linear in x,, and hence x,  is ex- 
pressible as a rational function of the remaining 
variables. 

See also Appendix A. 

Cub ic  H y p e r s u r f a c e s  Z~(f), n > 3 

Geometric Idea: A line intersects Z~(f) in at most 
three points. If two of these points lie on rational ele- 
ments of Z~(f) then the parameterized transversal con- 
necting these two points will intersect Z~(f) in at most 
1 additional point. The coordinates of this additional 
point are then rational functions of the parameters of 
the transversal. 

Algebraic Technique: 

1. Pick a point on Z~(.f) and translate Z~(f )  to the 
origin via a linear change of coordinates 

2. Intersect Z~(f) with the tangent plane at the ori- 
gin to yield a rational hypersurface Z~ -1 (g). 

3. Repeat (1) and (2) for a different point on Z~(f) 
to yield another hypersurface Z~(h). 

4. Now consider transversals connecting points on the 
two rational hypersurfaces Z~- 1 (g) and Z~- 1 (h). 

5. The intersection of the transversal with Z~(f) 
yields three roots. Two of these are the chosen 
points on Z~-l(g) and Z~-l(h), which can be fac- 
tored out, leaving the remaining to be written as a 
rational function of the parameters of the transver- 
sal. 

See also Appendix B. 

6 P o s s i b l e  E x t e n s i o n s  

A natural extension to consider is computations with al- 
gebraic varieties of unbounded degree. One possibility 

for constructing a general parameterization algorithm 
is perhaps to use an inductive argument on the degree 
of the variety, with the results of this paper providing 

t h e  base cases. Another interesting problem is to derive 
worst case time bounds, using bit complexity analysis 
to model coefficient growth in all the multivariate poly- 
nomial manipulations. Finally, interesting open algo- 
rithmic questions (which we did not get to consider in 
this paper) are to compute the the singularities and the 
multiple genera of algebraic varieties. 
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A Appendix: Quadric Hyper- 
surfaces 

Consider the implicit representation of a quadric hyper- 
surfac, (which is neither a cylinder or a cone) 

Z~(f)  : E i i, 0 (6) a i x , i 2 , . . . , i n X l . . . , X n  = 
ia+i~+.. .+in <_2 

We assume that all quadratic terms of Z~(f)  are 
present, for otherwise there exists a trivial paramet- 
ricrepresentation. 

1. Choose a simple point (oq, oE2, ..., an) on Z~(f)  and 
apply a linear coordinate transformation 

y j = x j - a j ,  j = l  .... ,n (7) 

to make the resulting hypersurface pass through 
the origin. This yields 

Z~(f l )  : E i, i. bG...i, Yl ""Y. 
i , + . . . + i ~ = l  

+ = 0 (8) 
i , + . . . + i n = 2  

2. Apply the homogenizing transformation 

YJ j = 1, ..., n (9) y ~ =  ~ 

to Z~(f l )  and clear the denominator Y02 to yield 

: Yo 
ix +i2+.. .  + i~ = l 

+ - = ( a 0 )  
i*+i~+. . .+in=2 

3. Now in (10) there exists some nonzero coefficient of 
the quadratic terms Y~, Y],..., Yn 2. Without loss of 
generality, let that be b200...0 :~ 0. Then set Y1 = 1, 
a dehomogenizing transformation to yield 

i , + . . . + i , = 1  

+ = 0 0 1 )  
/ , + . . . + i , , = 2  

from where we obtain 
• yi2 y j ,  

Yo = ~i,+.. .+i.=2 ci,...,. 2 "'" , (12) 
bix...i. Y~ ,..Y~ E i x + . . . + i n = l  in in 

4. Using (12) and (9) with Yt = 1 we obtain 

1 

yl - Yo 

r i  
yj= ~. 

J 

_ Ei,+i2+.,.+i,~=l bix..,i,Y~=".Yn i" 
in in 

E i l + i 2 + . . . + i n = 2  c i l i 2 . . . i , Y 2  . . .Yd  

yj ~ h. . Ei~ v i .  
L . d t + i 2 + . . . + i . = l ~ : t . . . t n  2 " " ~ n  

cil  i z . . . i . Y 2  ...Yr~ E ix+i2+. . .+i~=2 is in ' 

= 2 . . . . .  . (13) 
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and finally using (7) we obtain 

x j  = y j  + a j  j = l . . .n .  

explicit parametric equations with 
Y2 ..... Y.. 

(14) 

parameters 

B A p p e n d i x :  C u b i c  H y p e r s u r -  

f a c e s  

Consider the general implicit equation of a cubic hyper- 
surface 

z~'(S): ~ ]  " '= '" o aiai~...i.~l ~2 ""Xn = 
it+is+in<3 

(15) 

1. Choose a simple point (a l ,  a2 ..... c~,) on Z ~ ( f )  and 
apply the linear coordinate transformation 

y j =  z / -  a j ,  j = 1 ..... n (16) 

which translates the hypersurface Z~(f )  to pass 
through the origin. This yields 

rt z3 (y~): 

= 0  

E Q  +i2+...in=l 

+ Eix+i2+...+i.=2 

+ EQ+i~+...+i.=3 

bil i~...i, y~l y~2 ...y~ " 

07) 

2. Apply the linear transformation 

z l  = bloo...oyl + bolo...oy2 + ... + booo..ny, 

z j  = y j ,  j = 1 . . . . .  n (18) 

which makes Zl = 0 to be the new tangent hyper- 
plane to the hypersurface at the origin. The hy- 
persurface Z~(fa) of equation (17) then becomes 

z~(f.):~, + z~ ~ ~,,...,.z,¢...z,.. 
0 < i ~ + . . . + i . < 2  

+ ~,= E ~,. ,z~,...;.. 
i 1 + . . . + i . = 1  

i2 i .  
4- E 8i~...i. Z2 ".Zn 

i2+...+i.=2 

+ E '= '" (19) ~i2...i. Z2 ""Zn 
i2+...i.=3 

3. Intersecting the hypersurface Z ~ ( f 2 )  with the tan- 
gent hyperplane zl = 0 yields 

n-1 i2 i .  
Z3 (f3) :  Ei2+...+i.=2 si2...i, z 2 " " z "  

• iz i .  
Jr E i 2 + . . . + i . = 3  tG...,.z2 ...Z n 

= 0 (20) 

4. Consider a u = (ux ..... uk), k < n - 2, parameter 
family of lines, passing through the origin and lying 
in the hyperplane Zl = 0. These lines are given by 

zi+2 = uiz2,  l < i < k 

z j  = z2, k < j < n - 2  (21) 

5. Intersect these lines given by equation (21) with 
Z ~ - l ( f s )  of equation (19) to yield 

- E,=+.+,.=~s,~ ,.,d~...~N ~ 
~ =  E,,+ ,.=st,, , . ~  ~+~ (22) 

which together with (21) above yields a parametric 
representation of Z~- l ( f3)  in terms of parameters 
u = (.~ .... , .~). 

6. Using the linear transformation (16), (18), the 
parametric representation of Z~- l ( fa )  and Z1 = 0 
we can straightforwardly construct a u parameteri- 
zation of Z~-I ( fa )  in the original space (zl .... , z , ) .  
Namely 

zi = Mi(u) i < i < n (23) 

7. Next choose another simple point ( i l l ,  f2  .... ,fin) 
on Z ~ ( f )  and repeat steps 1., 2., 3. replac- 
ing (hi ,  o~2, ...an) with (ill, • ..... fin). This would 
yield another Z ~ - I ( ~ )  of similar structure as 
equation (19), viz.,the intersection of a correspond- 
ing hypersurface Z~(]2 )  with an appropriate tan- 
gent hyperplane Zl = 0. 

8. Analogous to Step 4. above, consider then a 
v = (vl ..... vt), 1 = n -  k - 1, parameter family 
of lines, passing through the origin and lying in 
the hyperplane Zl = 0. These lines are again given 
by 

~j+~ = v i i 2 ,  l < j < l 

zJ = z2, l < j _ < n - 2  (24) 

9. Similar to Steps 5. and 6. above, intersect these 
lines of equation (24) with Z~ (f3) to derive a v 
parametric representation of Z~ -1 (]3) in the orig- 
inal space (xl ..... x , ) .  Namely, 

~=g,(v) l < i < .  (25) 

10. Finally consider 
the (u, v) parameter family of lines in (xl ..... x,~) 
space joining points (Ml(u) ,M2(u)  ..... M.(u))  
and ( N l ( v ) , N 2 ( v )  .... ,Nn(v)).  Namely, 

xi = Nl(v)  + (Ni(v) - Mi(v)) (z  I _ Nl(U)) 
Na (u) Mi (u) 

1 < i < n (26) 
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11. Intersect these lines of equation (26) with the hy- 
persurface Z~(f) to yield 

f ( x l , , , v )  = 0 (27) 

with degree ofxx to be at most three, i.e., the lines 
intersect the hypersurface in at  most three distinct 
intersection points. 

12. Two of the intersection points lying on the hyper- 
surface Z~(f) have Xl values Ml(U), and g l ( v ) ,  
Hence /(~l~u,v) yields an expression which (~l-M1)(xl-Nl) 
is linear in xl .  T h u s x l  = R(u,v) where R i s  a 
rational function in the l + k -- (n - 1) parameters 
u = (Ul ..... u~), v -- (Vl .... ,vt). Using this to- 
gether with equation (26) yields a parametric rep- 
resentation of  the hypersurface g~(f) in terms of 
the n - 1 parameters u, v. 
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