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Abstract: We present algebraic algorithms to generase the boundary of configuration space obstacles aris-
ing from the translatory motion of convex objects amongst convex obstacles. Both the boundaries of the
objects and obstacles are given by patches of algebraic surfaces.

1. Introduction

Using configuration space (C—Space) to plan motion for a single rigid objsct amongst physical obs-
tacles, reduces the problem to planning motion for 2 mathematical point amongst "grown" configuration
space obstacles, (the points in C—Space which correspond to the object overlapping one or more cbsta-
cles), Lozano-Perez (1983). For example, a rigid polyhedral object in compliant motion, viz., in contnu-
ous contact with the boundary of obstacles in 3-Dimensions can be represented as a point constrained to
move on the three (or higher) dimension boundaries of grown obstacles embedded in 6-Dimension
C-Space, Donald (1984). The technique thus relies, (and this is in general the more difficult part), in
efficiently generaring the boundary of C-Space obstacles. Numerous applications such as robot motion in
workcells, automated assembly, numerical ma:hini:{g, part tolerancing, etc., exist where gross and fine
motion planning in C—space have been used, Lozano-Perez, Mason and Taylor (1984), Tiller and Hanson
{1984).

Early uses of the configuration space approach were, Fresman (1975), Adamowicz and Albano
(1976}, Udupa (1977), and more reéen:ly. Lozano-Perez and Wesle;} (1979), Lozano-Perez (1983),
Lozano-Perez, Mason and Taylor (1984), Schwartz and Sharir (1983), Sharir and Schorr (1984), Frankkn
and Akman (1984), Canny (1984), Donald (1984), Yap (1985), Bajaj and Kim (19873, b). The only
efficient algorithms known for generating C—Space obstacles have bzen for polyhedral (degree 1) surface
objects and obstacles, using methods for efficiently computing convex hulls, Lozano-Perez {1983}, and

recently efficient convolution algorithms for Minkowski addition, Guibas and Seide]l (1986). However it -

has progressively become easier for geometic modeling systems to deal with objects that are defined by
quadrics (degree 2} and higher degree surfaces, Requicha and Voslcker (1983), Further, motion planning in
these sophisticated modeling environments, for example for process simulation, Hoperoft and Krafft
(1985), suggests the need to characterize and efficiently generate the surface boundary of
C~Space obstacles arising from the motion of objects amongst obstacles with curved surface boundariss.
The methods based on generating a cylindrical cell dscomposition of free C—Space, though applicable for
general objects and obstacles defined by semi-algebraic sets, are computationally to0o restrictive, Schwartz
and Sharir (1983), Yap (1985).

The main contributions of this paper are as follows. In §3 we show that the boundary of
C-Space obstacles for general curved objects moving with only translation can be viewed as either the
convolution between the obstacle boundary and the reversed object boundary (reversed with respect 1o a
reference point on the object) or as certain envelopes of boundary surfaces of the moving reversed object
with the reference point moving on the physical obstacle. Next in §4 we give algebraic algorithms to

'+ Research supporied in part by NSF grant DCI-85 21356 and a David Ross Fellowship.




-

generate the curves and surfaces which make up the boundary of the three dimensional C—Space obstacles.
Here we only consider objects and obstacles which are convex. These objects and obstacles are
represented by a genzral algebraic boundary representation model discussed in §2. Crucial too here is the
internal representation of curves and surfaces, i.e., whether they are parametrically or implicitly defined'.
We present algorithms for both these intemal representations. Further in §5 we show how to construct the
topology of the C—space obstacle boundary. Use is made of 2 Gaussian (spherical) model discussed in §2.

2. Geometric Models

2.1. Solid Algebraic Model
In a boundary representation an object with general algebraic surfaces consists of the following:
{1) A finite set of vertices usually specified by Cartesian coordinates,

(2) A finite set of directed edges, where each edge is incident to two vertices. Typically, an edge is

specified by the intersection of two faces, one on the Ieft and one on the right. Here left and right are

efined relative to the edge direction as seen from the exterior of the object. Further an interior point

is also provided on each edge which helps remove any geomsmic ambiguity in the representation for

high degree algebraic curves, Requicha (1980). Geometric disambiguation may also be achieved by

adding tangent and higher derivadve information at singular verices, Hoffmann and Hopcroft
{1986).

(3) A finite set of faces, where each face is bounded by a single orisnted cycle of edges. Each face also
has a surface equation, representsd either in impiicit or in parametric form. The surface equation has
been chasen such that the gradient vector points 10 the exterior of the object.

In addition edge and face adjacency information is provided. Additional conventional assumptions are also
made, e.g., edges and faces are non-singular, two distinct faces interssct only in edges, an auxiliary surface
is specified for each edge where adjacent faces meet tangendally, etc. The objects and obstacles that we
consider are solids and are assumed o enclose non-zero finite volums. Hence non-regularities such as dan-
gling edges and dangling faces which depending on one’s viewpoint enclose zero or infinite volume, are
not permitted, The C—spaces that we construct are also regularized in this fashion and assumed 1o be
solids enclosing non-zero finit= volume,

2.2, Gaussian Model

Let 52 be the unit sphere in R, and Bdr (S) be the boundary surface of a convex set §  R3. Bdr(S)
is homeomorphic to §2. The Gaussian Map of § is defined as follows. For any set K < Bdr(S), we shall
define a set N (S, X) ¢ 52 as follows. A pointe € §2 elongs to N (S, K) if there exists apointp g X and a
supporting plane L, at p such that the exterior normal to L, translated to the center of $2 has e as its end
point. This set N (5, K) is called the Gaussian fmage of K. The function N (S, ») : P (Bdr (5)) — P (§2) is
called the Gaussian Map of §, where P (Bdr(S)) and P (5?) are the power sets of Bdr(S) and §2. Itis a
bijective map and its inverse N1(S, +) : P (5%} — P (Bdr(S)) is called the Inverse Gaussian Map of S. For
any G c 8%, the Inverse Gaussian Image of G is defined as N (S, G). The Gaussian Curvature of pe
Bdr(S) is the limit of the rado (Area of N (§, X)) / (Area of X) as X shrinks to the point p, see Pogorelov
(1978), Hom (1986). '

{ A unit sphere is implicitly given es x>+y24z2—1 =0 and in rtiona] parmetric form as x = (1—s2—22)/ {1 +s2447),
¥ = 2s7(I+5+12) apd z = 20/ (1+s2+42),



Gaussian Image of Faces, Edges and Verlices

Since all faces are patches of algebraic surfaces, we may assume that each face of a convex object is
either a strictly convex face (Gaussian Curvature is positive on each point), a convex ruled surface patch,
or a planar patch. The Gaussian Model of a curved object then consists of a finite set of vertices, edges and
faces on the surface of a unit sphere as follows,

(1) For a strictly convex face F, the Gaussian Image N (S, F) is a patch of §2 with its boundary curves
determined by the normals (o the tangent planes of F at the boundary. That is, the boundary of
N (S, F) consists of the set of points Vf(p)/ | |Vf(p}|]| forp € Uger E, where T is the set of
boundary edges of F. For a ruled surface paich F, N(§, F) is a degenerate curve on §2. And for a
planar patch F, N (S, F) is 2 degenerate point on §2,

(2) For an edge E, there are two faces F and G intersecting in E. By subdividing E if necessary, we may
assume that F and G mest either transversally or tangentially along E. When F and G meat wansver-
sally along E, each point p € E determines two different points nz and ng on §? determinsd by the
exterior normals of the tangent planes of F and G at p, N(S, p) is the geodesic arc Y Connecting ng
and n; on §? and N (S, E) = U, £ 15 2 patch of $2. N(S, E) has 4 boundary curves, one is the sat
of points Vf (p}/ [ [Vf ()| | for p € E, one is the set of points Vg (p) / | | Ve (p)| | forp e E, and
the others are the geodesic arcs 7y, and Yp.» Where f=0 and g =0 are the swrface equations of F and
G, and p and p, are vertices of E. When F and G mest tangentially along E, N(S, E) is a degen-
erate curve on S2. N(S, E) is the common boundary curve of N(§, F) and N (S, G). That is, it is the
set of points Vf (p)/ | 1Vf (e} 1 =Vg(p}/ || Ve(p)]]| forp € E, When F and G are planar parches,
E s a linear edge and N (S, E) is a degenerate geodesic arc  connecting ay and ng on §2, where np
and ng are the exterior normals of F and G.

(3) For a vertex p, suppose that there are & adjacent faces (ordered in a counter-clockwise direction) Fy,
F3, ., Fy intersecting at p. Each face F; determines a point n; on S2 determined by the normal of F;
atp. Lety; (=1, .., k) be the geodesic arc (greatest circle) on §2 connecting #; and R4 where n; 4
= ny. Then N(S, p) is the convex patch on §2 boundad by the cycle of geodssic arcs 11, 1oy oo e
When F; and F;,, is tangent on p, ¥; is a degenerate point. In the special case of all & fazes baing
tangent at p, N{S, p} is a degenerate point. N(S, p) can also be a degenerate geodesic arz on §2
when Bdr (5) is Iozally non-smooth only along 2 curve which is tangent at p. Otherwise, N (S, p) is
apatch on 52,

Topology of Gaussian Model

The Gaussian Image of Bdr(S) covers $2 completely and subdivides $? into facss, edzes and ver-
tices as described above, We shall fudge the physical distinctions of face, edge and verex of $? a litil= bit
and deal with the degenerate edges and vertices in the same way as with the faces. Let us 2ssume the
Gaussian Image of each face, edge and venex is a generic face of §%. If any of thase Gaussian Images are
not faces, we can represent this fact by tagging it as degenerale curves or degenerate points and considar it
as faces. By using the connectivity graph of Bdr(S) we can connect these generic faces with the correct
topology. We can further include the edges and vertices dztermined by these faces into the connectivity
graph of the Gaussian Image. The edge equatons and vertex coordinates are given by the face boundary
equations described above. Doing it in this way, we construct a graph on §2 with degenerate curves and
points considered as generic faces tagged appropriately.

Figure 1 (b) and (d) show the Gaussian Models for the convex objects in Figure 1 (a) and (¢). In Fig-
ure 1 (a), all the faces are strictly convex, and all the edges and vertices are defined by transversally inter-
secting faces. The Bdr(S) is non—smooth on each edge and vertex and only on the edges and verticss.
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Hence, the Gaussian Images for faces, edges and vertices are all patches of §2, In Figure 1 (c), the face Fy
is a ruled surface and the face F, is a planar patch. The corresponding Gaussian Images are a degenerate
curve and 2 degenerate point. Further since faces F; and F 4 are tangent to each other along E,, the Gaus-
sian Image of E, is a degenerate curve.

3. C-space Obstacles, Convolution and Envelgpes

Let A be a moving object with its reference point at the origin and B ba a fixed obstacle in the 3-
dimensional real Euclidean plane R?. Both A and B are modsled by the above boundary representations.
For the sake of notation and precisensss in our usage we make the following definitions. For §, P and Q &
R?, we denote Inf (S) as the interior of S, Bdr (S} as the boundary of §, and CI(S) =Tnt (S} Bdr(S) as the
closure of §. Note that A = CI(A) and B = CI(B) by regularity. Further, the extzrior of § is denotad by
Ext(S) = CI(S¥ (the complement of CI(§)) = R>~CI(S), where the set difference P~Q =
{peR®|pe P andpnomem O }. Note that Int (S} and Ext (S) are open sets, We also have 4 (p, ¢) as the
Euclidean distance berween p and ¢; NB(p) = {g & R? [ d(p, q) < £} = e—neighborhood around a point p;
-§={-p|peS§}=Minkowskiinverse, P 0 ={ptq |pe Pandge Q } = Minkowski sum and differ-.
ence.

Throwghout we consider objact A to be fres to move with fixed orientation. In this cass configuration
space is also 3-dimensional. We denote A, to be A +{p} where p € R, One also needs the following
definitions (1) 4y is free from B <=> Az \ B =empiy. (2} A5 collides with B <=> Int (Ap) (N Int(B) =
empry (3) A contacts with B €=> Az ~\ B # empty and Int (A5} ~ Int(B) = empry (Note that these con-
didons imply Bdr(A;) ™ Bdr(B) # empty.) (d) CO(A, B) = C—space obstacle due to A and B =
[peR?| Ay (B =empty }. (5) O~Envelope(-A, B) = Outer envelope dueto~A and B= {pe R*|pe
Bdr{(-A),) for some p € Bdr(B), and § nomem Int ({-A )} for any ¢ € B } (Having ¢ € B as opposed to
q € Bdr(B) implies that only the outer envelope is considered) (6) Convolurion(Bdr(-A), Bdr(B)) =
Convolution of Bdr (—A) and Bdr(B) = { p & R? |p =p — g where p € Bdr(B) and ¢ € Bdr(A) and B has
an outward normal direction at p exactly opposite to an outward normal 4 has at g.

We now note the following,

Theorem 3.1: CO (A, B)=B—-A

Proof : Lozang-Perez and Wesley (157%). O
>From the above Theorem and our prior definitions we obuain,

Corollary 3.2 : (1) CO (Int {A), Int(B)) = Int(B)—Int (A} = B—Int (A) (This is an open set)
(2) Agis free from B <=> p e Ext (CO{Int{A), Int(B)))}
(3) Ap collides with B ==> p & Int(CO (Int(A), Int(B)))
(4) A5 conracts with B <=> p € Bdr(CO (Jnt(A), Int (B)))
We next obtain the following important characterizations,
Lemma 3.3 : Bdr (CO (/nt(A), Int (B))) = O —Envelope (—A, B)

Proof : () : Letp € Bdr(CO (Int(A), Int (B))), then A; contacts with B, (Corallary 3.2 (4)}, and 3 p
€ Bdr (Ap) (~ Bdr(B). Since p—p € Bdr(A), we have p—p € Bdr(—A)and p € Bdr{(-A),) forp e
Bdr(B). Further p nomem Int ((-A),) for any ¢ € B, Assuming the comirary, if p € Int((—-A),) for
some g € B,thenp e B-Int(A)=Int (BY-Int (A} = Int (CO (Int (A), Int (B))), (contradiction).

(2) : Let p € O~Envelope(-A, B), then p € Bdr((-A),) for some p € Bdr(B), and p nomem
Int{(~A),) for any g € B, Equivalently, p € Bdr(A5) (~ Bdr (B) and g nomem Int(Ag) for any g €
B. This implies A5 (~ B = empty and Int(4;) ( Int(B) = empty. Hence, A7 contacts with B, O



-5-

Theorem 3.4 : Bdr(CO (A, BY) € O—Envelope (A, B) c Convolution (Bdr(—A), Bdr (B))

Proof : (1) Using Theorem 3.3 we show Bdr (CO (4, B)) c Bdr(CO{nt(A), Int(B))) : Forany p e
CO (A, B), A ™\ B = empry, equivalently p € CI{CO (Int (A}, Ins(B))), (Corollary 3.2 (2)). Hence,
CO(fnt(A),Int(B)) < CO(AB) © CHCOUnt(A),Int(BY)) and CI(CO(ABY) =
CI(CO{nt(A), Int(B))). Since Int(CO(Tm(A)Ti(B))) < Int{(CO(A B)), we have
Bdr(CO(A, B)) < Bdr(CO (Int(A), Int(BY).

(2) O—Envelope (—A, B} c Convolution (Bdr (-A), Bdr(B)) : For any p € O—-Envelope (A, B) =
Bdr(CO (Int(A), In1 (B))), since A; contacts with B at some p € Bdr(B), Az has an outward normal
direction at p which is opposite to an outward normal direction B has at p. For g=p—p € Bdr{4),
we have p = p —¢ and B has an outward normal direction at p exactly opposite o an outward normal
A has at g. Thus p € Convolurion(Bdr(-A), Bdr(B)). Also ses Guibas, Ramshaw, and Stolfi
(1983). O

In the special case when both A and B are convex, both the set containments of Theorem 3.4 become equal-
ites. This follows from the properies of convexity. In particular we use the following simple fact. For
convex A and B, if A7 and B have opposite outward normal directions at p = Bdr {(Az) (™ Bdr(B), then
there is a common supporting piane P, such that A; and B are on opposite sides of the plane P,, Kelly and
Weiss (1979).
Theorem 3.5 : For convex A and B, we have Bdr(CO(A, B)) = O—Envelope(-A, B) =
Convoluiion (Bdr (-A), Bdr (B)).

Proof : Using Theorem 3.4, al we need .to show is Convolution (Bdr(—A), Bdr{(B)) <
Bdr(CO(A, B)) for convex A and B. Suppose p e Convelution (Bdr (-A), Bdr (B)). We first showp
nomem Ext (CO(A, B)). f p € Ext(CO (A, B)), then 3 € > 0 such that (A5 +NB(0) B = empry
and Cl{Az) ~ Cl{B) = empry. Hence, p nomem Bdr ((—A),) for any p € Bdr(B), (contradiction),
and s0 p nomem Ext{CO (4, B)). Now, we show p nomem Int (CO(4, B)). SinceIp e Bdr(Az) M
Bdr (B) such that Az and B have opposite outward normal directions at p, a common supporting plane
F,, separates A and B. For any € > 0, let e be an outward normal vecior to B at p such that | | e || =
e and e is orthogonal (o P, then A, and B are separated by the banded region bounded by Peoy
and P,, and $0 A .,y (\ B = empty. Hence, p nomem Int(CO (A, B)). Thus p romem Int (CO (A, B))
U Ext (CO (4, B)) implies p € Bdr(CO(A, B)). O

This may then suggest a natural method for handling non—convex object and obstacle shapes, One first
obtains a convex decomposition consisting of the union of convex pieces and then generates the C—space
obstacle as the union of C—space obstacles for convex object and obstacle pairs. Such convex decomposi-
dons are possible for polyhedral objects, se= Chazelle (1984). However not all objects with alsebraic
curve and surface boundaries parmit descompositions consisting of the union of convex pieces, Bajaj and
Kim (1987c). For example a complete toroidal surface cannot be decomposed into the union of convex
pieces. To obtain convex decomposition of gensral curved solid objects (say in terms of union, intersection
and difference) is a difficult and as yet unsolved problem, see Requicha and Voelcker (1983). Direct
methods of computing C—space obstacle boundary of objects with non—convex boundary are computation-
ally quite involved and intricate, and further research needs to be done. Thus for the time being one is res-
tricted to considering convex shaped objects and obstacles,

4. Generating the Boundary of C—space Obstacles

Suppose § be ~A or B, p € Bdr(S§) ba a boundary point, E < Bdr (S) be an edge, and F — Bdr(5)be a
face. Let (Fg, Nr,) be a pair such that Fy c Bdr(S) is a face and N, = N(S, Fy), where N (S, -) is the
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Gaussian Map of §. (Eg, Ng,) be a pair such that Eg < Bdr (S) is an edge and Ny, c N (S, Eg) with Ng,
N(S, p)# empry for all p € Eg. (ps, Np,) be a pair such that pg € Bdr (S} is a vertex and N, < N (S, ps)
with N, # empry. Further let Kz be Fg, Eg or pg, and let G_4 be F_,, E_4 or p_,. There are nine
(Kg, G_4) peirs. We define sub—compatible and comipatible pairs as follows,

(1) K and G_, are sub—compatible <=> N (B, Kz) M\ N(-A, G_,) = empry

(2) (Kp,Ny,) and (G4, NG )} are compatible <=> Ny, =Ng

Further denote by Ky = &_, that Ky and G_, are sub—compatible. Since only sub-compatible pairs can
contributz to the Convolution, one can show that Convolution (Bdr(-A), Bdr(B)) = Uy wo

Convolution (G4, Kg), where Convolution(G_4, Kp) = Convolutionof G4, and Ky = {fe R* |F=p +¢
where p € Kp and g € G_, and B has an outward normal direction at p in the same direction as an outward
normal A has at g}. We can further refine the right-hand side 1o be a union of only the comparible pairs as
follows. For a sub-compatible (Kp, G_,) pair, let N(K5,G_1) = N(B, Kp)  N(A, G_,) be the
nonernpty intersection of two Gaussian Images of K and G_4. K(Kp, G.) =N7'(8, N(Kg, G_1)) c K3
and G(Kp, G_y) = N1 (=4, N(K3, G_4)) = G_, be the Invarse Gaussian Images of N (K, G_.). Then
(K(Kp, G_aAW N (K, Gu)) and (G(Kp, G_x). N(Kg, G_,)) are compatible. One can easily show that
Convolution (Bdr (—-A), Bdr(B)) = Uk, we., Convolution (G (K, G_,‘._}.K {3, G_4)). Hence, we only
ne=d to consider compatible pairs to generate the Convolution.

When (K5, Nx,) and (G._x, Ng_ ) are compatible with ai Jzast one of Ky or G., being a vertex, the
Convolution gensration is especially easy, ie. Convolution(G._,,Kz) = Kz+G_,. Let Ch(p) = the
characteristic setof p= {p=p+q | N(B, p) "\N(-A,q) #empy }. Ch(E)= UP€EC}: (p) is called tha
characterisiic set of E, and Chk(F) = UpEFCh ()} is called the characteristic set of F, One can easily
show that Convoluion{Bdr(~A), Bdr(B)) = (U.Fer, ChF) Y (UEE L, Ch{EN (Upe L Chip)),

where I'f is the sst of all faces of Bdr (B), I, is the set of all edges of Bdr (B), and I is the set of all ver-
tices of Bdr (B).

Growing Faces

For a face F <« Bdr(B), one can easily show that Ch(F) =
(UF’—F Convolurion (G (F, F'), K (F, F'})) W] (Uz-eF Convolution (G (F, E), K(F, E))) U
(Uq oF Convolurion (g, K(F, g))). One can use §4.1 to compute Convolution (G (F, F’), K(F, F’)) and

§4.2 to compute Convolution (G (F, E), K(F, E)}, while directly computing
Convolution (G (F, q), K(F, q))=K(F, q}+ {4} as a simply translated surface paich.

Growing Edges

For an edge E € Bdr(B), one can  easily show that Ch(E) =
(UF-E Convolution (G (E, F), K(E, F))) U (UE’-E Convolution (G (E, E"), K (E, E')) W)
(J,_g Convolution (g, K{E, q))}. One can use §4.2 10 compute Convolusion (G (E, F), K (£, F), and

§4.3 1o compute Convolution(G(E, E’}, K(E, E’)), while directly computing Convolution (g, K(E, q)) =
{g}+ K (E, g} as a simply translated edge segment.



Growing Vertices
For a vertex p € Bdr(B), one can easily show that Ch(p) = (UF_PCOnvafun'on(G e Fhed O
(UE_FConvqu:fon G Enph (Uq _PConvaIwion (g, p)}. Since one has Convolution (G (p, F), p)

= G{p, F)+{p}, Convolution(G (p, E), p) = G(p, E}+{p}, and Convolurion(q, p) = {q+p}, computing
Ch{p) is easy.

Note: (1) For a non—smooth edge £ and a2 non-smooth vertex p the convolution edoe
Convolution (G (p, E), p) = G (p, E}+{p} is 2 non-smooth edge, and (2) for non~smooth vertices p and q
the convolution vertex Convolution(q, p) = {¢ +p} is a non-smooth vertex. As we will see in §4.3, (3) we
can also have 2 non—smooth convolution edge Convolution (E_,, Ey) for parallel edge pair E_, and Ej.
These are 2] the non—smooth edges and vertices we can have on the C—space obstacle boundary, As we
see in this classification, all the nor—smiooth edges and vertices on the C—space obstacle boundary result
from very special orientations bstween the non—smooth edges and vertices of 4 and B. Most of the
non—-smoothnzss of A and B are removed while generating the C —space boundary. This smoothing effact
of convolution gensration raises another question of how to compute and specify the boundary of a convo-
lution surface patch. Since most of adjacent convolution faces meet tangentially to-each other, computa-
ton of the intersecting edge may be guite unstable. Auxiliary surfazes n2ed 10 be determined which inter-
sect transversally with the convolution surfaces and thereby boundary curves of the convolution faces,

In §4.1-4.3 we consider both the implizit and rational parametric representation of surface parches
since not all algebraic curves and surfaces have rational parametrization, see Walker (1978). For the class
of rarional algebraic curves and surfaces (which have a rational parametric form), alsebraic algorithms
also exist for converting between the implicit and parametric representations. However their efficiency are
limited to curves and surfaces of low degres, se= Abhyankar and Bajaj (19872, b, ).

4.1. Generating Convolution (F_,, Fg)

In this section, we consider how to generate the algebraic surface equation, edges and vertices of a
convolution surface patch Convolurion(F_,, Fg). We can use Theorem 4.1 for the case of F_, and Fy
being implicitly defined algebraic surfaces. Corollary 4.1 is useful when F_, is implicit and Fp is
paramemic, or the other way around. Corollary 4.2 is useful when both F._, and Fp ars paramerically
defined. For sub-compatible Fy and F_,, we are using the notations N{Fp, F_,) = N(B, Fg)
N(-A,F_4, K(Fp, F_.)=N"YB, N(Fg, F.,)) © Fp, and G(Fp, F_.) =N (A, N(F5, F_)) = F 4.

Theorem 4.1 : Let Fy < Bdr (B} be a pawch of an algebraic surface f=0 with gradients Vf. Furthsr

let F_, < Bdr(=A) be 2 patch of an algebraic surface g=0 with gradisnts Vg, and suppose that F

and F_, are sub-compatible. Then Convolution(F_,, Fg) = Convolution (G (Fg, F_4), K (Fg, F_1))

isthesetof poinsp=(x, , 2) =p+g=(x+o, y+, z+7) such that

fxy2)=0 and p=(x, y, 2)€ K(Fp, F_,) H
(e, B,1)=0 and ¢=(, B, Ne G(Fp. F1) (2
Vfx Vg =0 )
VfVg>0 4)

Proof : Since (3)-(4) imply V/ and Vg are in the same direction, (3}—(4) are equivalent to the out-
ward normal direction of B at p 10 be the same as thatof —A atq, O
We use Theorem 4.1 as follows. First substiute x =X — o, y =¥ — B and z =z — in the above equatons

(1) and (3). Then one can obtain the implicit algebrai¢ equation of the Convolution(F_4, Fg) in terrns of
%, ¥ and 7 by eliminadng ¢, B and ¥ from the eguations (1)—(3). The vector equation Vfx Vg =0 gives 3
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scalar equations. Since one of these equations is redundant, we can have 2 independent scalar equations
from (3). Hence, we have 4 equations and eliminate 3 variables o, [, yto get an implicit equation in terms
of X, ¥, z. Elimination of variables can be performed by computing resultants on pairs of equatons, how-
ever this in general leads to extraneous factors and special care needs to be taken in performing this step,
van der Waerden (1950). Systematic elimination of variables, a process also known as implicitization,
based on Kronecker's eliminaticn method can be adopled to avoid extraneous factors but is limitad by its
exceedingly high computation time, Bajaj (1987). A closed form resultant for simultaneous eliminaton of
n—1 variables from n equations is as yet unknown for n > 3 and is a major unsolved problem of algebraic
geomety, see Abhyankar (1976). For special types of surfaces (called bi-mic parametric surfaces) how-
ever a closed form Cayley resultant proves sufficient in simultaneously eliminating 2 variables from 3
equadons, Dixon (1508).

In computing the implicit equation of the C~space surfaces a ime complexity analysis may be done
as follows. Let Res;(d) = time complexity of compating the resultant of two j-variate polynomials of max-
imum degres d. The best known time complexity of Res;(d) = O (d%*! logd + d% log*d), Collins (1971).
On substituting x =X - ¢, y=Y =P and z =2 —v in equations (1) and (3) one has to expand each term
Cye x5 3% 2% = gy @~ )% F-P)Y-(F-1)* where d;+d;+d, Sd. This is necessary because in
computing resultants to eliminate, say o, one needs to simplify the equadons to be polynomials in ¢ with
coefficients in X,3,2,8,Y. £ fi. f; and £; have O (d%) terms of this form, and expansion of each term takes
O (d*) multiplications. Hence, ths overall time complexity for expansion and simplification is O (d%). By
Bezout theorem, when we take a resultant of a degres 4, equation and a degree d, equation, the degree of
the resulting equation is dy -d;. If we are eliminating'a, B and 7y pairwise, the total ime complexity is
bound by O (Resg(d)+Ress(d®)+Res (d*)+d5) =0 (d*logd). Further the degree of the convoludon
faces may be as high as O (¢*) where original faces of A and B were with maximal degres d.

Corollary 4.1 : Let Fg ¢ Bdr(B) be a patch of an algebraic surface =0 with gradients V£, Further

let F_, c Bdr(-A) be a parameric surface pawch G(x,v)=(a{x,v}, B{&,v), ¥{i,v)) with sradients

G.XG,, and suppose that Fp and F_, are sub-compatible. Then Convolurion(F_,,Fg) =

Convolwion (G (Fp, F.a), K(Fp,F_4)) is the sst of poins 7 = (X ¥%2) = p+qg =

(x+ofu,v), y+B{,v), z+¥uw,v)) such that

J&¥»z2}=0 and p=(z, 3, )e K(F5, Fu) (1)
g =(cw,v), BGgv), (i, v))e G{Fp, Fox) 2
VIX(G, %G} =0 3)
Vi (GuxG,} >0 )

First substitute x =x — a(w,v), y =5 — B, v) and z =z — y(x,v) in the above equations (1) and {3). Then
one can obtain the implicit algebraie equation of the Convolution (F_,, Fg) in tarms of X, ¥ and z by elim-
inadng u and v from the equations (1) and (3} by computing resultants. Since (3} gives 2 independent
scalar equations, we have 3 equations and eliminate 2 varizbles &, v w0 get an implicit equation.

Since G{uv) i5 a ratonal paramemic swrfaze, we  have a{wv)=py,v)/ wiky),
B(u.v) = q(u,v)/w(y,v) and ¥(x,v) =r(z,v)/ w(u,v) for polynomials p (z,v), ¢(i,v), r{x,v) and w{z,v)
of maximum degree 4. At this time the expansion of each term c,-jk-xd' -yd’ 2% =
c,-jk-w(u,v)d_i_d‘_d' (w(v)-x=p (u,v))d‘ -(w(u,v)-?-q(u,v])d’-(w(u,v) -?—r(u,v))d' Iwv)®  is
harder than the case of Theorem 4,1, Again f, f;, f, and f; have 0 (4*) tzrms of this form, and expansion of
each term takes O(d°) muliiplications, Hence, the overall time complexity for expansion and

simplification prior to elimination is O (d%).
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The case of Fp being a parametric surface and £, , being an algebraic surface is similar to Corollary
4.1.

Corollary 4.2 : Let Fy < Bdr(B) be a parametric surface paich F (s.t)=(x(s,7), (5,1}, z(5,1)) with

gradients F,xF,. Further let F_, < Bdr(-A) be a paramewic surface patch

Gu,v)=(a(y,v), B(a,v), Y(u,v)) with gradients G, xG,, and suppose that Fp and F_, are sub-

compatible. Then Convolution(F_,, Fg) = Convolution(G (Fg, F_2), K (Fg, F_4)) is the set of

points p= (%, 3, 2) =p + ¢ = (x(s,1) + o{&, v}, y(s,0)+PB(w,v), z(5,r)+¥(x,v)} such that

p=(x(51), y(s.1), 2(5,0)) € K(Fg, F_y) ey
g={c{u,v}, Ble,v), RuvDe G(Fp, Fu) (2)
(FsXF)x(G,xG,)=0 3)
(F;XF) (G, xG,) >0 {4)

One can obtain the implicit algebraic equation of the Convolurion (F_4, Fg) by eliminating s, 1, u and v
from the equadons x =x(s,1) + a(u,v), ¥ = ¥{(s5,¢) + P{z,v), 7=z (5,¢) + ¥, v) and the above equation (3).
Since (3) gives 2 independent scalar equations, we have 5 equations and nesd 10 eliminate 4 variables
$, 4, 1, v 10 get an implicit equation,

Boundary Edges of Convolurion (F_,, Fgz)

For sub-compatible face pairs Fy and F_, which are relatively opsn with respect to Bdr(B) and
Bdr (—A), each boundary edge Ey of N(F5, F_,) (= N(B, Fg) (~\ N(=A, F_,)) is either a segment of a
boundary edge of N (B, Fp) or a segment of a boundary edge of N (-4, F_,). Further Ey is either (a) a s=g-
ment of the common boundary edge of N(B, Fp) and N (B, Ej) for some edge E; of Fy, or (b} a segment
of the common boundary edge of N(-A, F_4) and N (—A, E_,) for some edge E_, of F_,. Similarly, each
boundary edge Ecoa, gy Of the surface patch Convolution (F_,, Fp) is either (2) a ssgment of the common
boundary edge of Convelution (F _4, Fp) and Convolution (CI(F_,), Eg), or (b} a ssgmsant of the common
boundary edge of Convolution(F_,, Fz) and Convolution (E_4, CI(Fg)}, where Cl{(Fg) and CI(F_,) ere
the closures of Fz and F_, with respect to Bdr{B) and Bdr{—A). Edges of typs (a) are described in
Theorem 4.2, edges of types (b) can be described similarly. Let sub—Convolutions (G.4, Kz) = sub-
Convolution of G4 and K} restricted 1o the normal directions Ty ={pe R> [p=p + g where p € Ky and
g € G4, and B has a unit outward normal direction n, at p which is the same as a unit ourward normal 4
has at g where n, € Ty}. Since the Gaussian Image of Ecp, gy is some edge Ey of N (Fp, F_,), one can
easily show Ecoy, py = sub—Convolutiong (CI(F_4), CI{Fp)).

Theorem 4.2 : Let Fp and F_, be a sub-compatible face pair, Ep be an edge of Fz and Ey be a

boundary edge of N(Fg, F_,) such that Ey is a segment of the ¢ommon edge N(B,Eg) M

CI(N(B, Fg)). Suppose Ep is the common edge of two su.rface patches Fz and FB, where FB is a

patch of an a]gcbr:uc surface f =0 with gradients V/, and FB is a patch of an algebraic su.rfacef ]

with gradients Vf. Then

{A) the convoludon edge Ecoa, 5y = sub—Convolutiong (Cl(F_,), CI(F)) due to the normal direc-

tions Ey is the sstof points p= (%, 3, z)} = p+g = (x+ 0, ¥ +f, z +7) such that

fix, 3. £)=0 and p=(x, 3 z)e ClK(Fa F-0)) (1)
7%, 3, 2)=0 and p=(z, y, z) & CI(F5) @
{ 2(c, B, W)=0 and g=(c B, V)€ CHG (Fa F-a)} (3)
VfxVg=0 @
Vf-Vg >0 (5)

h
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(B) The surface patch defined by (1} and (3)}-(5) and the surface patch defined by (2)—(5) intersect
aiong the convolution edge Ecou, 53

Proof : (A) The surface patch defined by (1) and (3}—(5} is the face Convolution (F_s, F) and all its
boundary edges and vertices. Since (1)—(2) resmict the set of points p to the subsegment £’y of Eg
such that E’y = N™1(B, Ey), (1)~(5) define the convolution edge Ecou, 5)-

(B) Since Ecoa, p) is the common solution of (1)—(5), Eco, gy is the common edge of the surface
patch defined by (1} and (3}-(5) and the surface paich defined by (2)<5). O

By using an auxiliary surface if necessary we may assume each edoe Ep is the common edge of two
wansversally intersecting surface patches Fp and ﬁ‘ﬂ. Then in most of the cases Ecggy gy can also be
represented 2s a common edge of two wansversally intersecting surface patches. When these two surface
patches intersect tangenually, one may use different auxiliary surface patch F 5. For two surfaces defined
implicitly by 4 (x,y,z) =0 and ﬁ(x, ¥,2) =0 which meet tangentially along the curve C, an auxiliary surface
which intersects k and & ransversally may also be obtained by considering surfaces k = ah + B.‘; =0 where
@ and B are arbirary polynominals in thres variables x, y and z. These additional surfaces k also intarsect
both & and h along the cerve € and are said to belong to the idzal of ths curve C. For suitable a and B aux-
iliary surfaces which meet A and k transversally may be constructed.

The case of a boundary edge E_, of F_; bzing defined by two mansvarsally intersecting surface
patches gives a similar result. Further the cases of Fy, ﬁ‘B, F_,, 01 F -4 Dsing parametric surfaces give
similar results. Also the time and degree complexity analyses are similar to those of Theorem 4.1 and
Corollarizs 4.14.2.

Boundary Vertices of Convolurion(F_;, Fy)

For a sub-comparnble face pair Fp and F_, which are relatively open with respact to Bdr(B) and
Bdr(—A), each boundary vertzx ey of N(Fg, F_,} (= N(B, Fg) ~ N{(—A, F_4)) is either (a) a boundary
vertex of N(B, Fp), (b} 2 boundary vertex of N (=4, F_,), or {c) the intersection of one edge of N (&, Fj)
with ancther edge of N (-4, F_4}. In the case of (a), suppose p is the vertex of 5 and 4 is a point of F_,
such that p € N(B, ey) and ¢ € N71(—4, ey), then the point p +¢ is the ventex of Convolurion (F_,, F3)
such that p+¢q € N~NCO (4, B), eny. q € F_, can be computed by solving g =0 and Vg / | [Vg] ] =ey.
The case of (b) is similar to the case of (a). In the case of (c), the intersection ey of one edge of N (B, Fg)
with another edge of N (=A, F_,) can bz computed by Theorems 5.1-5.3. Suppose p € Bdr(Fp) and g
Bdr(F_,) be such that p € N™!(B, ey) and g € N~'(-A, ey) where Bdr(Fg) and Bdr(F_,} are the boun-
dardes of Fy and F_, with respect to Bdr(B) and Bdr(-A), then p+g is the vensx of
Convoluion (F .4, Fg) such that p+4 € N(CO(A, B), ey). p € Fg can be computed by solving f= 0 and
Vi | I¥f]| =ey and ¢ € F_, can be computed by solving g=0and Vg / j|Vg || =ey.

42, Generating Convolution (F_4, Eg} and Convolution (E_,, Fg)

In this section, we consider how to generate the algebraic surface equations, edges and verrces of
convolution surface patches Convelution (F_,, Eg} and Convolution (E_,, Fz). We can use Theorem 4.3
for the case of Eg being defined by the intersecdon of two implicit algebraic surfazes and F_, being an
implicit algebraic surface. The other combinations of implicit and paramzumic surfaces defining Ep and F_,
have similar results as easy Corollaries of Theorem 4.3, Similar results hold for generating
Convolution (E_,, Fg).

Theorem 4.3 : Let Eg «— Bdr(B) be the common edge of two faces Fz and ﬁ‘g. where Fp :'and ﬁ'j c

Bdr (B) are patches of algebraic surfaces f=0 with gradients Vf and}=0 with gradients Vf. Further

let F_, < Bdr(—A) be a patch of an algebraic surface g=0 with gradients Vg. Suppose that E; and
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F_, are sub-compatible. Then Convolution(F_4, Ep) = Convolution (G(Eg, F_,), K{(Eg, F_4)} is
thesetof pointls =X, 7, Z) = p+g=(x+0, y+ B, z+7) such that

Flx, 3, 2y=F(x, 3, 2)=0 and p=(x,y,2)e K(E;, F_y) (1)
3(“’ B! Y)=0 and q=(C¢= BvY)E G(EBIF—A) (2)

Ve (VfxXV/H)=0 and ENg, 3)

Vg
[1Vell
Proof : (3) is equivalent to an outward normal direction of B at p to be the sams as.one of the out-

ward normal directions of —A atg. O

One can obuzin the implicit algebraic equation of the Convolution (F_,, Ep) in a similar way as in Theorem
4.1. When the face F_4 is a paramemic serface paich G(zv}=(a(wv), By,v), (&, v)) with gradisnts
G, XG,, one can obtain the corresponding Corollary by changing every Vg into G, XG, and the statement
"2 B, Y)=0 and g=(o, B, V)& G(Ep, Fu)" into "g=(a(,v),B(xv)Y(&V)) € G{Ep, F_,)" in the
above Theorem, One ¢an meke similar changes to get comresponding Corollaries for the case of Fj and/or
F p being paramsiric surface patches.

When two faces F and Fp are tangent to each other along Ey, Convolution (F_,, Ep) is 2 degenerats
curve on the C—space obstacie boundary. Actually, it is a common edge of two convolution faces gen-
erated in § 4.1,

Boundary Edaes of Convolution(F_,, Ep)

Yor a sub-compatible edge—face pair E; and F_, where F_, is relatively open with raspact to
Bdr(-A) and E; is relatively opsn with respect to the intersection curve of two algebraic surfaces /= 0 and
}'= 0 defining faces Fp and ﬁ‘a. each boundary edge Ey of N(Ep, F_,) (= N(B, Eg) (\ N(~A, F_1)) is
either a ssgment of a boundary edge of N (B, Eg) or a segment of*a boundary edge of N(-4, F_,). Further
Ey is either (a) a segment of the common edge of N (B, E3) and N (B, Fg) for soms face Fy adjacent to Eg,
(b} a segment of the common edge of N(=4, F_,) and N(—A, E_,) for some edge E_, of F 4, or {¢) 2 52g-
ment of the common edge of N(B, Ep) and N (B, pp) for a verex pp of Ep. Similarly, each boundary edge
Ecow, n of the surface patch Convolution(F_,, Ep) is either (a) a segment of the common edge of
Convolution (F_, Ep) and sub—Convolutiongy g, r,3{Ct (F_4), CI (F5)), (b) 2 segment of the common
edge of Convolution(F_4, Ez) and Convolution (E_s, CI(Ep}), {c) 2 segment of the common edge of
Convolution (F_,, Eg) and Convelution (CI(F_,), pp) where CI(F_,) is the closure of F_, with raspsct to
Bdr(—A} and CI(Eg) is the closure of Ep with respect to the intersection curve of two algsbraic surfaces
f=0 and}'= 0 defining faces Fp and I‘:‘B. Edges of typs (a) have been described in Theorem 4.2, edges of
type (b) are described in Theorem 4.4, and edges of type (c) are described in Theorem 4.5. The proofs of
Theorems 4.4—4.5 are similar to that of Theorem 4.2.

Theorem 4.4 : Let Ey and F_, be a sub-comparible edae—face pair, E_, be an edge of F_, and Ey
be an edge of N(Ep, F_,) such that Ey is a segment of the common edge N(-4, E-4) M
ClH{N(—A, F_x)). Suppose E_, is the common edge of two surface patzhes F_, and I:',A, whare F_,
is a patch of an algebraic surface g = 0 with gradients Vg, and F _a is a patch of an algebraic surface
g = 0 with gradients Vg. Then

(A) the convolution edge Ecpa, gy = sub—Convolutiong (CI(F_,), CI(Eg)) due to the normal direc-
tions Ey is the setof points p=(x, 3, 2) = p+g=(x + o, y+ [, z +7) such that

-

g(on B, 1)=0 and g=(c, B, Y} CH{G (Ep, F_4)) ey
£, B, V=0 and g=(ex B, Y& CIF_y) 2)

4 £ ¥, 2)=f(x 3, 2)=0 and p=(x,y, 2)€ CHK Ep F-n)) (3
Vg -(VFxVH=0 and —Y&—eN(Ep F ) @ .
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(B) The surface paich defined by (1) and (3-(4) and the surface paich defined by (2)—(4) intersect
along the convolution edge Ecoca, 5.
When the surface patches of (B} intersect tangentially, one may use different auxiliary surface patch }:'_4.
One may also select an auxiliary serface paich intersecting transversally to the surface patches of (B) from
the ideal of the curve C defining the edge Ecp 4, py-
Theorem 4.5 : Let £ and F_, be 2 sub-compatible edge—face pair, pg = (x, ¥, ) be a vertex of Ej
and Ey be a boundary edge of N(Eg, F_,) such that Ey is a segment of the common edee
CIIN(B Epy M N(B Pr). Suppose Ej is the common edge of two transversally intersecting sur-
face patches Fp and FB, where Fp 15 apatch of an algzbraic surface. f = (0 with gradiems Vj, and FB
is a paich of an algebraic surface f 0 with gradients Vf Further let n = Vf(pg) and —Vf(pBJ
Then
(A} the convolution edge Ecoy, gy = sub—Convolutiong (F_4, CI1(Ep)) due to the normal directions
Eyisthesetof allthe points p=(X, ¥, 7) = pp +¢ = (x + &, y+J, z+7) such that

(e B, V=0 and ¢=(c, B, Ne CH{G s F4)} (1)

Vg-(nxn)=0 (2)
Ve (n—(n-n)n)=0 3
Vg-(i~(r-n)n)z0 “)

(B) The surface patch dzfined by (1) and the surface patch defined by (2}+4) intersect along the con-
volution edge Ecox, 5y

en the surface patches of (B) intersect tangendally, one may select an auxiliary surface patch intersect-
ing transversally to the surface patches of (B) from the ideal of the curve C defining the edge Ecow. 5

Boundary Vertices of Convolution (F_,, Eg)

Each veriex of Conveolution (F_,, Ep) s 2 vertex of Convolution (F_,, Fp) for some adjacent face Fp
of Eg. Hence, ons can use the same methods as in §4.1.

4.3, Generating Convolution(E_,, Ep)

In this s=ction, we consider how to generate the algebraic surface eguarion, edges and vertices of a
convolution surface paich Convolution(E_u, Eg). We can use Theorem 4.6 for the case of both E_, and
Ep being defined by two implicit algebrzic swrfaces. The other combinations of implicit and parametric
surfaces defining E_, and E have similar resulis as easy Corollaries of Theorem 4.6.

Theorem 4.6 : Let Eg « Bdr(B) be 2 segmant of the common edge of two faces Fg and 1?3, where

Fg c Bdr(B) is 2 parch of an algebraic surface f=0 with gradients Vf and IT‘B c Bdr(B)is a patch of

an aleebraic surface }'=O with gradients V}. Further let E_, < Bdr{~A4) be a segment of the com-

mon edge of two faces F_, and ﬁ'_d, where F_, < Bdr (—A) is a patch of an algebraic surface g=0
with gradients Vg and 7., c Bdr(~A) is a paich of an algebraic surface g=0 with gradients Vg,

Suppose that Epy and E_, are sub-compatible, Then Cenvolution(E_s, Eg) =

Convolution (G (Eg, E_4), K(Eg, E_ ))isthe setof points p=(x, ¥, Z) = p+g=(x+ 0, y+0, z+Y)

such that

f5 3. 2)=F(x, 3, 2)=0 and p=(x, ¥, 2)& K (Ep, E—) ¢

g(o B 1) =2(c, B, 1)=0 and ¢=(c, B, ¥) € G(Ep, E-x) (2)

Y avre(1-a)v/

A Vf+(1=3)- V1|
p.-Vg+(1—-u)-V% eN(Eg, E_,) forsome 0<), ug1l  (3)

eN(Ep, E_4) and
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Proof : (3) is equivalent to an outward normal direction of B at p 10 be the same as an outward nor-
mal direction of —A atg. O

One can obtzin the implicit algebraic equation of the Convolwion (E_4, Eg) in a similar way as in Theorsm
4.1. When the face Fy is a parameric surface patch F(s,0)=(x (5.1), ¥ (s, £), z(5,1)) with eradients F, X F,,
one can obtain the comesponding Corollary by changing every Vf into F,xF, and ths statement
f{x y 2})=0 and p=(x, y, 2)€ K(Ez. E_,)" into "p=(x(s,1), (5.1}, 2(5,2)} € K (Ep, E_4)" in tha above
Theorem. One can make similar changes to get corresponding Corollaries for the case of Fj, ﬁ‘,;, F_a
and/or F -a being parametric surface paiches.

When Fp and G are tangent to each other along Ej, or H_, and K_, are tangent to each other along
E_a, Convolution(E_,, Eg) is a degenerate curve on the C—space obstacle boundary and is 2 common
edge of two convolution faces generated in § 4.2, In the special case of Fp and G being tangent along Ej,
and also H_, and K_, bsing tangent along E_,, Convolution (E._, Eg) is either a degenerate curve or a
degenerate point,

Let Ng,(p) = Ng, My N (S, p), then Ng,(p) is a geodssic arc on §2. When two ling segments in a
plane ineersects, either thers is a unique intersection point or they overlap entirely on the same line. One
can show a similar fact for minimal geodssic arcs on §2 as follows.

Fact 4.1 : If Ng, (p) ( Ng_ (@) = empry, either (1) Ng,(p) (" Ne_(g) is a point or (2) Ng, (p) =
Ne,(9)-

By subdividing Ez and E_, if necessary, we may assume only one of the conditions (1) or (2) holds
for the whole edges Eg and E_,. We call E; and E_, to be parallel if the conditon (2) holds on ths whole
edges Eg and E_,., If Eg and E_, is a parallel edge pair, the Convolution (E_,, Eg) generated in Theorem
4.5 is a degenerate curve on the C—space obstacle. Otherwise it is a surface patch.

Boundary Edges of Convoluzion (E_,, Eg)

For 2 sub-compatible edge pair Ey and E._, where Ej (resp. E_,) is reladvely open with respect 10
the intersection curve of two algebraic surfaces f=0 and_;"=0 defining faces Fp and I:"B (resp. g =0 and
g = 0 defining faces F_, and f‘_A), each edge Ey of N (Eg, E_) is either a segment of an edge of N (8, E;z)
or a segment of an edge of N(-4, E_,). Further £ is either (a) a segment of the common edge of
N (B, Ep) and N (B, Fp) for some face Fp adjacent 1o E, (b) 2 segment of the common edge of N (-4, E_,)
and N (—A, F_,) for some face F_; adjacent to E_,, (¢) 2 segment of the common edge of N (8, Eg) and
N (B, pg) for some venex pg of Eg, or (d) a segment of the common edge of N(—4, E_,) and N(-A, p_,)
for some vertex p_, of E_,. Similarly, each boundary edge Ecow, 5y of the surface patch
Convolution{E_4, Eg) is either (a) a segment of the common edge of Convolurion(E_,, Ez) and
Convolution (CI{E_,), Fg), (b) a segment of the common edge of Convolution(E_,,Ez) and
Convolution(F_4, CI(Eg)), (¢) a segment of the common edge of Convolution(E_,,Eg) and
Convolution (CI{(E_4), pg), or (d) a segment of the common edge of Convolution(E_,,Eg) and
Convolution (p_,, CI{(Ep)). Edgss of typs (a)-(b) have bean described in Theorem 4.4. In the case of (c),
Convolution (CI{E_,), pg) is a degensrats curve segment which is non~smooth on Bdr (CO (A, B)) and
also equals to the edge Ecoy, 5). Hencs, Eco, 5) is the common edge of the face Convelution (E_4, Ep)
with the face Convolurion(E_,, L:TB) for some edge E‘B adjacent t© py {(or with the face
Convolution (F_4, pp) for some face F_, adjacent to E_,). Since Bdr(CO (A, B)) is non—smooth on
Ecoa, 8y Ecoa, gy can be represented as a common edge of two transversally intersecting convolution sur-
face paches. The case of (d) is similar o the case of (c).
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Boundary Vertices of Convolusion (E_,, Eg)

For sub-compatible edge pairs E5 and E_,, each vertex ey of N(Ez E_) (= N(B, Ep) e
N{=A, E_})) 1s either (a) a vertex of N(B, Eg), (b) a vertex of N(-4, E_,), or {c) the intersection of one
edge of N (B, Ejz) with another edge of N (-A, E_,). In the case of (a), suppose p is a vertex of Ep and g is
a point of E_, such that p € N(B,ey) and ¢ € N(-4, ¢ey), then the point p+gq is the vertex of
Convolurion (E_n,Ep) such that p+ g € N7 (CO (A, B), ex). Further suppose that E_, is the common edge
of two faces F_, and ﬁ'_A defined by g = 0 and § =0 respzctively, then the point ¢ = (o, B, ¥} € E_, canbe
computed by solving g = 2 = 0 and (Vg XVg)- ey =0. The case of (b) is similar to the case of (a). In the
case (c), this intersection is also the intersection of one edge of N (B, Fp) with another edge of N (~A, F_,)
where Fp is a face adjacent to Eg and F_, is 2 face adjacent to F_,. This case has been considzred in §4.1.

5. Obtaining Gaussian Model of C—space Obstacles

We now show how (o construct the Gaussian (Spherical) Model of CO (A, B), see Figures 2 (2)—(c).
Let §%5 and §2_, be the Gaussian Models of B and —A. These define graphs on §2 with deceneracies
tagged appropriately. Let a new graph S%coq, 5y on §2 be defined as the overlay of $25 and §?,. Then
Szcom,a; is the Gaussian Model of CO (A, B) and determines all sub-compatible face, edge and veri=x
pairs between Bdr(B) and Bdr(~A). Further the topology of the faces, edoes and vemices of
Bdr(CO (A, B)) is given by the topology of the facss, edges and venices of Szcom, 5)- Construction of
S2cow, ) Tequires computing the intersections of edges of §25 with edges of S2_,. These intersections can
be computed by using Theorems 5.1-5.3. Edges of $%; or §2_, are either minimal geodesic arcs on the
unit sphere or curve segments of the form Vf (p)/ | | Vf {p)| | for p € E where f=0 is a face equation and
E is an edge of this face. Note this curve segment is well defined since we are assuming the nonsingularity
of each face on its boundaries. By the regularity and convexity of the objest we may assume that the end
points of each minimal geodesic arc are not aniipodal points of each other. Hence, for two end points 7,
and n; of a2 minimal geodesic arc one has  A-m;+(I-A)n,=0 and
(Arny+(=A)yng) f |[A-ny+(1—A)-n,|| is well defined, The intersection of two minimal geodesic
arcs can be computed by Theorem 3.1, The intersection of one peneral curve segmant and one minimal
geodesic arc can be computed by Theorem 5.2. The intersection of two general curve segments can be
computed by Theorem 5.3.

Next by using a spherical swesp algorithm where one can move a great circle around the sphere and
amongst the edge segments, it is possible to compute zll the overlay curve intersections. The details are
somswhat intricate but a generalization of moving 2 line in a plane-swesp algorithm.

Theorem 5.1 : Lety be a minimal geodesic arc connecting 7y to n, on §%5 and ¥ be 2 minimal geo-

desic arc conmecing n'y to 2’ on S§2,. Then <y and ¥ intersect at

(-ny+(1=2)-n} f [|A-my+(1—X)-ny ]| if and only if

(-ny+(1-2) )X (Ren’y +(1-p)-n'2)}=0 (1)
(An+(1=-R)ng) (pny+({1-W)n"2)>0 (2

forsom= Q<A p<1,

Proof : (1)-(2) are equivalent 10 that A-n;+(1-2)-n, is in the same direction as
peay+(1-py-n’s forsome 0<A, u<t, O
Since the vector equation (1) gives two independent scalar equations in two variables A, 1L, one can solve
this system of polynomial equations either numsrically or symbolically, Buchberger, Collins, and Loos
(1982).
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Theorem 5.2 : Let v be a curve seament on §2; given by the set of poim.s Vi) 11V (p)}] | forp
€ Ep, where Ey < Bdr(B) is the common edge of two faces Fg and FB. Fg 1s a patch of an algebraic
surface f=0 with gradients Vf and FB is a patch of an algebraic surface f 0 with gradients Vf
And, let ¥ be a minimal geodesic arc connecting n; to #, on §2_,. Then ¥ and ¥ intersect at
Vf{p)/ | 1Vf(p)|| if and only if

fo 3 )=Fx 3 2)=0 and p=(x, y, 1) E5 (1)

Vf-(n;xny)=0 (2)
Vi(my—(ny -na}ny} 20 3
Vi (np=(ny-nxdn) 20 4)

Proof’: (2)—(4) are equivalent to that Vis in the same direction as A +ny +(1—-2)-n, for some 0 € A
<1. (1) restricts the solution for p to the edge Eg. O3
Since (1)—(2) give three equatons in three variables x, y, z, one can solve this system of polynomial equa-
tions. The case of ¥ being a minimal geodesic arc on 525 and ¥’ being a general curve ssgment on S%_, is
similar to Theorem 5.2,
Theorem 5.3 : Let ¥ be a curve segment on §25 given by the set of poi.m.s V@) | IVF )] forp
€ Eg, where Eg — Bdr(B) is ths common edge of two faces Fy and FB. Fz 1s a parch of an aloebr:uc
surface f=0 with gradients Vf and FB is a patch of an algebraic surface f 0 with gradients Vf
And, let ¥ be a curve segment on S2_, given by the set of points Vg(9)/ [ 1Vg(g)| [ for g€ E_,,
where E_, c Bdr(-A) is the common edge of two faces G.., and G_4, G_, is a patch of an algebraic
surface g =0 with gradients Vg and G_, is a parch of an algebraic surface § = 0 with gradients V3.
Then yand ¥ intersect at Vf (p) 7 | | VS (p)] | if and only if
fEn)=f(x, »2)=0 and p=(x, 3, 2)e Eg (1)

g(e, B, M=2(, B, ¥)=0 and g=( B,V EE., (2
VfxVg=0 3
V-V >0 ()

Proof : (3)~(4) are equivalent to that V is in the same direction as Vg. (1) restricts the solution for P
to the edge Ep and (2) restricts the soluton for g totheedge £_,. O
Since the vector equation (3) gives two indapendent scalar equations, one has six scalar equations in six
variables from (1}—(3) and can solve this system of polynomial equations.

Each face of the overlay graph § zco{,“ ) corresponds (o 2 compatible pair (K3, Ny, ), (G, Ng_))
of faces, edges and vertices of Bdr{(B) and Bdr(-A). Note that we consider the degenerate curves and
degenerate points as generic faces of § zco(& py. Using the formula defining K and G_4 one can compute
the equation for Convolution (G_,, K3). The edges and verices of each face Convolution (G _,, Kjy) can be
computed by using the boundary informations of Ky and G_,.

6. Conclusion

We have described algebraic algorithms for computing C —space obstacles using boundary represen-
tations and Gaussian Image geometwric models. The numerical informaton defining the faces, edges and
vertices of the C=space obstacle boundary were obtained by solving sysiems of muldvariate polynomizal
equations. The symbolic solution by means of resultants, though computationally extensive, yields the
implicit algebraic eguations of the curves and surfaces on the C —space obstacle boundary. The topological
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information defining the adjacency relationalships of faces, edges and veriices of the C'—space obstacle
boundary were obtained by constructing and merging (or overlaying) the Gaussian Image models of the
individual moving objects and obstacles,

In comparison with the algorithms for obtaining the C—space obstacle boundary for planar case,
Bajaj and Kim (1987a), one notes for the C—space obstacle generations in space an extensively laroe
increase in complexity both in obiaining the numerical and topological information. A significant problem
that arises in the C'—space generation for curved objects is the analysis of singularities. While all types of
point singularities that arise in planar curves can be completely analyzed by the quadratic transformations
of Abhyankar (1983), the singularities in algebraic surfaces are considerably harder 1o deal with. The com-
plete analysis of singularities in plane curves also allows one to deal with the topological constructions of
C—space obstacles for non—convex algebraic curved moving objects and obstacles as well, see Bajaj and
Kim (1987a). Analysis of the possible point and curve singularities that may arise in C-space obstacle
surfaces may be achieved by a canonical (algorithmic) procedure of mapping the singular surface 1o a
non-singular algebraic variety (a process also termed as "blowing up” the singularity) and recently given
by Abhyankar (1982, 86). This is an area for important future research, for its solution would also lead to
obtaining C—space obstacles for non—convex curved solid moving objects and obstacles — the currendy
immediate open problem.
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