ON THE SORTING OF POINTS
ALONG AN ALGEBRAIC CURVE

John K. Iohnstone*
and N
Chanderjit Bajaj'

Computer Sciences Department
Purdue University
Technical Report CSD-TR-824
CAPO Report CER-88-37
November, 1988

* Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218.
The work of this author was supperted in part by a Natural Sciences and Engineering Research
Council of Canada 1967 Graduate Fellowship and an Imperial Esso Graduate Fellowship while
the author was a graduate student in the Department of Computer Scicnee, Comell University,
Ithaca, NY, 14853.

+ Dcpartment of Computer Science, Purdue University, West Lalayeue, IN 47907. The work
of this author was supported in part by National Science Foundation grant 85-21356 and ARO

contract DAAG 29-83-C0018 under Comell MSL

ON THE SORTING OF POINTS
ALONG AN ALGEBRAIC CURVE

John K. Johnstone*
and .
Chanderjit Bajaj'

Computer Sciences Department
Purdue University
Technical Report CSD-TR-824
CAPO Report CER-87-37
November, 1988

Abstract

An operation that is frequently needed during the creation and manipulation of
geometric models is the sorting of points along an algebraic curve. Given a segment
AB of an algebraic curve, a set of points on the curve is sorted from A to B along AB by
putting them into the order thar they would be encountered in traveling continuously
from A to B along AB. A new method for sorting points along an algebraic curve is
presented. Key steps in this method are the decomposition of a plane algebraic curve
into convex segments and point location in this decomposition. This new method can
sort an arbitrary algebraic curve and it is particularly efficient because of its preprocess-
ing, both of which make it superior to conventional methods. The complexity of the
new method is analyzed, and execution times of various sorting methods on a number
of algebraic curves are presented. The theory developed for sorting can also be used to
locate points on an arbirary segment of an algebraic curve and to decide whether two
points lie on the same connected component.

* Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218.
The work of this author was supporied in part by a Nawral Sciences and Engineering Research
Council of Canada 1967 Graduate Fellowship and an Imperial Esso Graduate Fellowship while
the author was a graduate student in the Department of Computer Science, Comell University,
Tthaca, NY, 14353.

1 Department of Computer Science, Purdue University, West Lafayeue, IN 47907. The work

ON THE SORTING OF POINTS ALONG AN ALGEBRAIC
CURVE

JOHN K. JOHNSTONE" and CHANDERJIT L. BAJAJ!

Abstract. An operation that is frequently needed during the creation and ma.mpula.tlon of
geometric models is the sorting of points along an algebraic curve. Given a segment AB of an
algebraic curve, a set of points on the curve is sorted from A to B along AB by putting them inte
the order that they would be encountered in travelling continuously from A to B along AAB A
new method for sorting points zlong an algebraic curve is presented. Key steps in this method
are the decomposition of a plane algebraic curve into convex segments and point location in this
decompeosition. This new method can sort an arbitrary algebraic curve and it is particularly
efficient because of its preprocessing, both of which make it guperior to conventional methods. The
complexity of the new method is analyzed, and execution times of various sorting methods on a
number of algebraic curves are presented. The theory developed for sorting can also be used to
locate points on an arbitrary segment of an algebraic curve and to decide whether two points lie
on the same connected component.

Key words. Sorting, decomposition, point location, convexity, zlgebraic curves, geometric

modeling, solid modeling.
AMS(MOS) subject classifications. 68U05, 68Q25, 68P10, 14H99.

1 Introduction

The sorting of numbers into increasing order or words into alphabetical order is one of the basic
problems of computer science. The purpose of this paper is to establish that the sorting of points

along a curve is a basic problem in geometric modeling and computational geometry, and to present

*Department of Computer Science, The Johns Hopkina University, Baltimore, MD 21218. The work of this auther
was supported in part by a Natural Sciences and Engineering Research Council of Canada 1967 Graduate Fellowship

and an Imperial Esso Graduate Fellowship while the author was a graduate student in the Department of Computer
Science, Cornell University, Ithaca, NY, 14853.
rDe|:mr|:1:|:u:m: of Computer Science, Purdue Univerity, W. Lafayette, IN 47907. The work of this author was

supported in part by Nationat Science Foundation grant 85-21356 and ARO contract DAAG 25.35-C0018 under

Cornell MSIL

a universal and efficient method for this sorting. This method relies upon the solution of two

problems that are very useful in their own right: convex decomposition of a curve and poiné

lacation on a segment.

ar—

To sort a set of points from A to B along the curve segment AB means to put the points into the
order that they would be encountered in travelling continuously from A to B along AB (Figure 1).
Points that do not lie on AB are never encountered and are thus ignored. A vector at A is provided
to indicate the direction in which the sort is to proceed from A. This vector is especially important
when the curve is closed, since there are then two segments between A and B to choose from. All

of the points, including A and B, are assumed to be nonsingular, since otherwise their order might

be ambiguous.

Figure 1: The sorted order from A to B is III, I, IV

Our treatment shall be of irreducible algebraic plane curves (a curve that lies in a plane and
is described by an irreducible polynomial®! f(z,y) = 0); in the rest of this paper, all curves are
assumed to be of this type and nonlinear. An extension of the methods to algebraic space curves
is possible using a suitable projection of the space curve o 2 plane curve [186].

The next section establishes that sorting is a fundamental operation of geometric modeling.
After discussing previous sorting methods in Section 3, we introduce our new sorting method in
Section 4. Convex decomposition of a curve and point location on a convex segment are discussed
in Sections 5 and 6. Complexity issues and execution times of the various sorting methods are
presented in Sections 7 and 8. The relative advantages of the sorting methods are weighed in

Section 9 and Section 10 ends with some conclusions.

17he coeficient domain of the polynomial can be the integers, rationals, algebraic real numbers, or any other set

of numbers that has a finite representation.

92 The importance of sorting

The sorting of points along a curve has many applications in geometric modeling. The following

problem is the most natural application.

Restriction

INSTANCE: A set S of points on a curve C and a segment EF of C.
QUESTION: Which points of § lie on EF?

SOLUTION: Sort S along EF.

Since an edge of a solid model is often defined by a curve and a pair of endpoints, restriction
is a very basic problem in geometric modeling. For example, the following edge intersection and

bounding box problems are two important problems that can be solved with restriction.

Edge intersection
INSTANCE: Edges E and F on curves C and D, respectively.

QUESTION: What is EN F?
SOLUTION: Compute C N D by well-known methods and restrict to the edges.

Bounding box

INSTANCE: Edge E on curve C with endpoints E; and Es.

QUESTION: Find the smallest rectangle with sides parallel to the coordinate axes that contains
E.

SOLUTION: Compute the local extrema of the curve and restrict to the edge, yielding S. Find

the minimum x-value (z5;,) tn S U {E1, B2}, and so on. The desired box is defined by the lines

T=ZTmin; T= Trua=, ¥ = yml'm‘and Y = Ymaz-

The bounding box (see (20, p. 372]) is useful for interference detection: the expensive intersection
of edges can be reserved for those situations when the edges are close enough that their bounding

boxes interfere. Bounding regions are zlso useful for problems such as the restriction problem,

because they allow points that clearly do not satisfy a condition to be discarded quickly.

Another fundamental use of sorting® is to introduce an even-odd parity to a set of points, as

fn this paper, "sorting’ will always refer to the sorting of points along a curve, not the conventional serting of

numbera or words.

illustrated by the following problem.

Solid model intersection

INSTANCE: Two solid models M and N.

QUESTION: What ig the intersection of M and N?

SOLUTION: An important step of this computation is to find the segments of an edge of one model
that lie in the intersection. This is done by finding and sorting the points of intersection of this edge

with a face of the other model. The segments of the edge between the ¢** and §+1" intersections,

for 1 odd, are contained in the intersection of the models.

Another application of even-odd parity is to decide whether a point lies within a piecewise-algebraic
plane patch (or a piecewise-algebraic convex surface patch). This problem, which is fundamental
to the display of a geometric model, is fully discussed in [16]. Having established the importance

of sorting, in the next section we proceed to a discussion of methods for sorting.

3 Previous work on sorting

There is no serious study of sorting in the literature. This can be explained by the fact that
nontrivial sorting problems arise only with curves of degree three or more, and until recently,
almost all of the curves in solid models were linear or quadratic. However, as the science of
geometric modeling matures and grows more ambitious, curves of degree three and higher are
becoming common. For example, the introduction of blending surfaces [15| into a model creates
curves and surfaces of high degree.

The lack of a study of sorting can also be explained by the presence of an obvious method for
sorting points, which tends to obviaie a search for any other method. This obvious method uses a
rational parameterization of the curve (i.e., a parameterization (z{t), y(t)) such that both z(t) and

y(t) can be expressed as the quotient of two polynomials in), sorting a set of points S along AB

as follows.

The parameterization method of sorting

[Preprocessing]

1. Parameterize the curve.

[Solve]

2. Find the parameter values of A and B, say ¢ and ts,

3. Find the parameter value of each point in S.

[Sort numbers]

4. Sort the parameter values of S from ¢, to ¢z, discarding those outside this interval.

We insist upon a rational parameterization because a nonrational parameterization is difficult to
represent and difficult to solve. With a nonrational parameterization (such as x(t} = V't or x(t) =
sin(t)), two different points may have the same parameter value, which complicates sorting. Finzlly,
there is no algorithm for the automatic parameterization of a curve that does nob have 2 rational
parameterization, whereas there Is such an algorithm for rational curves [1].

There are many reasons to be dissatisied with the parameterization method. Itisnot 2 universal
method, since not all algebraic curves have a rational parameterization. Indeed, a plane algebraic
curve has a rational parameterization if and only if its genus is zero, if and only if it hag the
maximum number of singularities allowable for a curve of its degree [26]. Secondly, even for those
curves that do have rational parameterizations, the parameterization method will be slow if the
degree of the parameterization is high, since the computation of the parameter values of the points
will be expensive. Other weaknesses of the parameterization method will become clear as we
compare it with the new method.

There is also a brute-force sorting method, which uses techniques for tracing along a curve (7).
The order of the points is the order in which they are encountered during a trace of the segment.
This method is not satisfactory, because its implementation, although robust, is inherently very
slow. Moreover, its complexity depends upon the length of the segment that is being sorted rather
than upon the number of points in the sort, which is undesirable.

The weaknesses of the parameterization and tracing methods of sorting suggest that another
method is necessary: one that will perform more efficiently on a wider selection of algebralc curves.
The next section presents such a method. This method works with the implicit representation

f(z,y) = 0 of a curve (as opposed to the parametric representation), thus allowing the use of tools

from algebraic geometry.

4 The convex segment method of sorting

The observation that motivates the new method is that a convex segment can be sorted easily.
Since every curve is 2 collection of convex segments, this suggests a divide and conquer strategy. A
segment of a plane algebraic curve is convez if no line has more than two distinct intersections with
it. (Alternatively, a planar segment is convex if it les entirely on one side of the closed halfplane

determined by the tangent line at any point of the segment {12].) The following theorem shows

that sorting a convex segment is simple.

Theorem 1 Let p1,...,Pn be potnts on a convez gegment AﬁBJ and let H be the convez hull of A,
B, p1,..-1Pn {Figure 2). The order (from A to B) of p1,. .., Pn i3 simply the order (from A to B)
of the vertices on the boundary af H.

Proof: (16, p. 20]. 1

Figure 2: The sorting of a convex segment

Suppose that a curve can be decomposed into convex segments. Also suppose that we can
identify the convex segment in this decomposition that contains a query point (point location in

convex decomposition). These key problems will be discussed in Sections 5 and 6. The following

——

algorithm shows how to sort a set of points S along the segment AB.

The convex segment method of sorting

[Preprocessing|

1. Decompose the curve into convex segments (say WiWa., WalVs, ..., Ws-1Wa).

[Locate first convex segment]

2. Find the convex segmeni that contains A (say W,-:W‘-).
3. Decide whether AB leaves A along AFF.'_l or A‘ﬁf,- (say ;*1.'1?71/,-].3

-4. PresentConvexSegment := AW; ;j:=1; SortedSet := § ; FoundB := false
[Sort ome convex segment at a time)]

5. Repeat until FoundB
(a) Find the points of S that lie on PresentConvexSegment.
If B is one of these points, then FoundB := true.

(b) Sort these points along PresentConvexSegment, using Theorem 1.

(¢) I not FoundB,
then SortedSet := Append(SortedSet,{sorted points on PresentConvexSegment})

else SortedSet ;= Append(SortedSet,{sorted pomts on PresentConvexSegment before B})

(d) PresentConvexSegment = W; W_, 13i=7+1

[Output]
6. Return SortedSet.

The expense of this method is concentrated in the preprocessing phase, which is done once off-
line. The run-time operations (convex-segment sorting and locating a point on a convex segment)
are usually very simple. Therefore, the efficiency of this method is very competitive. The coverage

of the convex segment method is the entire set of algebraic curves, since it works directly from the

implicit representation of the curve.

Example 4.1 Consider the sorting of points Pi,..., Ps along the segment AAB of F:'gure 3. The
curve is decomposed into convez segments by the dotted lines (Section 5). A lies on W].H’B and
the vector at A identifies that AW; is the ﬁrst conver segment. There are no points on AW;, 30
we move on. The next convex segment is W]_Wg. Only Py lies on W1W2 and it becomes the first
element of the sorted list. We jump lo the nezt convex segment W;Wg and sort the two points Ps
and P; by creating the convez hull of Wa, W3, Py, and P3. P2 and P; are aedded to the global sort.

We move on to the nezt convex segment W;a,W.;, and then W4W5 The presence of B indicates that

[V is the vector at A that is given as part of the input, then AB leaves A along AW.- if and only if ¥ pointa to
the hallplane defined by AW; that contains AW,

-1

this i3 the last convez segment. Upon sorting B and Py, P, i3 diacarded because it comes after B.

The final sorted list is Py, P2, Ps.

Figure 3: Sorting a curve by convex segments

Tt remains to discuss how a curve can be decomposed into convex segments and how a point
can be located in this convex decomposition. These two problems, which are at the heart of the

convex segment method of sorting, are solved in the following two sections.

5 Convex decomposition of a curve

The decomposition of an object into simple objects is an important theme in computational geome-
try. Decomposition proves to be particularly useful in divide-and-conquer algorithms, since simple
objects are easily conquered. There has been a good deal of work on the decomposition of {simple,
multiply connected, or rectilinear) polygons into simple components (e.g., triangles [10,13,14,24],
quadrilaterals [23], trapezoids (5], convex polygons [9,25], and star-shaped polygons [6}), sometimes
with added criteria (e.g., minimum decomposition (9,17, minimum covering [21], no Steiner points
[17]). However, all of this work has been in the polygonal (or at best polyhedral) domain. The
decomposition of a plane algebraic curve of arbitrary degree into convex segments is an extension
of decomposition to the curved world.

A version of Bezout’s Theorem states that two irreducible plane algebraic curves of degree
ave exactly mn intersections (properly counted), unless the curves are identical [26].

mand n h

Therefore, all plane algebraic curves of degree one (lines) and two (conics) are already convex.

For the convex decomposition of curves of degree three and higher, the singularities and points of
infection are instrumental. A singularity of the curve f(z,y) = 0is a point P of the curve such
that fz(P) = f,(P) =0 (where f; is the derivative of f with respect to z). It is a point where the
curve crosses itself or changes direction sharply. A nonsingular point is also called a simple point.
A point of inflection is a simple point P of the curve whose tangent has three or more intersections
with the curve at P. (It is also a point of zero curvature.) We restrict our attention to points of
inflection P such that P’s tangent has an odd number of intersections with the curve 2t P, which |
we call flezes for short. Fundamental in algebraic and differential geometry, singularities and Hexes
form a skeleton of the curve and can be used in many useful ways. (For example, singularities can
be used to parameterize a plane algebraic curve [1).) Their use in convex decomposition underlines
their importance to computational geometry of higher degrees.

The tangents at the singularities and flexes of a curve form an arrangement of lines that sub-
divide the plane of the curve into several cells, called a cell partition (Figures 3-1). The tangents

also split the curve into several segments. The following theorem establishes that each of these

segments is convex.

Figure 4: Convex segmentation of limacon of Pascal

Theorem 2 The tangents of the singularities and flezes of o plane algebraic curve slice the curve

-

into convez segments. That i3, if PQ is o nonconvez segment, then some tangent of a singularity

or flex will intersect PQ.4

Proof:
Let PQ be a nonconvex segment of an algebraic curve. Assume without loss of generality that

PQ does not contain a singularity or a flex. It can be shown that there exists a line L that crosses

“The simple points at whick a gsingularity/flex tangent touches, but does not cross, the curve are redundant and

should not be treated as convex segment endpoints in the decomposition.

PQ at three {or more) distinct points (18, p- 117].5 Let =, =2, and z3 be three of these points, such
that z, € z153 and zrz3N L = {z1, 2, 23} £7z3 does not change its direction of curvature, since
there is no singularity or flex on ;C} 123 is not a line segment, otherwise Bezout's Theorem would
1rnpl)r that the algebraic curve that contains z1z3 is a line, which it cannot be since it contains a
nonconvex segment. Therefore, it can be assurned without loss of generality that x1z3 looks like
Figure 5(a). Let R be the closed region bounded by #7173 and T1Z3. We wiil show that R containg
a singularity or a flex. This will complete the proof, since the tangent of 2 point inside R must .
intersect z1x3 C PﬂQ at least once. (The tangent must cross the boundary of R twice, and at most
one of these intersections can be with %123.) The curve lies inside of R as it leaves z1x3 from z; and
outside of R as it leaves 2173 from z3. Therefore, the curve must cross the boundary of R after it
leaves z;z3 from z1, either becanse it must join with =3 (if the curve is closed) or because an infinite
segment of an algebraic curve cannot emain within a closed region (if the curve is open) (16]. The
curve cannot intersect the zizz boundary of R, since z1z3 C PﬂQ is nonsingular by assumption.
Therefore, the curve must cross T1Z3 after it leaves ziza from z1.

As the curve leaves z1z3 from z1, it lies on the opposite side of z1’s tangent from E1z3. Therefore,
after the curve leaves zyz3 from zy and before it leaves R, the curve must cross z1's tangent inside
of R, in order to reach TiZs. In order to cross over z)'s tangent, the curve must cross its;elf or

change its curvature inside of R (Figure 5(b}), otherwise it will spiral around inside R forever.

Therefore, R contains a singularity or a flex. B

Figure 5: (a) z,z3 and R (b) travelling from =z, to T1Z3

We include here a word about robustness. Consider the accuracy required in the computation

of the singularities, flexes, and their tangents in order to guarantee a true division into convex

5 Already, by the definition of convexity, there must exist 2 line that intersects PQ three {or more) times.

10

segments. Suppose that, in the proof of Theorem 2, the tangent of a singularity/flex inside the
region R is used io split a nonconvex segment. Any line through a point in the interior of R would
work equally well in splitting the nonconvex segment. Thus, in this case the method is robust under
glight ecrors in tangents, singularities, and fexes. The other case is if 2 nonconvex segment S is
aplit’ into convex segments by a singularity or flex lying on S. The computed convex segment will
differ from the actual convex segment by the same amount as the computed flex (say) differs from
the actual fex. The only points that might be treated improperly are those that lie on the segment .
between the computed and actual fex. In other words, points that are within (some function of)
machine precision of each other cannot be distinguished by the method and must be considered
equivalent. This equivalence of points within machine precision is inherent to any sorting algorithm.

Theorem 2 does not solve the convex decomposition problem, because it yields a confused col-
lection of endpoints of convex segments, not a collection of convex segments. The more challenging
step of pairing up the endpoints remains, where two endpoints are partners if they define a convex
segment of the decomposition. This pairing problem will be attacked in Sections 3.3 and 5.4, but

first the collection of convex segments must be refined.

5.1 Refinement of convex segments I: Singularifies

Many of the endpoints of the convex segments created by Theorem 2 are singularities. However,
singular endpoinis cause problems in pairing. Consider 2 convex segment whose two endpoints are
the same point, which might occur around a singularity (Figure 4). This situation is to be avoided,
since pairing will turn out to be easier If the two endpoints of a convex segment are different. It
is also possible for a singularity to have more than two partners and, in particular, two partners
in the same cell. This situation is also to be avoided, since it is easier to find the partner of an
endpoint in a cell if this partner is unique.

Another problem with sirigular endpoints is that the ordering of points about a singularity
can be ambiguous. Does P; or P3 follow A in Figure 6(a)? What is the order of the points in
Figure 6(b): S, Pt, P2, Ps, 8 or S, P, P2, Py, 57 As a result of these problems, all convex segments
with singular endpoints will be replaced by convex segments with nonsingular endpoints.

A pair of points will be found on each branch of the curve that passes through a singularity,
one on either side of (and very close to) the singularity. The added points will receive the convex
segments that enter the singularity. After each gingularity of the curve has been decomposed in

this manner, every convex segment of the curve will be bounded by simple points, as desired.

11

(a)

Figure 6: Ambiguity about a singularity

Example 5.1 Four points are gasociated with the singularity A of Figure T: V1 end V2 fram one
branch, W1 and W from the other. The convez segments of the two cells ere now PVl V1V-a _Q,
RW1, W]Wg, and Wzs. Notice that this refinement makes it cleer that Q (not S5} must follow P.

Figure 7: The refinement of a singularity

Consider the problem of finding two points on each branch, one on either side of the singularity.
We would like to do this by tracing a small distance along the branch in both directions from the
singulafity. However, there is no reliable way of tracing along a branch as it passes through a
singularity, because the other branches create too much confusion. Therefore, each branch of the
singularity must be isolated so that it can be traced robustly. This isolation is accomplished by

12

blowing up the curve at the singularity by a series of quadratic transformations [7,26], as follows.
The first step in blowing up a singularity is to translate it to the origin.? Let the new equation of
the curve be f(z,y) = 0. A quadratic transformation is applied to the curve. The affine quadratic

transformation £ = Ty, Y = 1Yl [26] has three important properties:

« It maps the origin to the entire y;-axis and the rest of the y-axis to infinity: y; = ¥ so (0,5)

maps to {0, %), which is a point at infinity unless 5 =0.
» It is one-to-one for 2ll points (z,y) with = 7 0.

e y = mz, a line through the origin, is mapped to the horizontal line y1 = m: y = mz —

Ty = mzy — YL =M.

Thus, a quadratic transformation maps distinct tangent directions of the various branches of [at
the origin to different points on the ezceptional line z; = 0. The intersections of the transformed
branches with the exceptional line correspond to the transformed points of the origin (Figure 8).
If a point of f{zy, ziy) on the exceptional line is singular, then the procedure is applied recur-
sively (Figure 9). The following lemma establishes that the various branches of the curve in the

neighbourhood of the singularity eventually get transformed to separate branches.

Fi

(a) {b)

Figure 8: (a} node and (b} its quadratic transformation

Lemma 1 ([1,26]) A singularity can be reduced to @ number of simple points by a finite number
of applications of the quadratic transformation. An ordinary singularity cen be reduced to simple
points by a single quadratic trangformation, where a singularity of mulliplicity r is ordinary if s v

tangents are all distinct.

SSince the quadratic transformation does not map the line z =0 preperly, the curve should also be rotated (if

necessary) so that it is not tangent to z =0 at the origin (see (16])-

Figure 9: (a) the original singularity (b} after one quadratic transformation {c) =after a second

transformation: the original singularity successfully transformed into two simple points

14

To summarize, each singularity is translated to the origin and transformed into a set of non-
singular points through the application of a series of quadratic trans.formations. Each branch of
the transformed curve intersects the exceptional line in a simple point, so this image branch can
be traced from the image singularity without confusion. Therefore, upon each image branch, two
points are found by tracing a very short distance in either direction from the image singularity.

Finally, these points are mapped back to the original curve to become new endpoints, replacing the

singularity. These new endpointa clarify the branch connectivity at the singularity and simplify the

job of pairing.

Care must be taken with the short segment that is essentially sliced out of the curve during the
refinement of the singularity, such as V:V-_- in Figure 7. It is a special convex segment and potnts
that lie on it are sorted in a special way, by mapping them to the blown-up, desingularized, image

curve and using the tracing method. This is noc expensive because the sliced-out segment is very

short and very few steps are needed to trace over it.

59 TRefinement of convex segments II: Infinite segments .

Convex segments with singular endpoints are not the only ones that must be refined: infinite convex
segments are also problematic. The pairing process is simplified if each convex segment has two
endpoints, but an infinite convex segment has only one endpoint. Therefore, an artificial endpoint
is added to each infinite segment, as follows.

Every open cell is artificially closed by a collection of line segments (Figure 10). These line
segments are chosen carefully so that they only intersect infinite convex segments (if any) in the
cell, and each of these exactly once (unless the infinite segment is entirely contained in the cell and
thus proceeds to infinity at both ends, in which case two intersections are allowed). The resulting
artificially-closed cell should also be a convex polygon. A point of intersection of an infinite convex
segment with the new boundary of its cell becomes an (artificial) endpoint (Figure 18). Thus,
infinite convex segments are transformed into finite convex segments with two endpoints. After
every endpoint has been assigned a partner, pairs that contain an artificial endpoint are recognized
29 infinite convex segments. A pair of artificial endpoints represents an entire connected component

that does not cross any of the singularity/flex tangents.

After the above two refinements, the set of endpoints of convex segments assumes the following

normal form:

15

e every endpoint has exactly two partners
e every cell is a closed polygon

The normalization stage not only makes pairing easier: it also creafes a cleaner set of convex
segnients that better reflects the curve. For example, due to the first normal condition, pairing will

create a collection of convex segments with an implicit order.

Figure 10: The artificial closure of an open cell

5.3 Pairing of endpoints I: Properties of the partner

We are now ready to show how to pair the endpoints of convex segments. Consider a convex segment
in cell C and an endpoint E of this segment. E’s partner in C must obviously be another endpoint
in C. Therefore, the determination of partners in all single-segment cells is trivial. Corollary 1 will
present other conditions that E’s partoer must satisfy and Theorem 3 will show how to isolate the

partner if several endpoints satisfy all of these conditions. In preparation, some terminolagy must

be introduced and a crucial lemma proved.

Definition

If P is a singularity or flex, then P’s tangent is a cell wall and the inside of P’s langent w.r.t.
(with respect to) acell Cis the halfplane that contains C. Otherwise, the inside is the halfplane that

contains all of the curve in the neighbourhood of P (Figure 11). The inside includes the tangent,

while the strict inside does not.
Let P be a fiex that lies on the wall W of cell C, and let P, be a point of the curve tnside cell

C at distance ¢ > 0 from P. {P. may be found by tracing the curve into C from P.) The outstde
wallpoint of W w.r.t. Cis the endpoint of W that lies outside of P.’s tangent, for ¢ small {E in

Figure 12).

16

If P is not a flex, then P faces Q if Q lies on the inside of P’s tangent (Figure 11(a)). Otherwise,
P faces Q w.r.t. cell C if (1) Q lies strictly inside P’s tangent w.r.t. C or (2} Q lies on P’s tangent
and on the opposite side of P from the outside wallpoint of P’s wall w.r.t. C (Figure 12).

Notation 1 £{S} fs the number of elements in the set S and TY is the line segment belween z and

y. Ty does not include its endpoinis z and y.

Figure 11: The inside of P’s tangent

Figure 12: P faces both @ and Q: with respect to C :

Temma 2 Consider the cell partition of a curve F. Let X and Y be two nonsingular points of a

convez segment in the cell C. Then

1. The curve crosses’ XY at an even number of points, ignoring singularitics.

TIf P js a peint of intersection of the curve with XV, then the curve crosaes XV at P if it lies on both sides of

XY in any neighbourhood of P; otherwise it only touches XY at P

¥}

2 #{P = ﬁ'_n F-.-P facgs X w.r.t C} = #{P = j{?ﬂ F.P fﬂ-CB&' Y w.r.t C}

9. Yae XY, #{P € Xan F: P faces X wrt. C} < #{P € XaNF: P faces Y w.r.t. C}

Example 5.2 Figure 1213 a hypothetical ezample for Lemma 2. The curve F crosses XY an even
number of times. {P € XY N F : P faces X } = { Pz, P;, Ps} 15 of the same size es

(Pe XY NF: Pfaces Yy = (P, Py, P}. Moreover, {(Pe XanF: Pfaces X} = {P:} is
smaller than {P € Xan F: P faces Y} = {P1, P3, Py}.

Figure 13

Proof of Lemma 2:
Consider the closed region Rxy bounded by XY and }a’ Since }8’ lies in the cell C and C

is a convex polygon, XY must also lie in C. Therefore, again by convexity, Rxy must lie in C.
Since X and Y are nonsingular and the rest of XY lies in the interior of the cell, XY does not
contain a singularity. Therefore, the curve can only cross into Ryy through XY. If the curve
enters Ryxy, then it must also leave, since an infinite segment cannot remain within a closed region
and an algebraic curve of finite length is closed (viz., the curve cannot stop short in the middle of
Rxy). We claim that the point of departure D must be distinct from the point of entry E, unless
all of the tangents at D = £ are }FY, as in Figure 14. Otherwise, if D = E, then at least one of
the tangents of the singularity D will cross into Rxy and form a wall of the ceil partition which
will split Exy in two, contradicting the fact that all of Rxy lies in the same cell. Therefore, with
the exception of the special singularities of Figure 14, the crossings of XY by the curve occur in
pairs, called couples. This establishes condition (1) of the lemma.

Consider condition (2). The special singularities of Figure 14 (as well as the points where the

curve only touches XY) can be ignored during the consideration of conditions (2} and (3), since

18

Figure 14: The only type of singularity that can lie on XY

they face both X and Y and contribute the same amount to the left-hand side and right-hand
side of the expressions of conditions (2) and (3). Therefore, we can concentrate on the remaining
crossings of XY : the distinct couples. Let A,B € XY be a couple and assume, without loss of
generality, that A lies closer to X than B does. AB is a convex segment since it lies within a cell
of the cell partition. Therefore, A and B face each other (w.r.t. cell C). Since A faces B, A faces
Y. Similarly, since B faces A, B faces X. Therefore, one member of each couple faces X and the
other faces Y, yielding condition (2). Moreover, the point of a couple that faces Y (A) is closer bo
X than the point that faces X (B), yielding condition (3). m -

Corollary 1 Let Wi be an endpoint in the cell C. Wi’s partner Wq in C must satisfy the follounng
properties:
1. Wy and Wy must face each other (w.r.l. C)
9 the curve must cross WiWs at an even number of points, ignoring singularities
3. the number of these crossings that face Wy (w.r.t. C) i3 equal to the number that face Wa
(w.r.t. C)

i. for any a € W\ W;, the number of crossings in the interval Wia that face W i3 bounded by

the number of crossings in this interval that face W

These conditions, which capture the fact that the intersections of the curve with W,IV> pair up

into couples that face each other, will often isolate the partner.

Example 5.3 Consider the cell partition of Figure 15 and the cell containing the convez segments
W;‘W-_- and W3W,. Suppose that we wish to find the partner of Wi. W3 violates condition (1) and

W, violates condition (2), so W2 must be W) 's partner.

The following technical lemma is necessary for later proofs.

Lemma 3 {[16]) Let W) and W be partners. If W lies on Wy 's tangent, then W, must be a flez.

19

Figure 15

5.4 Pairing of endpoints II: Distinguishing between candidates

The remaining quest_ion in endpoint-pairing is how to find the pariner of an endpoint Wy in Cif
several endpoints in C satisfy all of the conditions of Corollary 1. This will be done by sorting the
candidates about the cell boundary (Theorem 3). Unfortunately, the refinement of singularities
moved some of the endpoints of convex segments into the interior of cells. Therefore, in order to
allow sorting about the boundary, we must associate a point W' on the cell boundary with each
endpoint W that was created in the singularity refinement stage, as follows. If W 5= W), then W'is
the intersection of the ray W1 W with the cell boundary (Figure 16(a)). If W = Wy, then W' is one
of the {two) intersections of Wy ’s tangent with the cell boundary: the one that lies on a tangent of
the singularity from which W; was derived (Figure 16(b)). For notational consistency, w'=Wif

W is an endpoint that already lies on the cell boundary.

Theorem 3 Let W) be an endpoint in cell € of the cell partition of a curve F, R(W,) the set of
endpoints in C that satisfy the conditions of Corollary I (w.r.t. W1}, and S(W1) the set of endpoints
in R(W1) that lie strictly ingide of Wy 's tangent {w.r.t. C).

IFS(W)) # 0, let §'(W1) = { W' W e S(W1) }. If Wy is not a flez, let X = Wy’ be the other
intersection of Wi 's tangent with the cell boundary, otherwise let X be the outside wallpoint of Wy's
wall w.r.t. C (Figure 17). Wy’ and X split the cell boundary into two halves. Since every endpoint in
S'(W1) will lie on the same half, a sort of S'(W1) from Wy to X is well-defined. Let 51,55, 5,
be the result of this sort (i.e., S} 1s encountered before S, ina traversal of the cell boundary from
Wi' to'X). The pertner of Wy in C is S, (the endpoint associated with Sp).

IfS(Wy) =0, let T(Wy) be the set of endpotnts in R(W1) that lic on the same wall as Wy. The
partner of Wy in C 15 the element of T(W1) that is closest to W,.

20

Figure 16: The boundary points W/

Example 5.4 Consider the compulation of W1’s partner in Figure 18, where Wy is the endpoint
of an tnfinite conver segment. R(W)) = S(W1} = {Ws, W3, Wy} and §'(W)) = {Wa2, W3, Wi} The
sorted order of S'(W1) along the boundary from W, =W, to X is W3, W{, W2, so Wy is the pariner
of W). Since Wz is an artificial endpoint, Wi must be the endpoint of an infinile convez segment.

Consider the computation of the pariner of Wy in Figure 1, where S(W) = 0. V1, V2 and Vj
are ruled out by condition (1) of R(W1), while V3 and Vg are ruled out by condition (2). Therefore,
T(W) = {Vs,Wa}. W2 is the closest element of T(W1) to W, g0 it is Wy 's partner.

Proof of Theorem 3: Suppese that S{W1) 7 8. Let W2 be W,’s partner, and let W, W3 be the
boundary of the cell from W] to W3, such that X € W1W; (Figure 20(a)). I claim that it is sufficient
to show that Wa' € §'(Wy) C WTWZ. Suppose that this is true, and consider a traversal of the
cell boundary from W' to X. Since W-' is an endpoint of WTW: and X € WiWa (by definition},
W,' must be the last element of §'(W1) that is met during this traversal. In other words, Wi = S;
(Wq = S,) as desired. (Since it can be shown that S} # S} whenever { 7 j, there is no ambiguity
in choosing the last member of §'(W)) or in associating S/ with S; [16}.)

We will first show that 5'(W1) C WiWa. Let s € S(W1). Suppose, for the sake of contradiction,

that W1s crosses I’V]_HW'; at y 3 Wa (Figure 20(b-c})). There are two cases to consider: y € Wys and

e ot o

ARAVAN

Figure 17: Partitioning the boundary of a cell

s € Wyy. Suppose that y € Wy (Figure 20(b)). By Lemma 2,
L{PeWiynF: P laces Wi} = Z{PeWyynF: P faces y}

But y faces Wi, since W) and y are on the same convex segment. Therefore, there exists ¢ € Wys
such thab
L(PeWanF: Pfaces Wi} > #F{PeW,anF: P faces s}

in contradiction of s € S(W),). Now suppose that s € Wiy (Figure 20(c)). By the argument of
the proof of Lemma 2, the points of intersection of the curve F with Wy pair up. Let t be the

—

partner of s . Since st is convex, s faces t; since s € S{W1), s faces Wj. Therefore, ¢ € W13, Since

SES(WI):
#{P eWisn F: P faces W)} = 2{P eWisn F: P faces s}

Noting that Wys = Wt U ts U {t} and t faces s, this becomes

L{PEWiINF: Places W)} +#{PetsnF: PlacesW,} +0=

22

W,

Figure 18: Computing the partner of the endpoint of an open convex segment

W g % W W

Vs Vg

Figure 19: Partner computation when S(w)) =49

2

w1:\- lf fﬂ f Y
.wz

\Jf\j& s
W

z

{a)

(b) (c)

Figure 20: (a) W1 W is dotted (b) y € Wi (c) s € Wiy

23

#{PeWitNF: Placess}+7{P&itsnF: P faces sp+1
Moreover, by Lemma 2 (.;E is convex),

ZIPetsnF: P faces a} =

L{Pelsn F: P faces t} =
#{PetsnF: P faces W1}

Upon cancelling terms in the above equation, we conclude that
2{PeWitn F: P faces Wi} >

Z{PeWitnF: P facess} =
L{PeWtnF: P facesy}

But this contradicts condition {3) of Lemma 2 {convex segment WTWg, X =W, Y =y). These
contradictions lead us to conclude that Wis does not cross W?Wz \{#2}. In particula.r, by the
definition of §', Wis' does not cross W;Wg \ {W3}. Therefore, s’ must either lie outside of Wi's
tangent or on W, W;(Figure 20(a)). Since s, as 2 member of S(W)), lies on the strict inside of Wi's
tangent, so must ¢'. Therefore, s' € WiW. and S'(W1) € W1Ws, as desired.

We now show that Wz € §(W1). Wo € R(W)) by Corollary 1, so it suffices to show that W3 lies
strictly inside of W1 ’s tangent. Suppose, for the sake of contradiction, that W3 lies on Wy's tangent.
By Lemma 3, Wy must be a fex (whose tangent is a cell wall). Thus, the wall segment Wiws
is a subsegment of Wi’s tangent and S(W1)nWW: =9 (by definition of S§(W1}). Therefore,
SH(W)n W, Wz = 8. But §'(W1) C WiW, = W1Ws. Thus, §'(W1) = 8, which contradicts our
initial assumption. We concll._lde that W, does not lie on W1's tangent. Since W?Wg is a convex
segment, W> lies on the inside of W,'s tangent, and thus on the strict inside.

The statement of the theorem has been verified if S(W1) # 0. Now suppose that S(W) =0. If
W, is a refined singularity, I';hen Wa € S(W1): W; € R(W1) (as Wy's partner); W2 does not lie on
W,'s tangent {Lemma 3); and W lies inside W, ’s tangent (because W:W-_- is convex). This would
contradict the S(W1) = @ assumption, so ¥, cannot be a refined singularity. Therefore, W1 must
lie on a wall of the cell and T(W;) is well-defined. If W, lies strictly inside Wy's wall (w.r.t. C), it
also lies strictly inside W,’s tangent (Lemma 3). Therefore, if W, & T(W1), then W2 € S(W,). But

S(LV].) = 0, j=10] FV': e T("VI)

24

Suppose that Ws is not the closesc member of T(Wy) to Wy, and let U £ W be the clogest.
Since W, faces U, U must lie on W.W-. By the proof used in Lemma 2, the nonsingular points
of intersection of the curve with W,W- must pair up inta couples. In particular, the endpoints on
WU c W1iW> (all of which are nonsingular because of refinement) that face W) must pair with the
eaqual.number of endpoints on W,U that face U. But U must also pair with an endpoint on WU
that faces U, and there are no such endpoints remaining without a partner. This contradiction

leads us to conclude that Wi’s partner W2 must be the closest element of T(Wy) to W;. 8

5.5 Computation of Singularities and Flexes

The above convex decomposition of an algebraic curve requires the singularities and flexes of the
curve, as well as their tangents. The singularities of a curve f(z,y) =0 are the golution set of the
system {fz = 0, f; = 0, f = 0}, while the points of inflection are the nonsingular intersections of the
curve with its Hessian (the determinant of the matrix of double derivatives of the curve's equation)
[26]. The restriction of points of inflection to flexes (see page 9) is straightforward {16]. The tangents
of a singularity of the curve f = 0 can be found by translating the singularity to the origin. The
equations of the tangents are the factors of the translated f’s order form {the polynomial consisting
of the terms of lowest degree) [26]. Finally, after the curve bas been translated to projective space
by homogenizing its equation 6o f(z,y, z) =0 (where z is the homogenizing variable), the tangent
of a flex P is f-(P)z + f,(P)y + f-(P)z = 0 [26}. This completes our description of the convex

decomposition of an algebraic curve.

6 Point location

The second kev problem in the convex segment method of sorting is point location in the convex
decomposition: given a point, identify the convex segment that contains it. This is an extension to
the eurved domain of the well-known problem of point location in a planar subdivision. We show

how to locate points on both a convex segment and a general curve segment.

6.1 Point location I: On a convex segment

A decomposition is not very useful unless it is possible to locate points in it. In the case of sorting,
point location is necessary to divide a set of points into convex segments for conquering. Since
a convex segment is identified by its endpoints, finding the convex segment that contains a point

is equivalent to finding the endpoints that bound this convex segment. Fortunately, this problem

25

is entirely analogous to finding the partners of a given endpoint as explained in Section 5.4, since
both problems are instances of the more general quesiion: “what are the two endpoints associated
with a given poine?” It is easy to locate 2 point in the proper cell, using well-known algorithms {or
point location in a planar subdivision [18,22].% If, as is often the case, a point lies in a cell with ouly

one convex segment, then it is obvious what convex segment it belongs to. Otherwise, Theorem 4

and Lemma 4 can be used to locate a point on the proper convex segment.

Definition: A connected component of a curve is a maximal subset of the curve such that there
exists a continuous path on the curve between any two points of the subset. For example, a
hyperbola has two connected components. A, type of connected component that requires special
treatment is one that lies entirely inside of a cell, intersecting none of the walls (inciuding artificial
walls) of the cell partition. We call this a nude connected component since, unlike other connected
components, it does not contain any endpoinis of convex segments. Since it does not contain any

singularities or flexes, a nude component is convex. It must also be closed (i.e., homeomorphic to

a circle), otherwise it would intersect an artificial wall as it proceeded to infinity.
Theorem 4 Consider a point z of curve F that lies in cell C and is not an endpoint of a convez
segment.d Let S(z) = {endpoints W in C|

1. z lies on the sirict inside of W's tangent

W lies on the strict inside of z's tangeni

#{PEWHF : P faces z} =#{PEW0F=P faces W}

- e

Y aezW, #{PEﬁ'nF:Pfaces:}S_#{PEEEHF:P}"M:& wh }

IfS{z) = 0, then z lies on a nude connected component. Otherwise, let §"(z) = {W" W € §(z} },
where W" i3 the intersection of W with the cell boundary. Let 71 and z3 be the two points of

intersection of z’s tangent with the cell boundary. z1 and T2 split the cell boundary into two halves
¥ '

and every endpoint in 5"(z) les on one of these halves. Let S¥,5%,...,8; be the result of a sort

of §"(z) from =) to z2. Then 5 and S, are partners end z lies on the convez segment S15.

Proof: If x does not lie on 2 nude component, then S(z) # @, since it will contain the two

endpoints of x's convex segment. (One can alsc quite easily establish the converse: if x lies on a

* 8 rtificial boundaries are ignored when locating points in a cell: a point is considered to lie in an artificially closed

cell C 2 long a3 it lnes in the open cell associated with C.

°If z is an endpom: of o convex segment, then Theorem 3 can be used to determine x’s partner in C, and thus its

convex segment in C.

26

nude component, then S(z) = 8.) The ress of the proof is similar to the proof of Theorem 3, and

the interested reader is referred to [16]. ¥

Example 6.1 In Figure 21{a), S{z) =9 and z lies on ¢ nude campancnt
Conszder the cell of Figure 15 that contains the convez segments W1W2 and W3W4 W, does

not satisfy condition (2} of §(z) and W2 does not satisfy condition (8). Thus, S(z} = {Ws, Wy}

and z must fic on W3W4

Congider the cell partition of Figure 5. S(P) = {(W, Wa, Ws, Ws}, which does not resolve the -

question of Py’'s convez segment. Let 7, and z2 be the two points of intersection of Py’ tangent

with the cell boundary. The sort of §"(Py) from =, to z2 is Wy, We, Ws, Wz, s0 P, must lic on

W Ws.

(b)

Figure 21: {a) z lies on a nude component (b) two overlapping segments

If there is only one nude :::ornponent in a cell, then Theorem 4 can successfully locate a point

on this convex segment. However, if there is mare than one nude component in the cell, then the

following lemma must be used to distinguish these nude components.

Lemma 4 Let P and Q be points that lie on nude components of o curve and in the same cell. P

and Q lic on the same nude component if and only if Q lies in S(P), where §() is as in Theorem {.

Proof: Let P and Q lie on nude comporlents M and N, respectively. If M = ¥, then P and Q lie

on the same convex segment, so @ € S(P) by Lemma 2. Suppose that M # . Nude components

do not intersect, since they do not contain any singularities. Therefore, there are only three cases

[R
-1

to consider: M lies inside N, N lies inside M, and neither lie inside the other. In all three cases, it
ig straightforward to show that Q violates one of the conditions of S(P). R

Point location can be made faster through two observations, both of which make use of the
endpoint pairings already computed: The idea is to eliminate endpoints from S(z) in Theorem 4
faster. First, as soon as the endpoint W is eliminated, W’s partner can also be eliminated, since the
two desired endpoints are partners. Second, by convexity, the curve segment between an endpoint
Wi and its partner Wo lies on one side of W,Wa. Thus, if z does not lie on the appropriate side
of W W3, then both Wy and Wa can be eliminated. These observations should be used along with -
conditions (1-2) to eliminate as many endpoints as possible from S(x) (in the best case, leaving only
two). Conditions (3-4) should only be used when absolutely necessary, because they involve the
expensive solution of an equation of degree n {where n is the degree of the curve F). Fortunately,
the only time that conditions (3-4) will be needed to locate a point on a convex segment 18 .for a
point that lies on one of two overlapping convex segments in the same cell, as in Figure 21(b): z lies
inside all four endpoint’s tangents and all four endpoints lie inside z's tangent. Experience with
algebraic curves (e.g. Lawrence's catalog of algebraic curves [19|), combined with experimental
evidence, indicates that this situation is very rare: a wall of the cell partition will almast always
separate overlapping parts of the curve. Therefore, a poirt can usually be located on a convex
segment very cheaply.

This completes our description of techniques that are needed for sorting by the convex segment
method. We digress for a moment to show how the theory that we have developed can be used to
solve two important problems (although they are not needed for sorting): locating a point onr an

arbitrary segment and deciding whether two points lie on the same connected component.

6.2 Point location IT: On an arbitrary segment

Once it is known how to locate a point on a convex segment of a curve’s convex decomnposition, it is
straightforward to solve the more general problem of locating a point on an arbitrary segment of the
curve. Recall that every endpoint of a convex segment in our (normalized) convex decomposition
has exactly two partners. Therefore, every convex segment has a unique predecessor and successor,
and it is trivial to order the convex segments. Consider a segment AﬁB of curve C and 2 point P on
C. To decide if P lies on AHB we compute the convex segments of C's decomposition that contain
P, A, and B (say Cp, Ca, and Cj, respectively). Then, P lies on AB ifand only if Cp lies in between

Ca a.nd Cy. If P lies on the same convex segment as A and/or B, then the decision requires more

subtlety. For example, if P lies on the same convex segment EF asA (bus not B}, then the decision

is made by sorting P, A, E, and F along gF, using Theorem 1: P € AB if and only if the order
is B, P, A, F (resp., E, A, P, F) and AB leaves A towards E (resp., F). (A method for deciding if
AB leaves A. towards B or F is described in a footnote on page 7.} In short, point location on an

arbitrary segment is easily reducible to point lacation on a convex segment.

6.3 Curves with many connected components

It should mow be clear that the convex segment method can sort points on any algebraic curve.
In particular, it can sort points that are strewn over several connected components of a curve,
with no more difficulty than sorting points on a single component. This is another advantage
of the convex segment method over the parameterization method, because it is not clear how
the latter method could deal with points on several components, even if we allow nonrational
parameterizations. Would each connected component have a separate parameterization? If so,
how would the single equation of a curve produce geveral independent parameterizations? If not,
how would one determine the range of parameter values that is associated with each connected
component?

A very useful test for a curve with several components is whether two points lie on the same
connected component. For example, with this capability it is reasonable to define an edge of a solid
model as a particular connected component of a multi-component curve, since the test allows you
to restrict intersections with the curve to this connected component. The following lemma shows
that our decomposition of the curve into convex segments makes it simple to perform this test.

(Lemma 4 can be used for points on nude components.)

Temma 5 Let P and Q be points of a curve, not both of which lie on o nude component. Let P
and Q lie on convez segments AB and CD, respectively.’® P and Q lie on the same connected
component if and only if A= C, where v = w if and only if vw is o conver segment of our cell

partition or v = z and w = z for some z.

Two other decompositions of an algebraic curve, Collins’ cylindrical zlgebraic decomposition (11,4]
and Canny’s stratification [8], can also be nsed to separate a curve into connected components and

thus decide whether two points lie on the same connected component.

If P (resp., Q) lies on a nude component, ther A and B (resp., C and D} are null symbols.

6.4 Broad comparison of methods

Let us compare the convex segment method of sorting with the others that were mentioned in
Section 3. Like the brute-force tracing method, the convex segment method leaps from one point
to another along the curve (viz., from an endpoint to its partner}. However, its jumps are large
while the tracing method’s jumps must be very small. Moreover, once the partner of each convex
segment endpoint of the cell partition has been computed (which can be done once and for all
in a preprocessing step), each jump of the convex segment method can be done very quickly;
whereas, the tracing method must grope for some time (by applying Newton’s method) to find the
destination of each jump. In short, the convex segment method makes large, bold jumps while the
tracing method makes small, timid ones.

The convex segment method is similar to the parameterization method because they both reduce
the sorting problem to an easier one. The parameterization method observes that the sorting of
points on a line is simple and tries to unwind the curve into a line by parameterizing it. Rather
than trying to reduce the entire problem, the convex segment method divides the problem up into
many smaller ones (viz., the sorting of points on a convex segment). We shall see that the many
small reductions of the convex segment method can be done more quickly than the single, large
reduction of the parameterization method.

The convex segment method incorporates preprocessing, since the convex decomposition of a
curve can be dome at any time. As a result, the actual sorting is usually very efficient. One
might consider the parameterization of a curve to be preprocessing, but the subsequent runtime
steps (solving for the parameter value of each point) are usually more expensive than those for the

convex segment method (following pointers, locating points, and sorting convex segments).

7 Complexity

In this section, we analyze the complexity of the convex segment method of sorting. We base our

complexity analysis on the RAM model, where basic arithmetic operations are of unit cost [3].

7.1 Complexity of convex decomposition

Theorem 5 A curve of order n (¢ curve whose defining polynomial is degree n) can be decomposed
into convez segments in Ofa(n?] + n2a{MAX * n| + nba(n|) time, where an] is the time required
to find the real roots of a univariate polynomial equation of degree n, and MAX is the mazimum

number of quadratic transformations that are necessary Lo decompose any singularity of the curve

into simple points.!t

Proof:
Gomputation of singularities, flezes. Consider the curve f(z, y) = 0 of order n. Its singularities

are found by solving the simultaneous system of equations {f- =0, f, =0, f=0}. One method
is to use resultants [26]. The resultant of two polynomials with respect to the variable z, is a

polynomial whose roots are the projection onto the hyperplare zn =0 of the intersections of the

two polynomials. Let X (resp., Y) be the real roots of the resultant of fz and f, with respect to -

y {resp., z), which is a univariate polynomial in z (resp., y) of degree QO(n?). Since singularities
at infinity are not of interest, those roots in X (resp., Y) that cause the terms of highest degree
of {f= =0, f, = 0} to simultaneousty vanish are not of interest. (The terms of highest degree of 2
polynomial are intimately related to its solutions at infinity, since they dominate the polynomial 29
solutions get large.) Therefore, before computing the roots of the resultant, the GCD of the leading
term polynomials of f- and f, is computed and divided out of the resultant, all in O(n log® n) time
[3]. Now X (resp., ¥) is the collection of abscissae {resp., ordinates) of the finite-solution set of
{f-=0,f,=0}. X (and Y) can be computed in O(n* log® n+c[n?]) time, since the resultant of a
pair of polynomials of degree at most . in r variables can be computed in O(rn*" log® n) time {2]. The
singularities of the curve are { (z,y) : z€X, y€Y and flz,y) = f=(z,9) = fu(z,9) =0 }. This
pairwise substitution takes O(n®) time, since X and Y are each of size O(n®) and the evaluation of
an equation of degree n requires O(n®) time. Hence, all singularities of the curve can be computed
in O{a[n?] + n®) time. With similar techniques, the Hexes can also be computed in O(ca(n®] + n°)
time.

Computation of their tangents. Recall that the tangents at a singularity (a,b) are computed
by translating the singularity to the origin and factoring the polynomial consisting of the terms of
lowest degree of the tramslated f(x,y) into linear factors. (For example, the lines z —y = 0 and
z-+y = 0 are the tangents of the curve 25 —z2+y® = 0.) A translation is simply a linear substitution
z. = T—~a, g = y— b, which takes O(n?*) time for a bivariate equation of order n. The factorization
of a homogeneous bivariate polynomial is equivalent to the solution of a unjvariate polynomial.
Therefore, the computation of the tangents at a singularity requires O{n* + ainj) time. A curve of
order n has at most O(n?) singularities {26], so all of the tangents at singularities can be computed
in O(n®+nlan]) time. The computation of the tangent at a fex is easier, only involving the O(n*)

operation of bivariate (or homogeneous trivariate) polynomial evaluation (Section 5.3). A curve of

TinfAX is 1 if each singularity has distinct tangents, and MAX will usually be 1 or 2 in geometric modeling

applicationa.

31

order n also has at most O{n?} flexes (26}, so ail of the tangents at flexes can be computed in O(nt)
time.

Computation of intersections of singularity/flez tangents with curve. The intersections of the
singularity /flex tangents with the curve are needed to create the convex decomposition. Consider
the number of tangents. There are at most O(n?) tangents at flexes. A curve of order n has at
most 11——”—2{53- double points, where a singularity of multiplicity ¢ counts as ‘—‘-‘—;—11 double points
and has O(t) tangents [26]. Consequently, there are t/ﬂ‘—;—ll < 2 tangents per double point, or at
most O(n?) singularity tangents. The intersection of a tangent with the curve involves a linear
substitution and a solution of the resulting polynomial, thus O(n?* + &[n]) time or O(r® + n’a(n))
for all tangents. Note that the O(n®) tangents generate O(n®) endpoints on the curve, since each
bangent intersects the curve in at most n points (Bezout's Theorem).

Refinement of singularities and infinite segments. A singularity of multiplicity ¢ is refined into
0(2t) endpoints, meaning 2t/5(5;—11 < 4 refined endpoints per double point, or a total of o(n*)
refined endpoints at singularities. Thus, the number of endpoints of convex segments (and the
number of convex segments) remains O{n®) after refinement. Consider the time that is required
to refine the singularities. Bach singularity is translated to the origin and subjected to guadratic
transformations (perhaps translating the singnlarity back to the origin after certain quadratic
transformations). O{n®) quadratic transformations are sufficient to reduce all of the singularities
to simple points, since the singularities of a curve of order n account in total for O(r?) double
points and the application of each quadratic transformation removes at least one double point, in
a global amortized counting [1]. We have seen that the translation of a curve requires O(n?) time,
amounting to a total O(n®) transiation time. Fach quadratic substitution z = 71, ¥ = T1%1 takes
O{n?) time (there are Q(n®) terms in the original equation of the curve). Therefore, all of the
quadratic transformations take O(n*) time.

During the reduction of a singularity to simple points, each quadratic transformation can in-
crease the degree of the curve’s equation, since Ziy' becomes z(zi =9y} = z*dy, where d is
the multiplicity of the singularity.’* In other words, the degree of the polynomial can increase
by O(j), where 7 is the highest degree of y in 2ny term of the polynomial undergoing quadratic
transformation. Since j = n for the polynomial of the original curve and the y-degree of every

term remains invariant under quadratic transformation (and does not increase under translation

31t might appear that z'y’ should become z"[zfy"'). However, redundant factors must be removed from the
polynomial, For example, z° — y® = 0 becomes 1 —zy” = 0, not 23 = z3y° = 0. The equation of a curve with a

singularity of multiplicity d at the origin has no terms of degree less than d, 30 a facter of z4 ¢an always be removed.

of the curve either}, the degree of cthe polynomial can only increase by O(n) with each quadratic
transformation. Therefore, by the end of the reduction of a singularity to simple points, the curve’s
equation can be of degree O(MAX *n).

Finally, after a quadratic transformation where the multiplicity of the singularity drops, one
computes the intersections of the new curve of order i with the y-axis, which takes afi] time.
Again, since this is computed after at most O(n?) quadratic transformations, the total time taken
by all of the intersection computations is ab most O(n*a{MAX * n]) time. We conclude that
a (pessimistic) bound on the time for refining the convex segment endpdints at singularities is
O(n® + n*a[{MAX * n|}. There are at most two infinite segments, which are comparatively simple
to refine.

Pairing endpoints. Consider the time required to compute the partners of the O(n?) endpointa.
The dominating expense is the computation of the set R(W,) of Theorem 3 for each endpoint W1.
It takes O(kaini) time to compute R(W1) for an endpoint in a cell with k endpoints, O(k*c(n|)
time to compute R(W;) for every endpoint in a cell with & endpoints, and O(T kiafn]) time to
compute R(W))} for every endpeint in every cell, where k; is the number of endpoints in cell C; and
the sum is over all cells C;. Since T ki = O(n?), O(L k2 c[n}) = O(n®e(n]). Therefore, partner
computation takes O(n%a[n]} time. X

It must be emphasized that the n of the above analysis is the order of the curve. This makes
the analysis fundamentally diferent from those that we are familiar with, such as O(nlogn) for
sorting numbers (where n is the number of points) or O(nloglogn) for triangulating a simple
polygon (where n is the number of edges of the polygon). (For example, in the above analysis, n
is the constant 1 for all polygons.) As a result, the complexity of an operation such as the convex
decomposition of an zlgebraic curve can be misleading, since it is very easy (although wrong)
to compare it with familiar complexities of discrete (rather than continuous) algorithms such as
number sorting or polygon manipulation.

It should also be noted that the above analysis is pessimistic. The worst case time will be
reached only by the most pathological curves: the time to decompose curves that arise in practice
in geometric modeling is much more reasonable. For example, a typical endpoint will lie on the
boundary of a single-segment cell and its partner will be computed in O(1), not O(ke(n]), time.
This observation has been borne out in practice, with the testing of the algorithms on various curves
(see Section 8). The efficiency will be even further improved by the fact that the singularities and

fexes, which are important to other geometric algorithms, may already be available in many cases.

7.2 Complexity of sorting

We now consider the complexity of sorting points along a curve after its convex decomposition is
available. This sorting is usually very efficient, because the traversal of a curve by convex segments
has been reduced to the traversal of a doubly linked list, and it is usually simple to find the points

on each convex segment. Once again, the following worst-case analysis is unrealistically pessimistic

for geometric modeling applications.

Theorem 6 After the curve has been decomposed into convez segments, m points on ¢ plane al-)

gebraic curve of order n can be sorted by the conver segment method in O(mnialn] + mlogm)
time. If the curve does not have overlapping segments (see page 28), then m points can be sorted

in Ofmn® + mlogm) time.

Proof The dominating expense of sorting is to locate every point on a convex segment, since the
convex segments are already implicitly sorted (by endpoint pairing) and the sorting of points along
a convex segment is simple (by Theorem 1, it is equivalent to the O(klog k) operation of finding and
sorting a set of angles). A point can easily be located in the proper cell of the cell partition. A vector
of size O(n®) is associated with each of the m points and each cell: this vector specifies the side
(inside or outside) of each singularity/fex tangent that the point or cell lies on. A point lies in a cell
if and only if their two vectors match.1® Therefore, the only potentially challenging step is locating
the convex segment in the cell that contains the point. In the worst case, it requires O(ka[n]) time
to compute the set 5(z) of Theorem 4 for a point in a cell with k endpoints, since the intersection
of line segments with the curve is required. There are O(n®) endpoints, so point location Tequires
O(n®a[n]) time per point and O(mn3efn|) time for all points.!* After adding O(mlogm) time
for sorting the points along the convex segments, the convex segment method requires worst-case
O(mn3afn] + mlogm) time to sort m points by traversing O(n®) convex segments. If the curve

does not have overlapping segments, then curve-line intersection can be avoided in the computation

of the set S(z), thus dropping the a[n| factor. %

13The vector of a cali need not, and will not, be complete. Only the entries for the ¢ell’s walls are necessary.
140bserve the worst-case pessimism of this analysis. It is unlikely that there are O(n?) real endpeints, since many

of the n intersections of a singularity/Bex tangent with the curve will be complex. It is extremely unlikely that all

of these endpoints are in the same cell and that none of these endpoints would be eliminated by the cheap o

conditions of Theorem 4.

34

8 Execution times

This section presents execution times for the sorting of some representative curves by the convex
segment and parameterization methods. These empirical results are a good complement to the
complexity analysis of Section 7, since they capture the expected case, rather than the worst
case, ‘behaviour of the methods. The source code was written in Common Lisp and execution
times are in seconds on a Symbolics Lisp Machine, not including time for disk faults and garbage
collection. Times for the convex segment method are the average of tweive trials, while times for
the parameterization method are the average of three trials. Preprocessing time is the time required
to create the cell partition and find the partners of all of the endpoints. Five curves are examined:
two rational cubic and three non-ration.a.l quartic.

We do not consider the time required to find a parameterization of the curve or to find the flexes
and singularities of the curve. Each of these computations is a preprocessing step that is entirely
independent of sorting, and often the parameterization, singularities, and flexes of a curve will
already be available. Moreover, the computation of a curve’s parameterization is of approximately
the same complexity as the computation of a curve’s singulariéies and flexes, so our comparison of
sorting methods should not be biased.

The Srsi example illustrates the superiority of the convex segment method: even when the
preprocessing time is added to the soriing time, it is more efficient. Also notice that the rate of
growth of the convex segment method is much smaller. The inferiority of the tracing method (see

end of Section 3) is obvious from this example, and we do not consider it further.

Example 8.1 A semi-cubical parabola
Equation of the curve: 2Ty? - 223 =
Preprocessing time: 0.27 seconds

Parameterization: {z(t) = 6%, y(t) = 42 : t e (—o0,+c0)}

number of sortpoints 1 2_]

convez segment 01 .U..‘: .08 i

convez segment + prepracessing | .28 .50 | .90 |

parameterization A7 | 63 | 1.04

tracing 8.14 1t 2.89 | 4.77
35

_ The second example illustrates the tradeoff between a very fast sort that requires preprocessing

convex segment method) and a moderately fast sort that does not require preprocessing (param-
q prep g\p

eterization method).

Example 8.2 Folium of Descartes
Equation of the curve: z° +y* ~ 15zy =0
Preprocessing time: 2.81 seconds

2

Parameterization: {z(t) = %’ y(t) = 11_27 : t & (—o0,+00)}

number of soripoints 1 l 2 5 g

convez segment 0.01 1} 0.01| 0.05| 0.04

convez segment + preprocessing | 2.82 | 2.82 | 2.85 2,85
parameterizalion 1.01|1.07)| 1.76 | 317

The remaining three curves are non-raticnal, so they are only sorted with the convex segment

method.

Example 8.3 Deutl’s Curve (with several connected components)
Equation of the curve: gyt —dy? -zt +95° =0

Preprocessing time: 2.20 seconds

number of soripotnts 1 { 7

convez segment 0.09 | 0.08) 0.10

convez segment + preprocessing | 2.29 2.294 2.80

Example 8.4 Limacon
Equation of the curve: o8 +y* + 227 y? —125% — 12zy° + 272* — 99" =0

Preprocessing time: §.62 seconds

b
W
]

number of sortpoints

conver segment 09 | .80y 55

convez segment + preprocessing | {.70 | {.92| 5.17

36

Example 8.5 Cassintan oval
Equation of the curve: o+ oyt + 2277 + 50y° — 502" —6T1=0

Preprocessing time: 5.96 seconds

number of sortpoints 2 4 6

conver segment J40| 17| 18

convez segment + preprocessing | 5.50 | 5.59 5.5

9 Comparison of sorting methods

In this section, we consider the relative merits of the parameterization and convex segment methods
of sorting. Certain curves cannot, or should not, be sorted by the parameterization method: curves
that do not possess a rational parameterization and curves for which a rational parameterization
cannot be efficiently obtained. Therefore, the convex segment method is ofter the only viable way
to sort points along a curve.

For those curves that can be sorted in either way, the convex segment method is generally far
more efficient than the parameterization method at the actual sorting of the points. However,
the parameterization method does not have the expense of preprocessing that the convex segment
method does. Therefore, when only a few points need to be sorted (over the entire lifetime of the
curve) and the sorting of these points must be done soon after the definition of the (rational) curve,
the parameterization method will usually be the method of choice. {However, we have seen an
example where the convex segment method is superior to parameterization even when we include
preprocessing time.) The expense of preprocessing will be warranted whenever sorting time is a
valuable resource, as in a real-time application, or when the number of points that will be sorted is
large. The convex segment method will also be preferable when the curve is defined long before it
ig ever sorted (as with a complex solid model that requires several days, weeks, or even months to
develop), since the preprocessing can be done at any time that processing time becomes available
before the sort. We conclude that the convex segment method is an effective new method for

sorting points along an algebraic curve, and that in many situations it is either the only or the best

method.

37

10 Conclusions

We have developed a new method of sorting points along an algebraic curve that is superior to the
conventional methads of sorting. Many curves that could not be sorted, or that could only be sorted
slowly, can now be sorted efficiently. The development of our new method has also illustrated how
an al‘gebraic curve can be decomposed into convex segments, how to lacate points on segments of
algebraic curves, and how to decide whether two points lie on the same connected component.
This work is one of the first solutions of a computational geometry problem that is applicable .
to curves of arbitrary degree. Methods are usually restricted to curves/surfaces of some specific
or bounded degree, such as polygons/polyhedra or quadrics. The creation and maripulation of
curves and surfaces is of major importance to geometric modeling. A sophisticated geometric
modeling system should offer a rich collection of tools to aid this manipulation. This paper has
been an examination of one of these toals. The progress of geometric modeling depends upon the
development of more tools and upon the extension of more computational geometry algorithms

from polygons to curves and surfaces of higher degree.

11 Acknowledgements

This work formed part of the thesis of J. Johnstene, who is grateful for the guidance of his advisor,

John Hopcroft.

References

{1] 8. S. Abhyankar and C. Bajaj, Automatic Parameterization of Rational Curves
and Surfaces III: Algebraic Plane Curves, Computer Aided Geometric Design,

1988, to appear.

{2] C. Bajaj and A. Royappa, Note on an Efficient Implementation of Sylvester’s
Resultant for Multiveriate Polynomials, Technical Report CSD-TR-T18, Dept. of

Computer Science, Purdue University, 1987.

(3] A. Aho, J. Hoperoft, and J. Ullman, The Design and Analysis of Computer Al-

L7}

gorithmas, Addison-Wesley, Reading, MA, 1974.

[4] D.S. Arnon, Topologically reliable display of algebraic curves, J. Computer Graph-
ics, 17(1983), pp. 219-227.

33

(5]

(6]

7l

(8]

(o]

[10]

[13]

f12]

[13]

(14]

15

T. Asano, T. Asano, and H. Imai, Pertitioning a polygonal region into trapezoids,
Res. Mem. RMI84-03, Dept. Math. Eng. and Instrumentation Physics, Univ. of

Tokyo, 1984.

D. Avis and G. T. Touissant, An efficient algorithm for decomposing a polygon
into star-shaped components, Pattern Recognition, 13(1981), pp- 395-398.

C. Bajaj, C. Hoffmann, J. Hoperoft, and B. Lynch, Tracing surface intersections,

Computer Aided Geometric Design, 1988, to appeatr.

1. F. Canny, The Complezity of Robot Motion Planning, MIT Press, Cambridge,
MA, 1987,

B. Chazelle and D. P. Dabkin, (1985). Optimal convez decompositions, in Com-
putational Geometry, G. T. Toussaint, ed., North-Holland, New York, 1985, pp.

63-133.

B. Chazelle and J. Incerpi, Triangulation and shape-complezity, ACM Trans. on
Graphics, 3(1984), pp. 135-152.

G. E. Collins, Quantifier elimination for real closed fields by eylindrical alge-
braic decomposition, Proc. 2nd GI Conference on Automata Theory and Formal

Languages, Lecture Notes in Computer Science 35, Springer, Berlin, 1975, pp-

134-183.

M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall,
Englewood Cliffs, NJ, 1976. '

M. Garey, D. S. Johnson, F. P. Preparata, and R. B. Tarjan, Triangulaiing @
simple polygon, Info. Proc. Lett., 7(1978)}, pp. 175-80.

S. Hertel and X. Mehlhorn, Fast triangulation of simple polygons, Proc. FCT’83,
Borgholm, Lecture Notes in Computer Science, Springer, Berlin, 1983, pp. 207-

218.

C. Hoffmann and J. Hopcroft, The potential method for blending surfaces and

corners, in Geometric Modeling: Algorithms and New Trends, G. Farin, ed.,

SIAM, Philadelphia, 1987, pp. 347-365.

39

(16] J. Johnstone, The sorting of points along an elgebraic curve, Technical Report

87-841, Ph.D. thesis, Dept. of Computer Science, Cornell University, Ithaca, NY,
1987.

[17] 3. M. Keil, Decamposing polygons into simpler components, Technical Report
163/83, Ph.D. thesis, Dept. of Computer Science, Univ. of Toronto, 1983.

[18] D. Kirkpatrick, Optimal search in planar subdivisions, this Journal, 12{1983), pp-
28-35.

{19| J. D. Lawrence, 4 Catalog of Special Plane Curves, Dover, New York, 1972.

(20] W. M. Newman and R. F. Sproull, Principles of Interective Computer Graphics,
McGraw-Hill, New York, 1979.

[21] J. O’Rourke, The complexity of compuling MIntmum CORUET COVETS for polygons,
Proc. 20th Annual Allerton Conf. on Comm. Control and Comput., 1982, pp.
75-84.

(22] F. Preparata and M. Shamos, Computational Geometry: An Introduction,

Springer-Verlag, New York, 1985.

[23] J. R. Sack, An O(nlog n) algorithm for decomposing simple rectilinear polygons
into convez quadrilaterals. Proc. 20th Annual Allerton Conf. on Comm. Control

and Comput., 1982, pp. 64-74.

[24] R. BE. Tarjan and C. J. Van Wyk, An O(nloglogn)-time algorithm for triangu-
lating a simple polygon, this Journal, 17(1988), pp. 143-178.

[25] §. B. Tor and A. E. Middleditck, Conver decomposition of simple polygons, ACM
Trans. on Graphics, 3(1984), pp. 244-265.

[26] R. J. Walker, Algebraic Curves, Springer-Verlag, New York, 1950.

40

