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Abstract

Algorithms are presented for polygonalizing implicitly
defined, quadric and cubic hypersurfaces in n > 3 di-
mensional space and furthermore displaying their pro-
jections in 3D. The method relies on initially construct-
ing the rational parametric equations of the implicitly
defined hypersurfaces, and then polygonalizing these
hypersurfaces by an adaptive generalized curvature de-
pendent scheme. The number of hyperpolygons used
are optimal, in that they are the order of the minimum
number required for a smooth Gouraud like shading of
the hypersurfaces. Such hypersurface projection dis-
plays should prove useful in scientific visualization ap-
plications. The curvature dependent polygonal meshes
produced, should also prove very useful in finite dif-
ference and finite element analysis programs for multi-
dimensional domains.

1 Introduction

Man has always strived to vault beyond the visual hand-
icap of three dimensions. The power of algebra has
allowed him to mathematically define and manipulate
geometric objects in any dimensions. The advent of
sophisticated graphics workstations with true 3D ren-
dering capabilites may perhaps provide the springboard
to visualizing higher dimensional objects.

This paper deals with algebraic hypersurfaces in n >
3 dimensional space. An algebraic hypersurface is sim-
ply the set of zeros of a single multivariate polynomial
equation, f(z1,zg, -, &,) = 0 [17). We further re-
strict ourselves to only polynomials of degree 2 and 3,
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for then these hypersurfaces are also rational. Rational-
ity of the algebraic hypersurface is a restriction where
advantages are obtained from having both the implicit
and rational parametric representations. IFor example,
an algebraic surface, in three dimensional space, is rep-
resented implicitly by the single polynomial equation
flz,y,2) = 0 and parameterically by the three equa-
tions (z = G1(s,1),y = Ga(s,t),z = G3s{s,t)). When
the G4, ¢ = 1,...,3 are rational functions, i.e. ratio
of polynomials. Simpler algorithms for geometric mod-
eling and computer graphics are possible when both
implicit and parametric representations are available,
see for e.g. [6, 9]. For example for shaded displays, the
parametric form yields a simple way of polygonalizing
the surface, while the implicit form yields an efficient
calculation of the exact normals of the surface at each
of the vertex endpoints of the constructed polygonal
mesh. We utilize both these advantages, and others, to
vield an efficient method for displaying implicitly de-
fined, rational quadric (degree two) and cubic (degree
three) hypersurfaces.
The Problem: Given implicit representations of quadric
and cubic hypersurfaces, in n dimensional space, n > 3,
obtain realistic shaded displays of the surfaces in 3D
and true 3D shaded displays of orthographic or per-
spective projections of 3D slices of the hypersurfaces in
higher dimensional spaces.
Prior Work: Numerous facts on rational algebraic
curves and surfaces can be gleaned from books and pa-
pers on analytic geometry, algebra and algebraic geom-
etry, see for example [15, 17, 18, 19]. For the case of
3D space, all degree two algebraic surfaces (quadrics
or conicoids), are rational. All degree three surfaces
(cubic surfaces or cubicoids), except the cylinders of
nonsingular cubic curves and the cubic cone, have a ra-
tional parameterization, with the exceptions again only
having a parameterization of the type which allows a
single square root of rational functions. Most algebraic
surfaces of degree four and higher are not rational, al-
though parameterizable subclasses can be identified. In
general, for n dimensional space, all hypersurfaces (not
cylinders or cones) of degree d with d < n, are rational.
Various algorithms have been given for constructing
the rational parametric equations of implicitly defined



algebraic curves and surfaces, (i.e., hypersurfaces in 2D
and 3D). See for instance [2, 3, 11, 13, 16]. The param-
eterization algorithms presented in [4] and [5] are appli-
cable for irreducible rational plane algebraic curves of
arbitrary degree, and irreducible rational space curves
arising from the intersection of two algebraic surfaces
of arbitrary degree.

Several approaches are known for rendering paramet-

ric surfaces, see for e.g. [7, 10]. The algorithm in [7]
is based on convex hull properties of Bezier surfaces
and uses subdivision to polygonalize the surfaces. The
pelygons are of course then scan converted to produce
the displayed image. On the other hand lebw uses scan
lining for direct scan conversions of the curved surface.
The extension of these basic techniques for the wire-
frame display of hypercubes and simplicies is given in
[12], while [8] provide a hidden-line algorithm for such
hyperobjects.
Results: Our main results are algorithms for polygo-
nalizing implicitly defined, quadric and cubic hypersur-
faces in n > 3 dimensional space and furthermore dis-
playing their projections in 3D. The hypersurface dis-
play algorithm is in two steps. In section 3., step I of
the algorithm constructs rational parametric equations
of the implicitly defined hypersurfaces. In section 4.,
step II of the algorithm polygonalizes these hypersur-
faces by an adaptive, generalized curvature dependent
scheme. The number of hyperpolygons used are opti-
mal, in that they are the order of the minimum num-
ber required for a smooth Gouraud like shading of the
hypersurfaces?

2 Preliminaries

A point in complex projective space CP" is
given by a nonzero homogeneous coordinate vector
(X0, X1,..., Xn) of n+ 1 complex numbers. A
point in complex affine space CA™ is given by the

non-homogeneous coordinate vector (z1,2g,...,8n) =
(%—, %ﬁ-,..., %((—ﬂ- of n complex numbers. The set

of points Z(’;(f) of CA"™ whose coordinates sat-
isfy a single non-homogeneous polynomial equation
flzy, o, ... x,) = 0 of degree d, is called an n — 1-
dimensional, affine hypersurface of degree d. The hy-
persurface ZP(f) is also known as a flat or a hyper-
plane, a ZZ(f) is known as a quadric hypersurface,
and a ZZ(f) is known as a cubic hypersurface. The
1-dimensional hypersurface Zg is a curve of degree d,
a two-dimensional hypersurface Z3 is known as a sur-
face of degree d, and three-dimensional hypersurface

1Current graphics workstations have built in hardware scan
conversion chips, and accept polygons as their high level input
for efficient rendering. We assume this scan conversion facility
too, and therfore only concentrate on efficiently polygonalizing
the curved surfaces.
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7% is known as a threefold of degree d. A hypersur-
face Z3 is reducible or irreducible based upon whether
flz1,2q, ..., 2n) = 0 factors or not, over the field of com-
plex numbers. A rational hypersurface ZJ(f), can ad-
ditionally be defined by rational parametric equations

which are given as (z; = Gi(u1,ug, ..., Un-1),82 =
GZ(UIJUZ)-'-’un—l))---)mn = Gn(ul;UQ)---)un—l))’
where Gy, G4, ..., G, are rational functions of de-

gree d in u = (uy,ug,...,Up-1), l.6,, each is a quotient
of polynomials in u of maximum degree d.

3 Step I: Parameterizing the
Implicit Hypersurfaces

QUADRICS: Consider the implicit representation of
a quadric hypersurface (which is neither a cylinder nor
a cone), in n > 2 space,
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We assume that all quadratic terms of ZF(f) are
present, for otherwise there exists a trivial parametric
representation.

1. Choose a simple point (&1, ..., &) on ZZ(f) and
apply a linear coordinate transformation

(2)

to make the hypersurface pass through the origin.
Applying the linear transformation (2) to equation

(1) yields
2

23 (f1)
1<i1 ot Hin <2

Y =y — oy, i=1l.n

biliz--»inyilw--;yf{l =0 (3)

with the constant term bgg.. o = 0. That is
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Now, there must be at least one nonzero coefficient
amongst the linear terms in equation (4). Other-
wise the origin is a singular point for the surface
and this contradicts the earlier assumption. With-
out loss of generality, let bigs...0 # 0. Then apply
the linear transformation

broo...o¥1 + boto..oy2 + ... + Dooo..1¥n
¥j, J=2.n

7
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which makes the z; = 0, the tangent hyperplane of
Z8(f1) at the origin. This yields
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3. To equation (6), apply the linear coordinate trans-

formation which maps the origin to infinity, along
the #; axis. Namely,

1
Zy = ’Ll}_l
ws
Zj = Ei‘; ] = 2)- Xy (7)
This yields
1 b 1 b? w?
Z3(fs): ——+ b%O 0 2 + [bozo o0+ b010 0] -—22-
100.0 W 100...0l Wi
b2 w2
+.. [booo 24 70 } —5
b%oo .0 wf
1 1
—?Zcig Lwwy . wir =0

. Clearing the denominator of equation (8 and sim-
plifying the expression for Z§(f3) yields

=2 s

bzoo 0 wir

’(UZ ’LU3
100 .0
ga(ws...wy)

(9)

Hence from transformation (7) above, we obtain

1
z =
! ga(wa, .. wp)
zj = JL—, i=2,.,n (10)
gg(wg...wn)
From transformation (5) we obtain,
1 — bo1o...0w2 — boo1...ows ~ ... — bogo...1Wn

no=

bioo...og2(wa...wn)

i=2,..n. (11)

Y = 25y
Finally from transformation (2) we obtain,

L=y toe, J=1.n (12)
as rational functions of the parameters wq, ..., Wy,
a rational parametric representation of the quadric

hypersurface.

CUBICS: Consider the general implicit equation of

a cubic hypersurface (which is neither a cylinder nor a
(6) cone), in n > 3 space

(8
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. Choose a simple point (a1, aa, ..

. Consider a u = (uq, ..

(13)

z3() o =

iyiy.. ‘n.a‘l ‘L'z

2

{1 412+i,<3

., o) on Z5(f) and
apply the linear coordinate transformation

(14)

which translates the hypersurface ZZ(f) to pass
through the origin. This yields

Y =v; — & j:l,...,n

Z3(f) Y, bk v
ty+ia+...in=1
+ D byl
f14igt.. Fin=2
+ Z bix‘z--vinyilygn'“y:’zn =0 (15)
f1+ia+...Fi,=3
. Apply the linear transformation
271 = bigo..oy1 + boro..oy2 + ... +booo...1¥n
5 = Yi, ] = 1,...,7’l (16)

which makes z; = 0 to be the new tangent hyper-
plane to the hypersurface at the origin. The hy-
persurface Z§(f;) of equation (15) then becomes

n . . 3 {
Zy(fa) i+ 2 Cig.ip 20 i Zpy
0<’:2+-u+’:n52
422 E diy. %10
i1+ Fin=1
; )
Y Sip el
igd. . Fin=2
+ Ytz (17)
ig4..tn=3

. Intersecting the hypersurface Z2(f3) with the tan-

gent hyperplane z; = 0 yields

Zg—l(f:i) : Z Siz,,,gnzgz...zfl"
fa+...+in=2
+ Yt =0 (18)
’;2+---+in=3

S Uk )y, B < n— 2, parameter
family of lines, passing through the origin and lying
in the hyperplane z; = 0. These lines are given by

Zig2 = U422,



10.

11.

. Using the linear transformation (14),

Intersect these lines given by equation (19) with
Z37"(f3) of equation (17) to yield

N R £ ip+2
Zz'g+...+i,,=2 Sig i, Uy - Uy

' ot 2
Zi1 .o in=3 ti?---in uzla ‘ "u;\:k-l
which together with (19) above yields a parametric
2

representation of Z53~!(fa) in terms of parameters
u = (U, oy Up)-

(20)

Zg =

(16), the
parametric representation of Z52~!(fa) and Z; = 0
we can straightforwardly construct a u parameteri-
zation of Zg'l(f;;) in the original space (z1, ..., z,).
Namely

z;=Mi(u) i<i<n (21)

. Next choose another simple point (81, f2, ..., Bn)

on ZE(f) and repeat steps 1., 2., 3. replac-
ing (o1, &g, ...an) with (B1, f2, ..., Bn). This would
yield another Z2~'(fs) of similar structure as
equation (17), viz.,the intersection of a correspond-
ing hypersurface Zé’(fg) with an appropriate tan-
gent hyperplane 2, = 0.

Analogous to Step 4. above, consider then a
v = (vi,..,n), | = n—k — 1, parameter family
of lines, passing through the origin and lying in
the hyperplane z; = 0. These lines are again given
by

Zigz =

Z = %, Il<j<n-2 (22)
Similar to Steps 5. and 6. above, intersect these
lines of equation (22) with Z371(f3) to derive a v
parametric representation of Z51(f3) in the orig-

inal space (zy, ..., 2 ). Namely,

z; = Ny(v) 1<i<n (23)
Finally consider
the (u, v) parameter family of lines in (zy, ..., z,)

space joining points (Mi(u), Ma(u),..., Myp(u))
and (N1(v), No(v), ..., No(v)). Namely,

Vi) = M)
Ny () = My(u) (21 = M (u))
1 <i<n (24)

r; = Ni(V)-}-

Tntersect these lines of equation (24) with the hy-
persurface Z7(f) to yield

flzi,u,v)=0 (25)

with degree of z; to be at most three, i.e., the lines
intersect the hypersurface in at most three distinct

intersection points.

12, Two of the intersection points lying on the hyper-
surface ZZ(f) have z; values M;(u), and Ny(v),

f $llulv 3 3 M
Hence Z'xT——(MTYT—)TJ yields an expression which

is linear in ;. Thus z; = R(u,v) where R is a
rational function in the I+ &k = (n — 1) parameters
u = (uy,..,u), v = (vy,..,v). Using this to-
gether with equation (24) yields a parametric rep-
resentation of the hypersurface Z5(f) in terms of
the n — 1 parameters u, v.

4 Step II: Polygonalization of
Parametric Hypersurfaces

Knowing the param-
eterization, namely, (21 = Gi(uy, ua,.. ., Un-1), 83 =
GZ(UI,UQ, ey Un—l); ey ilp = Gﬂ(uh Ugy .oy un—l)) of

the n — 1-dimensional hypersurface Z3(f) or ZZ(f) in
n space, points on the hypersurface can be straight-
forwardly generated by substituting parameter values,
u = (ug,...,up)eR®. A generalized net of n — 1 dis-
tinct, intersecting families of lower n -~ 2-dimensional
hypersurfaces can be obtained, all lying on the original
hypersurface, by setting each parameter in turn to be
fixed and having the n — 2 remaining parameters vary-
ing. The n — 1 different choices of the fixed parameter
u;, yields the n—1 different farnilies of n—2-dimensional
hypersurfaces. Recursing on the dimension of the hy-
persurface, one finally obtains 1-dimensional rational
curves lying on the boundary of the hypersurface. By
advancing values of each of the parameters u;, start-
ing from ug, by small increments Au;, one obtains a a
plecewise-linear approximation to these curves.

However advancing the parameters u; naively, may
yield quite unsuitable displays. In particular a
parametrization of a curve is good if with a constant
value Au; the points on the curve tend to bunch up in
regions of high curvature and spread out in regions of
low curvature. Such a reparameterization of the curve,
can be obtained by applying the planar methods of [14),
suitably generalized to curves in n dimensional space.

Considering all linear, curvature dependent, approx-
imations of the intersecting families of curves, yields
a wireframe polygonal complex < of line segments. In
3D the hypersurfaces are ordinary two dimensional sur-
faces and the wireframe complex S reduces to a curva-
ture dependent polygonal surface mesh. Using Gouraud
shading, available on most graphics workstations one
is able to get excellent shaded displays. For four and
higher dimensions, appropriate slices are computed of
the complex < and projected (orthographic or perspec-
tive) down to the 2D screen or in 3D for the stereo-
graphic 3D displays.

We first explain how the rational parameterization
of a hypersurface in 3 space can be displayed smoothly
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using curvature (and torsion dependent) stepping of the
parameters. Consider the rational surface S defined by
the parametric equations

r=X(s,1),y=Y(s,t),z=Z(s,1)

where X, Y, Z are rational functions. A simple way of
displaying S is to let s vary from s; to s; by a con-
stant step of A, and let ¢ vary from ¢; to t; by a con-
stant step of A;. This creates a rectangular grid of
(s,t) points. The surface can be directly polygonal-
ized by evaluating it at each grid point and connect-
ing the grid points together to form polygons. A bet-
ter way of creating the grid is to step adaptively. Let
X(t) = [X(s,1),Y(5,1),Z(s,1)]. Then

1
A, =
"7 (ake +bm) [ Xl
1
A, = :
* T (ars 4+ br) || X |2

Here x and 7 are the curvature and torsion of the sur-
face, respectively, and are defined by

Ad

Ad

\/(X’ K X’)(X”.X”) . (X'X”)2
(X' XN

“X’, X”, XIII]Tl

(XI , X’)(X” . X”) . (X’ . X//)Z

To get Ay, all derivatives are performed with respect
to ¢, and for A,, with respect to s. Given some pair
(s0,10), to step along ¢, we compute A; by evaluating
the formula above at s = sg,© = ¢o, and likewise to step
along s. One can use constant-stepping in one variable
and adaptive stepping in the other, or adaptive stepping
in both. The latter approach is more expensive, but we
find it produces smoother-looking surfaces. We used
the following stepping process. The algorithm below
fills the given grid with n? (s,#) pairs. Stepping along
s and ¢ starts at sp and ?o respectively.

T =

makegrid(grid, so, to,n)

local s, 1, 1, k;

/% initialize row and column 1 */

grid(1,1) « (so,%0);

fori:=2ton do{
s grid(1,7 —1).8; t— grid(1,7~ 1).t;
grid(1,1) « (8,1 4+ Ay(s,1));
s —grid(i—1,1).s; te grid(i—1,1).t
grid(i, 1) « (s 4+ Ay(s,1),1)

}

/% initialize rows and columns, diagonally+*/
for k= 2 tondo{

/% row k */

fori:= k ton do{
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s« grid(k,i—1).s; t — grid(k,i—1).t
grid(k,i) «— (s,t 4+ A4(s,1))

/% col k */
fori:=k+1ton do {
s grid(i—1,k).s; t«— grid(i —1,k).t;
grid(i, k) — (s 4 A,(s,1),1)
}
}
}

See appendix A and the figures 1. -4.. Figs 1. and 2.
are for a hyperboloid of one sheet, with equal parame-
ter ranges —3 < 5, < 3. However, fig 1. uses constant
s —t stepping of 0.1 requiring 3600 polygons to display,
while fig 2. using adaptive stepping requires only 900
polygons for an equally good shaded display. Iigs 3.
and 4. are for a parabolic hyperboloid, with equal pa-
rameter ranges —3 < s,t < 3. However, fig 3. uses
constant s — ¢ stepping of 0.1 requiring 3600 polygons
to display, while fig 4. using adaptive stepping requires
only 840 polygons for an equally good shaded display.

Hypersurfaces S in 4D space are three dimensional
solids. Their displays are gencrated in the following
manner. Fixing each of the three parameters, one at
a time, in the rational parameterization of S, yields
three distinct families of rational two-dimensional sur-
faces in 41D, which are polygonalized by the previous
method. These surfaces in 4D are then projected (both
orthographic and in perspective) down to 3D and then
rendered as before. In the pictures at the end of the
paper, the projected surfaces were not shaded, in order
to be able to better visualize the combination of the
three families of surfaces meshing together to yield the
hypersurface. See appendix A and the figures. Figs.
5., 6. , and 7. are the three distinct projected (per-
spective) families of surfaces (for s fixed, t fixed and u
fixed, respectively), covering the parabolic hyperboloid
hypersurface. Fig. 8. shows the composite projected
display of the three surface family covering of the hy-
persurface. Fig. 9. shows the composite projected
(perspective) display of the three surface family cover-
ing of the nodal cubic hypersurface. F'ig. 10. shows a
single projected (orthographic) family of surfaces lying
on the hypersphere, together with the same family ro-
tated by 30 degrees in the z—w plane in 4D space. Fig,
11. shows a similar sequence of a single projected (or-
thographic) family of surfaces lying on the hyperboloid
hypersurface, together with the same family rotated by
45 degrees in the  — y plane in 4D space.

By similar methods, one can easily construct dis-
plays of projections (unfortunately) of hypersurfaces in
higher dimensions. Of course, similar to the people of
flatland [1], our visualization abilities of the boundary
of the higher dimensional hypersurfaces, are severely
lacking.



5 Conclusions and Future Re-

search

We have presented algorithms for parametrizing and
displaying quadric and cubic hypersurfaces for any di-
mension > 3. The methods detailed in sections 3. and
4, were implemented in a combination of Common Lisp
and C on a SUN 4-110. (Common Lisp for the polyno-
mial symbolic manipulations and C for the numerical
calculations). The graphics displays were generated on
a Tektronix 4337 fitted with a stereoscopic 3D screen.

There exist other rendering alternatives and varia-
tions to these basic methods. Clearly, raytracing to-
gether with pattern and texture mapping, of bounded
projected patches of these hypersurfaces are some of the
unexplored alternatives. Algorithms for parametrizing
and thereby displaying general quartics and higher de-
gree hypersurfaces are as yet unknown. Deriving such
parametrizations, for their use in scientific visualization
and other manipulations, is also a keen area of future
research with a number of open algorithmic problems.

Acknowledgements: 1 sincerely thank Insung Thm and
Andrew Royappa for the many hours they spent in front
of the graphics workstation, helping me visualize in four
and higher dimensional space.
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A Appendix: Examples

[ Fig | Hypersurface | Implicit Equation | Parametric Equation |
1,2 | Hyperboloid 224 y? =22 —1=0 T = tg“f;ﬂf’;“l, y= 2*”;;5:;“”, z=s
3,4 | Parahyperboloid 2?2 —y?—2%2=0 c=sy=tz=x*(s*—1?)

s,y=t,z=u, w= £*(s2— 12— u?)

it

5-8 | Hyper-Parahyperboloid | 22 —y? — 22 —2%xw =0 |z

9 | Hyper-Nodal Cubic 2?2 —y? - 2% =0 z=s*(s? 1Y), y=tx(s2 - 1?)

z:sg—tz,w:u

. .2 2 2 2 — L N e T | _ 2
10 | Hyper-sphere eyt i 4w —-1=0|z= 22{’21'—39“, y= 32+t2j:u2+1
Y et _ 2xu
L= orerern YT e ae
. 24202 =
11 | Hyper-hyperboloid 2?24y —1=0 2= si_*téjfﬁ,_ll, y= sg_tgf‘:ﬂ_l

— =2t _ —2s
LR oy gy S LS | T o

Color images for this paper can be found in the color
plate section.
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Figure 3: Parahyperboloid
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Figure 5: Hyper-Parahyperboloid
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