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1 Introduction

Interpolation and least-squares approximation provide eflicient ways of generating C*.continuous
meshes of surface patches, necessary for the construction of accurate computer geometric models
of solid physical objects [see for e.g. [8. 7]. I'wo surfaces f(z,y,z) = 0 and g9(z,y,2) = 0 meet with
C*-continuity along a curve C if and only if there exists functions a(w, y, z) and (2, y,z) such that
all derivatives upto order k of af — fg cquals zero [see for e.g.[62]]. C*-continuity of two surface
patches follows if the above condition is true along the common boundary curves between the two
patches.

This paper surveys the use of low degree, implicitly defined, algebraic surfaces and surface
patches in three dimensional real space IR? {or various scattered data C*-fitting problems. The
use of low degree algebraic surface patches 1o construct models of physical objects stems from the
advantage of faster computations in subsequent geometric madel manipulalion operations such as
computer graphics display, animation, and plysical object simulations, see for e.z. {10].

Why algebraic surfaces ? A real algebraic surface 5 in IR? is implicitly defined by a single polyno-
mial equation F : f(z,y,z) = 0, where coefficionts of f are over the real numbers IR.. Manipulating
polynomials, s opposed to arbitrary analytic functions. is computationally more efficient. Further-
more algebraic surfaces provide cnough gencrality to accurately model almost all complicated rigid
objects.

Why implicit representations ? While all real alpebraic surfaces have an implicit definition F only
a small subset of these real surfaces can also be defined parametrically by the triple G(s,t) :
(z = Gi(s, 1),y = Ga(s,8),z = Ga(s,1)) where cach G, i = 1,2,3, is a rational function (ratio
of polynomials) in s and ¢ over IR. The primarv advantage of the implicit definition F is the
closure properties of the complete class of algebraic surfaces under modeling operations such as
intersection, convolution, offset, blending, ctc. ‘The smaller ¢lass of parametrically delined algebraic
surfaces G(s,1) are not closed under any of the operations listed belore. Closure under modeling
operations allow cascading repetitions! wilhout any need of approximation. Furthermore, designing
with a larger class of surfaces leads to better possibilities (as we show lhere) of being able to satisfy
the same geometric design constraints witl much lower degree algebraic surfaces. The implicit
representation of smooth algebraic surfaces also naturally yields half-spaces F*t : f(z,¥,2) > 0and
F= o f(z,y,2) £ 0, a fact quite uselul lor intersection and offset modeling operations. Finally,
most prior approaches to interpolation and least-squares scatiercd data fitting, have focused on the
parametric representalion of surfaces [29. 50. 57. 64]. Our aim here is to exhibit that implicitly
defined algebraic surfaces are also very approprintc lor seometric surface design.

Additional Notation and Definitions : A real algebraic space curve can be implicitly defined as
Lhe commeon intersection of two or more real algebraic surfaces € ; (filz,y,2) =0, folz,y,2) =
0, fa(z,y,2) = 0....). A smaller class of rational algehraic space curves can also be represented by
the triple H(s) : (x = H(s),y = Ha(s).z = Ha{s)). where |, If; and {5 are rational functions
in s over IR. Whenever we consider the special case of a rational space curve, we assume that the

!The output of one operation acts as the input to another aperation
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curve is smooth and only singly defined under the paramelerization map, i.e., each triple of values
for (z, y, z), corresponds to a single valuc of s.

The “normal” N, of a point p is an arbitrary nonzero vector associated with p. N, defines 2
unique plane containing p. The “normal” ¥¢ of a curve C is a 1-dimensional set of vectors, one
vector associated with each point p on C. and orthogonal to the tangent vector at p. We assume are
curves are smooth i.e. nonsingular, though Lhis is not a necessary requirement. Finally, a surface
patch is defined as a smooth, connected 2-dimensional region ol a surface bounded by a single cycle
of curve segments.

Problem Descriptions :

1.

C* Interpolation Surface Fit: Construct a single real algebraic surface S which C* interpo-
lates a collection of ! points p; in IR? with associaled fixed “normal” unit vectors m;, and
m given space curves C; in IR?, possibly with associated “normal” unit vectors n; and addi-
tionally upto (k — 1)** order derivatives® of n;, varying along the entire span of the curves.
Assume that any of the vectors m; and n; or their derivatives are never identically zero, a
phenomenon that occurs at singularities. By C*-interpolation we shall mean that the inter-
polating surface S contains each of the points and curves and furthermore has its gradient
together with its 1...{k — 1)** order derivatives. respectively, in the same direction as the
specified “normal” vectors and its derivatives along the entire span of the C;'s. This is one
natural generalization into space of the usual two dimensional Ilermite interpolation, applied
to fitting curves through point data and equating derivatives at those points.

CF* Least-Squares Approzimate Surfuce Fit: Coustruct a real algebraic surface $, which C*~1
interpolates a collection of points p; in IR? and given space curves C; in IR? as before, with
associated unit “normal”™ vectors and its 1... (%~ — 2} order derivatives, and additionally
minimizes the Euclidean 2-norm of the difference of the (k — 1)* order derivative of S
gradient and the (k — 1)** order derivative of the specified unit “normal” vectors, on the
same collection of points and space curves. This is a natural generalization of ordinary C?
least-squares approximalion (the case & = 0} which minimizes only the sum of the squares of
the distances of the solution from a collection of points or curves.

C* Interpolation and C' Least Squares Fil with Surface Patches : Construct a mesh of real
algebraic surface patches Sy, which C* interpolates a collection of points p; in IR? and given
space curves C; in IR?, with associated “normal™ unit vectors and their derivatives, varying
along the entire span of the curves and (" leasl squares approximates a collection of points
q: in IR® and given space curves D; in IR¥ wilh associated “normal” unit vectors and their
derivatives, varying along the entire span of the curves. The set of points p; and q; are not
necessarily disjoint and neither are the sel of curves C; and D;.

2The emplasis being algebraic space curves. Lthe “rormals” and higher order derivatives along curves are restricted
to polynomials of some depree.
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4. Triangulated Data Fit with Surface Palches :

Given a collection of Z-values and derivatives over a triangulation 7, construct a mesh of real
algebraic surface patches §;, which C'* interpolates the coflection of points p; = (24, %, 2;) in
IR® and C! least squares approximates the collection of points q; = (z},¥j,2;) in IR?. The
set of points p; and q; are not necessarily disjoint and 7 may be either an X — ¥ (2D) or an
X —Y — Z (3D) triangulation of the entire coliection of points.

5. Inleractive Shape Control of Implicil Surface Families :

Interactively control the shape of an interpolating or approximating implicit surface by selecting
appropriale instances from a p-parameter family of solulion surfaces.

Paper Qutline:
The rest of the paper is structured as follows. Each of the subscquent sections 2 ~ 6 is devoted

to one of the above problems, and summarizes various recent approaches to implicit surface fitting
for the appropriate problem. The section then details a recent result, which the author is most
familiar with, and provides examples to clarily the algorithm presented.

2 C* Interpolation Surface Fit

Problem

Construct a single real algebraic surface 5 which C* interpolates a collection of { points p; in
IR? with associated fixed “normal” unit vectors m;, and m given space curves C; in IR?, possibly
with associated “normal” unit vectors n; and additionally upto (& — 1) order derivatives

Summary of Approaches
There has been extensive prior work in interpolatory or exact surface fitting through scattered

data. Much of it hias either concentrated on polvuomial parametric {and ocassionally rational para-
metric) sutface fitting through scattered point data in 3D. see for c.g., the surveys by Alfeld [2],
Bohm et. al. [20], Franke [32], Sabin [56]. Lxact litting of curves (primarily conics) has been consid-
ered by several authors, see for cg [15, 19, 35. 49. 58]. An exposition of exact C? fitting of implicitly
defined algebraic surfaces through given data poiuts. is presented in [54). Characterizations of C°
surface fits of points and curves using implicitly defined algebraic surfaces is also given by [60].
Other approaches to parametric surface fitting and transfinite interpolation are also mentioned in
that paper, as well as in [50, 64]. Paper [12. 1-l] generalizes the results of [54, 60]. It provides
conditions for exact C* fits of implicitly defined algebraic surfaces through given points and space
curves together with derivative information (“normals™) along the curves.

Recent Resuits
Bajaj and Ihm in [11], present a simple constructive characterization of the real algebraic sur-

face which C'! interpolates any given number of points and algebraic space curves, with associated
“normal” directions. This characterization. called flermiic inlerpolation, deals with the contain-
ment and matching normals at the points or varyving along the eatire span of the space curves.
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The input for Ilermite interpolation is a description ol the properties of a surface to be designed in
terms of 2 combination of points and curves, possibly associated with “normal” directions. For an
algebraic surface § of degree n, C'-interpolation gencrates a lhomogeneous linear system Myx = 0
where x is a ("}7)-vector® of the coefficients of the algebraic surface S. All nontrivial vectors, if
any, in the nullspace of My forms a family of all the surfaces, satis{lying the given description. The
coeflicients of the family of surfaces are expressed in terms of p-parameters where p is the rank of
the nullspace.

In C!-interpolation, smoothness is aclhicved by making the normals of tangent planes of the
surface to be designed identical to those of given points or curves. For some applications of mod-
eling, such as design of the body of an airplane. however, more than tangent plane smoothness
is desirable. This concept of smoothness is generalized by defining a higher order of geometric
continuity. DeRose [29] gives sucl a definition between parametric surfaces, where two surfaces I}
and I meet with order & geometric continuity (concisely stated as C* continuity) along a curve
C if and only if there exist local reparametcrizations F| and Fj of I and Fy, respectively, such
that all partial derivatives of J{ and I} up to degree & agree along C. Warren [62] formulates an
intuitive definition of C* continuity between implicit surfaces as follows :

Definition 2.1 Two algebraic surfaces f(z,y,z) = 0 and g(z,y,2) = 0 meet with C* continuity
al a point p or along an irreducible algebraic curve C if und only if there ezists two polynomials
a(z,y,z) and b(z,y, z), not identically zero al p or along C, such that all derivatives ofa- f—b. g
up to degree & vanish atl p or along C.

This formulation is more general than just making all the partials of f(z,#,2) = 0 and g(a,y,2z) =0
agree at a point or along a curve. Ior examyple. consider the intersection of the cone f(z,y,z2) =
zy~(z+y—2z)* =0 and the plane g{z,¥,s) = « = 0 along the line defined by two planes z = 0 and
y = 2. Itis not hard to see that these two surfaces meet smoothly along the line since the normals
to f(z,y,2) = 0 at each point on the line are scalar multiples of those to g{z,y,z) = 0. But,
this scale factor is a function of z. Situations like these are corrected by allowing multiplication
by certain polynomials, not identically zero along a intersection curve. Note that multiplication
of a surface by polynomials nonzero along a curve does not change the geometry of the surface
in the neighborhood of the curve. Garrity and Warren in [34] also prove that this notion of
rescaling C*-continuity is equivalent to other &£ order derivative continuity measures as well as to
reparameterization continuity for parametric surfaces. In [12], Bajaj and Ihm show how to form a
Cl-interpolation matrix My and proved that using this one is able to construct all surfaces meeting
each other with rescaling C!-continuity. However. even though one is currently unable to translate
geometric specifications for C*-continuity (& > 2) into a matrix My whose nullspace captures all C*
continuous surfaces, from the theorem below one can gencrate an interpolation matrix My whose
nullspace captures an interesting proper subsct ol Lhe whole class.

Theorem 2.1 ([14]) If surfaces glz,y,z) = 0 and {1, y,z) = 0 inlerscet Lransversally in along
an irreducible curve C, lhen any alycbraic surface f{rv.,y,z) 0 that meets g(z,y,z) = 0 with
C*-continuily along C must be of the form f(x.y,z) = alz.y, =)g{z, 1, 2) + B(=z, 9, 2)R* (2,7, 2).

*Tlere are (":3) coeflicitents in f(z, g, =) of degree n
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If g(z,y,z) = 0 and h{z,y,z) = 0 share no common componenls al infinily, then the degree
of a(z,y,2)g(z,y,2) € degree of f(z,y,2) and the degree of Bz, y,z)h**t(z,y,2) < degree of
f(z,y,2).

For given curves C;, i = 1.../ which are respectively the transversal intersection of given
surfaces g;(z,y,2) = 0 and hi(z,y,z) = 0. a surface f{z,y,z) = 0 containing space curves C; with
C*-continuity then can be constructively obtained by the relations

f(z,9,2) = i@, ¥, 2)gil 2.y, 2) + Bz ga 2 )i T 2, y,2) i=1...1 (1)

Since the g; and h; are known surfaces, the unknown cocfficients are those of f, &« and #. Note,
from the above theorem, for a possible interpolating surface f of degree n, both polynomials e
and 3 are of bounded degree. I'rom the relations in {1) one sees that these unknown coefficients
form 2 system of linear equations, yielding the interpolation matrix Mjy. For the special case of
parametric space curves with parametric “normal™ and derivative information, the above technique
can also be adapted to provide C*-continuous algebraic surface fits. Here using C' interpolation
[12], implicit surfaces are first constructed which contain the parametric curve as well as have
matching “normals” and derivative information. These implicit surfaces are then used above, to
generate matrix My for C*-continuous fits.

Examples
Ex 2.1 4 Quartic Surface for a C' Blend of the Corner of a Table

The edges of the Lable corner are given by : Cy : (y*+:2—-25 = 0,z = 0),and Cy : (z2+2%2-25 =
0,y = 0). Each curve is associated with a “normal” direction which is chosen in the same direction
as the gradients of the side of table, the cylinder in Cy and C2. That is. n,(z,¥,2) = (0,2y,2z2),
and na(z,y,z) = (22,0,25).

The interpolation matrix My is of size 32 x 33 (32 lincar equations and 35 coeflicients for a
quartic surface) whose rank is 24. The nullspace of Mj is of dimension 11 represented by a family
of quartic surlaces which blend the comner f{x,y,z) = m12' + (r2y + 163 + 574)2% + (ray® + (r72 +
5rg)y + T1022 + 5y — 25rs — 2571022 4+ (ray® o+ (rex + Sr)y? + (r23% — 25m2)y + rg2> + 514z —
25rez — 12574)z + (ra — r))y? + (72 + S5r)y® + (1522 + Bryjx — 2579 — 2573 + 25r )y® + (r7z +
57‘3:2 — 25r2 — 125?‘3)5' + (?‘10 -7 ).'L"I + -'—)1"1].173 + (—25r9 — 25710 + 251, ).32 — 125r);7 + 6257g.

An instance f(z,y,z) = —1250 — x* — ! — £22% — y22? + 5027 + 75y + 7522 of this family is
shown with the table in IMigurc 1. D

Ex 2.2 A Quartic Interpolating Surface for a ("' Join of Four Parallel Cylindrical Surfaces

In this example, the lowest degree surlace is constructed, which sinoothly joins four truncated
parallel circular cylinders defined by CY L, 1 y* +2° = 1=0for2 > 2. CY Lo :y* + 22 —1=0for
2< -2, CYLa:(y—42 +22—-1=0forx 22 and CY Ly (y—12+:z2-1=0forz < -2.

The C! interpolation technique sliows tlat the minimum degree lor such joining surface is 4, and
finds a 2-parameter (one independent parameter) family of algebraic surfaces which is f(z,y,z) =
ngl ny?s? - I ys? 4oyt 4 Syl - IS g + Ry + %Lll _ 1_4%;%15_%2 + 7y

An instance of this family (r; = 392. r» = —868} is shown in [Migure 2.
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Ex 2.3 Cubic and Quartic Surfaces interpolating with C? and C? continuily

Consider a space curve C' defined by the two equations fi(z,y,2) = @2+ 2y* + 222 -2 =0 and
fo(®,¥,2) = z = 0. A cubic surface ¢ is constructed which interpolates € with G? continuity
as follows: The general implicit equation of a cubic algebraic surface is given by f3(z,y,2) =
azd+byd+ezd tdzly+ery?+ frlz+ gzt Hhyt o iy + jryz+ kel Hlyt+mz? fnaytoyzt prztgz+
ry+ sz +t = 0. Using relation (1) for G? continuity as given in Section 2, one obtains f3(z,y,z) =
(r1z+roy+raz+7a) fi(z, v, 2) +rsfa(z, v, 2)° ¥ielding the system of linear equations a—r, —r5 = 0,
b—2r =0,c—2r3=0,d-r2=0.e—2r, =0. f-r3=0,9=2r1 =0, h—2r3=0,i-2r, =0, =0,
E—ra=0,1-2r4 =0, m-2ry=0,n=0=p=0,¢4+2r1 =0, 74 2r; =0,5+2r3=0,t+2ry =0
in unknowns a,...,{ and rq,-+-,75. Forry = 1. r = =1, r3 = 1, ry = 1, r5 = 2, the cubic surface
Ja(z,y,2) = 22° —2yz? 4 2222 + 227 4 2Pzt 2l — 22— 2y 4+ 25y + 297 — 2Py + 2y + 320+ 2P - 22 -2
is shown in Figure 3.

In the same way, a quartic surface fy(2,y.z) = 1621 — 16yz® + 32227 + 322° + 16y%2% — 16zy2° —
16yz2 +242252 + 32222 — 16y°2 + 322y% 2 + 32y — Sx?yz + 16yz + 322°2 + 162° 2 — 3222 — 322 -9y —
16zy° — 16y° + 162272 + 322y° + 16> — 82%y — 87y + 162y + 16y + 24z* 3223 —82*—-32z— 16 is
constructed which meets f3 with G° continuity along the curve defined by f3 and fs(z,y,2) =y =0
as shown in I'igure 4

O

Open Problems

1. Reduce implicit surface interpolation for higher geometric continuity to a linear system which
captures all possible solutions 7

2. Investigate the relationship of the degrees and relative topology of the input curves with the
rank of the interpolation matrices ?

3 C* Least-Squares Approximate Surface Fit

Problem
Construct a real algebraic surlace 5, which C*=V interpolates a collection of points p; in IR® and

given space curves C; in IR® as beflore, with associated wnit “normal” vectors and its 1... (k—2)*
order derivatives, and additionally minimizes the Euclidean 2-norm of the difference of the (k- 1)
order derivative of S’s gradient and the (& — 1)' order derivative of the specified unit “normal”

vectors, on the same collection of points and space curves.

Summary of Approaches The concept of C* least squares fitting and also through a mixture of
point and curve 3D data is suprisingly novel aud scarch of the past literature failed to reveal
a suitable relerence. Pratt [54] and some others [13] consider the traditional CP least-squares
approximalion problem using implicit algebraic surface lor only scattered point data. In Bajaj,
Ihm and Warren {14}, a % interpolating/least-squares approximating implicit algebraic surface is
found by solving a quadratic optimization problem constructed from given sets of 3D points and
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curves data. In Lhis method, higher order derivative information of points and space curves as weil
as positional data, is interpolated and approxinated to. IFor example, when a surface of some fixed
degree doesn’t have sufficient flexibility to C'! interpolate a set ol curves with normal directions, the
tangential constraints are least-squares approximated after the positional constraints are exactly
C? interpolated.

Recent Results

In C* interpolation of the previous subsection. one seecks a nontrivial solution x which is the
coclficient vector of an algebraic surface f(z.y,z) = 0. To use least-squares approximations for
geometric design, one needs to define distance metrics which are meaningful and also computation-
ally viable. As f(z,v,2) = ¢f(z,v,z) for ¢ # 0. the coefficients of f are first normalized so that
f(z,y,7) represents the equivalence class {¢f(z.y,z)|e # 0}. There are infinite number of ways
to normalize f(x,¥,z) = 0. Bajaj, Ilhm and Warren [14] choose to adopt quadratic normalization.
This normalization has been extensively used in the approximate fitting of conic sections as well
[1, 15, 19, 35, 49, 58], and has yielded computationally efficient algorithms. Quadratic normaliza-
tion is of the form xTMpnx = 1 where My is a real symmetric matrix. In most cases the identity
matrix I or a diagonal matrix D is used for the matrix Mpy.

Once normalization of the coeflicients is done. one may use —f(p)— as a distance metric.
This metric, called the algebraic distance. is straightforward to compute and in some cases, closely

approximates the real geometric distance {the Euclidean distance between a point and a surface).

Sampson [58) proposes the use \:,r}’[’:,} as a distance measure (a nonalgebraic distance). Perhaps a

better approximation is achievable in some cases. however, only at the enormous cost of iterative
applications of least-squares approximation.

Least Squares Approximation can be directly used to control the geometric shape a solution
interpolating surface. When the rank r of M of section 3 is less than ("':'3'3), the number of the
unknown surface coefficients. there exists a family f{z,y, =) of algebraic surfaces which satisfy the
given geometric constraints and whose coellicients are expressed in terms of p = (“':';3) — T param-
eters. The problem of interactively sclecting an instance from the solution family is addressed in
section 6. Selecting an instance from the family s equivalent to assigning values Lo each of the p
parameters. When there are p parameters Lo be instantiated. one may addilionally specify a set of
points, curves or even surfaces around the earlier given input data, which approximately describes
the final surface to be designed. The (inal solulion instance is computed via interpolation of the
given input data and with least-squares approximation ol the additional data set. In all these cases,
from the matrix Mj one is easily able 1o construct a inatrix M 4 under the appropriate normaliza-
tion My, such that |[M g x{2 = xTM "M g4 x is minimized. The normalization eliminates certain
columns of the matrix My yielding an overdetermined reduced matrix Mg in the standard way
[43].

Bajaj, Ihm and Warren (Ll4] provide an eflicient algorithm based on the orthogonal decompo-
sition of the matrix and compulation ol cigenvalues and cigenvectors. As a means of computing
the nuilspace of the system. one uses the QR mcthod basced upon the Ilouseholder’s transfor-
mation {36, 43]. In order to correctly decide the rank of the matrix during the louscholder’s
transformation, the elements ol a lower right part of a matrix are checked for zeros at each step.
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Examples
Ex 3.1 A Quartic Surface with C' Interpolation and C° Leust Squares Approzimation

In this example, a quartic surface f{z.y,z) = 0 C! interpolates curves on the four cylin-
ders described by CYL; : > +z2 -1 =0 fora > 2, CY¥Ly : y* 422 -1 =01forz < -2,
CYLy:224+y2—1 =0forz > 2,and C¥L; : 22 +4>2 -1 = 0 for 2 < —2. As a by-
product during interpolation, it is found that degree 4 is the minimum required. TFor this in-
terpolation, My is of size G4 x 35 (G4 lincar cquations and 35 coelficients with rank 33, yielding
a 2-parameter family ol quartic surfaces satisfying the C! interpolation constraints. A specific
member of the 2-parameter family of surfaces is next selected, via C° least-squares approxima-
tion from a collection of new data points. For the normalization My, an identity matrix Iss is
used. To illustrate the shaping effect of the approximation, two independent sets ol data points
are used: 5y = {(0,1.75,0),(0,-1.75,0),(-1,1.25,0),(—1,-1.25.0),(1,1.25,0), (1,—1.25,0)} and
S, = {(0,1.25,0),(0,—1.25,0),(—0.5,1.125.0), (—0.5. —1.125,0}, (0.5,1.125,0), (0.5, —1.125, 0)} (See
Figure 5(a)(b)).

For the least-squares approximation with normalization, the eigenvalues and eigenvectors for
51 and 5, are computed, As a result. one obtains Am.-,.sl = 1.2546390, ’\m-'ns, = 0.6439209,
Yming, = [—D.1111540, 0.9938032}, and Yming, = [0.01853292.0.9998283]°. The corresponding
surfaces after normalization are shown in Figure G{(a)(b). O

Ex 3.2 A Quarlic Surface with C° Interpolation and C1 Least Squares A pprozimation

Figure 7 shows two quartic triangluar patches which meet each other with C® interpolation
continuity and are made as C! as possible along the entire common curve via least-squares ap-
proximation. The containment and tangency constraints for cach patch are gencrated for three
boundary conic curves with associated quadratic normals. It can be shown that degree 5 is the
lowest possible degree of a surface which would C'! interpolate the 3 boundary curves. O

Open Problems

I. Produce well-conditioned matrices My and mae for interpolation and approximation by ap-
propriate choice of basis lor the implicit surlaces.

2. Investigate the relationship between stability of computation and topology of the geometric
data ?

4 C* Interpolation and ! Least Squares Fit with Surface Patches

Problem

Construct a mesh of real algebraic surlace patches ;. which C* interpolates a collection of
points p; in IR? and given space curves (' in IR?. with associated “normal” unit vectors and
their derivalives, varving along the entire span of the curves and ¢ least squares approximates
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a collection of points q; in IR® and given space curves D; in IR® with associated “normal” unit
vectors and their derivatives, varying along the entire span of the curves. The set of points p; and
¢, are not necessarily disjoint and neither are the set of curves C; and Dj.

Summary of Approaches

Solving a linear system of equations plays a key role in C* interpolation and approximation of
the previous two sections. This section presents another approach of algebraic surface design [9],
where a nonlinear system of polynomial equations needs to be solved. The emphasis lere is on
construcling C* continuous meshes ol implicit surface patches. Such “smooth” meshing has been
largely addressed by [51, 39, 57] amongst ovhers. using the Bézier representations of functional or
parametric surfaces.

Recent Results
The technique of [9] is primarily based on Bezout’s surface intersection theorem see [65]

Theorem 4.1 If an alyebraic surface 5 of degree n intersects an alyebraic surfuce T' of degree m
in a curve of degree d with intersection mulliplicily i, then ixd < nm.

and a theorem from [14]

Theorem 4.2 If surfaces f(z,y,z) = 0 and g(z.y,5) = 0 intersect transversally in a single irre-
ducible curve’ C, then any algebraic surface h(x.y,z) = 0 contains C with C* continuity must
be of the form h(z,y,z) = oz, y,2)f(2,4,2) + Bz, y, 29" (z,y,2). Furthermore, the degree of
afz,y, 2}/ (z,v,2) < degree of h(z,y,2) and the degree of B(=,y,z)g** (=,y,2) < degree of h(z,y,2).

Another theorem that is required, relates continuity with the intersection multiplicity of smooth
algebraic surfaces, see [33, 34].

Theorem 4.3 Two smooth algebraic surfaces 5y @ f(2.y,2) = 0 and 53 : g(x,y,2) = 0 meet with
C* continuity along a curve C if and only {f S and 5y inlersect with multiplicity £+ 1 along C.

From theorem 4.2 one obtains the following special case lemima

Lemma 4.1 Let S : f(z,9,2) = 0 be an irreducible quadric surface, and @ : q(z,y,z) = 0 be a
plane whick intersects S in a conic C. Then. another quadric surfuce §) : Ni{z,y,2) is tangent to S
along C if and only if there exisls nonzero constanis a, 3 (possibly complex) such that f; = af+Bq%.

Since one is interested in surface fitting with real surfaces, @ and § are restricted to be real
numbers. A related theorem can be derived for the quadric surface interpolation of two conics in

space.

Lemma 4.2 Consider quadrics S;: f; = 0. 52t f2 =0 and planes Gy :q1 =0, Q2 : q2 = 0. Let
Cr:(fi =0,q =0) and Cy : (f2 = 0.2 = 0) be two conics in space. Then C) and Cs can be
Hermile interpolated by a quadric surface S if und only if lthere cxist nonzero constants ay, oz, A,
and B2 (possibly complez) such that ar [y + 3, 43 — nafa — Pagi = 0.

More precisely surfaces [{x,y,2) =0 and g{x.,y.z) =0 intersect praperly and share no common components at infinity
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Proof: Trivial. (Just apply Lemma 4.1 lwice.) &

This lemma is constructive, in that, it again yields a sysitem ol linear equations and a direct way
of computing a C'-interpolating quadric surface. Furthermore a solution to the above equations,
linear in the a’s and 8%, exists if and only if such an interpolating quadric surface exists. Again,
when real surfaces are favorable, one requires a, a2, 3, and g; to be real numbers.

Ex 4.1 Suppose Cy : (22+22-1=0,3r4+y=0), and Ca : (3 + 22 -1 =0,z + 3y = 0). The
Jollowing equation is oblained from Lemma 4.2: (ay + 961 — B2)2® + (B — a2 — 982)y* + (o1 —
az)2? 4 (68, — 682)zy + (@) — ap) = 0. This implies ay = az, B = B2, a1 = ~88). Whenay = -8
and Py = 1, the interpolating surface is 2* + y*> — 822 + 6zy + 8 = 0.

In the Lemma 4.2 and the example, the two conics on the given quadric surfaces, §; and S3,
were fixed. If one has {reedom to choose diflerent intersecting planes ¢y and {2 then one is able
to find a family of quadric interpolating surlaces. In this case, the equations of planes ¢J; and 5
would have unknown coefficients and the use of Lemma .2 would result in a nonlinear system of
equations, linear in terms of a1, az, A1 and /;, and quadratic in terms of the unknowns of the
plane’s equations.

Now, rather than trying to find a single quadric surface, one can also extend the above
Lemma 4.2, to construct two or more quadrics which smoothly contain two given conics in space,
and furthermore themselves intersect in a smooth fashion. The following Lemma 4.2, which is
constructive tells us how to go about this.

Lemma 4.3 Let Cy: (f1 =0,q =0) and Co : (f2 = 0,2 = 0) be two conics in space. These two
curves can be smoothly contained by lwo “smoothly intersecting” quadrics Sy: g = a1 fi +bigt =0
and S3 : g2 = a2fs + baq? if and only if there exist nonzero constants ay, az, by, b2, @, B, and a
plane Q : q(z,y,2) = 0 such that ar fy + b1g? — alaafo + bagd) — Ag® = 0.

Proof: From theorem 4.3 we nole that two quadrics that intersect smoothly (at least C1), must
intersect with multiplicity at least two. Ii follows then from Bezout’s theorem 4.1 for surface
intersection, that the two quadrics & and 5; must meet in a plane curve {either an irreducible
conic or straight lines). Let the intersection curve lie on the unknown plane €, then just apply
Lemma 4.1 three times. &

The final equation of the above Lemma results in a nonlinear (cubic) system of equations which
is linear in terms of the unknowns a;, ¢2, b1, b2. a. and 3, and quadratic in terins of the unknown
coelficients of the plane @ : ¢ = 0. Note, that in Lemma .3, the quadric surfaces 5; and 53 need
not be in the form given (as constructed via Lenuna .1.1), but may instead be an m-parameter
family of solutions, oblained by C' interpolation of input curves with possibly “normal” data, as
explained in the prior sections.

The above methad of Lemma 4.3 can straightforwardly be extended to finding a €' continuous
mesh of & quadric surfaces whiclt smoothly contain / conics in space.

Theorem 4.4 Let Cy : (fy = 0.qy = 0), €y i (fo = 0,2 =0) ... Cx = (fx = 0,qp = 0) be k
contes in space. These curves can be smoothly contained by k quadiics 5y : g1 = an fo + big? = 0,
Satgr=arfo+baqd, .., Siigr = apfi +bA.q.f;" which themselves “simoolhly intersect” if and only if
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there exisl nonzero constants ay, @z, . ... G, by bay ooy by @1, « oo @o1, Buy < -0y Br—q and planes
Ry :m(z,4,2) =0, ..., Bg—q i me—1{2,9,2} =0 such thal

a1 f1 +bigi — arlazfo + baqz) — Purs = 0
azfa + baad — az(aafs + bags) — Pari =0

@p_1freot + bro10i_y — Cror(@nfic + brdd) — Br iy =0 (2)

Proof: Direct applications of Lemma 4.3 &

Note again as before, that in the above thcorem. the quadric surfaces Sy, ... S need not be
in the form given (as constructed via Lemma 4.1), but may instead be an m parameter family of
solutions, obtained by C! interpolation of input curves with possibly “normal” data, as explained
in the previous section. Also note, that given & conics in space, in general, & quadrics above, may
not form a C! continuous mesh (no non-trivial solution for the generated system (2) of polynomial
equations). In this case one may try increasing the number of quadric surface patches between any
two of the given curves. This yiclds the theorem below, a variation ol thcorem 4.4.

Theorem 4.5 Let Cy : (fi = 0,q1 = 0), and C2 : {f2 = 0,42 = 0) be two conics in space. These
curves can be smoothly conlained by two quadrics 5y 1 gn = e f1 + big? =0, S2:qp=a2f2 + bag2
which logether with k other quadrics Ty : i =0, ..., Ty : hy = 0 form a C! continuous mesh if
and only if there ezist nonzero constants a1, a3, by, b2, cio,- .. Cio (the coefficients of the quadric
T:;:hi=0),i=1...k and oy, .., Qp1s Br1e ooy Bry1, and planes Iy : n(z,2) =0, ..,
Ry : rer1(z,y,2) = 0 such that

afi + brgi — arhy — ﬂ;i'? =0
azfa + b203 — arprhy — Brerriy =0
i = ahioy + 8, i= 200k Q

Necessarily the complexity of the nonlincar system of equalions also goes up.

If the above generated systems (2),(3) of polvnomial equations, do not yield a satisfactory c
solution, one may instead try intermixing cubic surfaces with quadrics. To do this one first considers
the lemma below similar to lemma 4.1 and a corollary of theorem 1.2

Lemma 4.4 Let § : f(z,3,3) = 0 be an irreducible quadric surface. and Q : q(z,y,z) = 0 be
a plane which inlersecis 5 in a conic C'. Then. a cubic surface Ty : fi(z,y,2) is langent to §
along C if and only if therc exisis nonzero constanis ay,.--., a4, and by,..., by such that fi =

(@12 + apy + a3z + @) S + (b + bay + bss + b
Similar to lemma 4.3 one ablains

Lemma 4.5 Let Gy 2 (1 = 0. = 0) and Cy 1 (J2 = 0.2 = 0) be two conics in space. These
lwo curves can be smoolhly contuined by {wo quadrics 51 1 g1 = arfi+ 0162 =0 and 52 : g2 =
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a3 fz + bag? both of which meet a cubic surfucc 1) : Iy = 0 if there exist nonzero conslanis ay,
a3, b1, bz, 11y .- -9 14, Q21y-..,0724 ‘d“,....fjl.l, ﬁzl,...,ﬂzq and pianes R] . rl(z,y,z) = 0,
Ry :ra(z,y,2) =0 such thal by = (apx + a2y + oz + a)g + (B + 2y + fisz + Bra)rd =
(onz + any + 23z + a2)g2 - (a2 + Pa2y + Basz + Pai) rs

Proof: It follows from Bezout’s theorem 4.1 for surface intersection, that the a quadrics 57 and 2
cubic surface 7} must meet in either a space cubic. a plane cubic, an irreducible conic or straight
lines. Consider only the plane intersection curves and assume they lie on an unknown plane @,
then just apply Lemma 4.4 . &

In both the above lemmas, T} need not be in the above form but may instead be a {-parameter
family of solutions, obtained by C! interpolation of input curves with possibly “normal” data, as
explained in the previous section. These paramelerized cubic surfaces may be intermixed with the
quadric surfaces in theorems 4.4 and 4.5 to form a ! continuous mesh of alternating quadric and
cubic surfaces in the obvious manner.

Examples
Ex 4.2 A C! mesh of a family of Quadric and Quertic Surfaces

Consider a wireframe of a solid model consisting of two circles, Cy : ({22 +y* + 22 —25 = 0,2 = 0),
and Cy : ((z® + 2 + 22 — 25 = 0,y = 0). Each curve is associated with a “normal” direction which
is chosen in the same direction as the gradients of the sphere. That is, ny(z,¥,2) = (0,2y,2z),
and ny(z,v,2) = (22,0,2z). The wirclrame has 4 faces to be fleshed, face; = (z = 0,y 2 0),
facey; = (z > 0,y < 0), faces = (z <0,y £0), and fece, = (x <0,y 2 0).

In Figure 8z, face; and faces are filled with the patches taken from the sphere 22432422 -25 =
0 (yellow patches). To flesh the remaining faces with overall C! continuity along all inter-patch
boundary curves, requires degree 4 surface patclies. using the interpolation algorithms of section 2
yields €, and Cj, both 11-parameter {homogencous) family of quartic G! interpolating surfaces,
given by f(z,9,2)} = niz! + (ray + re + 5r0)2% + (rag® + (773 + 5r8)y + 1022 + Sriiz — 25719 —
2571 )22 + (r2y3 + (roz + 574)y% + (raa? — 25r9)y + re2° + 5ryz® — 26r6z — 125r5)2 + (r3 — 11 Yt +
(rrz + 5r8)y° + (ir-5z2 + 571117 — 2579 — 25r3 + 257 )yt + (rea® + 5rga? — 2577z — 1257g)y + (710 —
)zt + 57113° + (—251r9 — 25710 + 257)x% — 126r 12 + 62579, An inslance from this family is
f(z,y,2) = —1250 — 2% — y* —2%2? - y2:% + 502% + 75y% + 7527 used to fill faces faces and face,
in Figure 8 (red patches). O

Ex 4.3 A C! Mesh of Quadric Patches

Let conic C; be given by f = 22 + y? — 2% + day + Jx + -y + 3 = 0 (a hyperboloid of one sheet)
and ¢ =  + ¥+ 1 = 0. Similadly, let conic 'z be given by f = 1922 + 10y? — 922 + 38zy —
114z — 114y + 180 = 0 (a hyperbooid of one sheel). g2 = 2 + 5 — 3 = 0. and let the unknown plane
be P :ax + by + ¢z +d = 0. Then the cquation for the system of smooth interpolating quadrics
arfy + gt — aazfe + b2g3) = Blax + by + cz + d)? results in a nonlinear system of 10 equations:
—Bc? + 9agx — @y = 0, —2bfc = 0. =2adc = 0. —23cd = 0. 2B —aby + by — 106 + @y = 0,
—2abf — 2abs + 201 - J8ewra 4+ -lay = 0, =203d + Gabs + 28 + 1ldasa + day = 0, —62{3 —aby + b1 —
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19aqa + a; = 0, —2afBd + Gaby + 20y + 114az0+ -lay = 0, and —Fd? — 9aby + by — 180a,a + 3a; = 0.
This nonlinear system has a nontrivial solution {in Lhe sense that «;, a2, and a are nonzero) :
@ = —a2f, b = 2?8, as = --';273, by = % and b = ¢ = d = 0.5 llence, the two conics C;
and C; are smoothly contained by quadrics g; = 0 and g2 = 0, respectively, and which in turn,
smoothly intersect in a conic in the plane Q. 'The real quadric gy = 22 + 4?2+ 22 ~1=01isa
sphere, while the other real quadric g2 = ¥ + =2 — 1 is a cylinder. Note that the above solution
implies that there is only one pair of real quadric surfaces which smoothly contain the given conics.
Also, for this case, it can be shown that neither a single quadric nor a single cubic surface can
Hermite interpolate the two given conics. Geometrically then, the two hyperboloids of one sheet

are smoothly joined by a sphere and a cylinder. Sce figure 9.

Open Problems

1. Extend the technique of constructing C! continuous meshes to constructing C* continuous
meshes using the definition of C* continuity of scction 2 and the theorems of the above section.

5 Triangulated Data Fit with Surface Patches

Problem

Given a collection of Z-values and derivatives over a triangulation 7, construct 2 mesh of real
algebraic surface patches S;, which C* interpolates the collection of points p; = (i, i, %) in R?
and C' least squares approximates the collection of points q; = (z},9;, z;) in IR?. The set of points
pi and q; are not necessarily disjoint and 7 may be either an X — Y oran X — ¥ — Z triangulation
of the entire collection of points.

Summary of Approaches

The generation of a mesh of smooth surface patchoes or splines that interpolate or approximate
triangulated space data is one of the central topics of geometric design. Chui {23] and DeBoor {28)
summarize much of the history of previous work. Interpolatory spline problems can be classified
by the following factors :

e What kind of surface patches do they use for a basis : parametric, {unctional, or implicit?

¢ What kind of triangulation of data do they assume : functional values over 2D triangulation
or arbitrarily spaced 3D triangulation?

e What kinds of information do they nced as input data : C? data, C! data, C? data, and so
?
OI:

¢ With what order of geometric continuity do the palches meet along the boundary curves?

¢ Are they local, that is, each patcli is constructed only from nearby data, or global?

*This nonlinear system was solved with the aid of MACSYAA. on a Symbalics 3650



5 TRIANGULATED DATA FIT WITIH SURFACE PATCIIES 15

Do they split one macro triangle into many micro triangles or not?

Do they handle general data or jusi special data?

o How ill-conditioned is the solution Lo perturbations in the input data ?

How efficient are the algorithms?

And many more ...

These splines are traditionally defined over a given planar triangulation with a polynomial function
or parametric surface for each triangular face [3. -1. 16, 18, 37, 39, 47, 63]. Little work has been done
on spline basis for implictly defined algebraic surfaces. Sederberg {60] shows how various smooth
implicit surfaces can be manipulated as functions in Bezier control tetrahedra with finite weights.
Dahmen [26] presents the construction of tangent plane continuous piecewise triangular quadric
surfaces. In his construction a macro patch is split into 6 micro quadratic patches, similar to the
splitting scheme of Powell-Sabin [53]. The resulting surfaces interpolate finite sets of essentially
arbitrary points in R® according to a given topology and given normal directions at the points
within some ranges depending on the topology and the location of data points. Bajaj and Ihm [13)
use 2 single implicit surface for each macro patch at the expense of 2 higher degree 5 surface. This
quintic surface provides sufficient flexibility in globally C1! surface fitting as well as provides local
shape control.

Recent Resuits

The method of [13] takes as input a 3D triangulation 7 of points »; in IR?® with possibly first
order derivative information (“normals”) at the points. From the input, a wireframe mesh of
conic curves is first constructed. Fach conic replaces an edge e; of the triangulation 7 and C!
interpolates the end-points and specified normals at those points. 1f no normals are specified, a
unique normal is chosen, for c.g. by averaging the normals of the incident faces fi of T at that
point. Unique normals, or in other words, unique tangent planes at the end-points is a necessary
conditon for global C! fitting. LEach conic heing a rational curve, is represented by its rational

parameterization £;(1) = (Z{_“:'P ::f(?}, ‘;—([ﬂl]) Next, along each such conic edge a quadratically varying

“normal” N;(1) = (’::([:)) . ';’J‘i‘[? , '::‘[:;) is specified. with the property that E(z) - N;(t) is identically
zero. The N;(t) necessarily take ont the same vaiues as the unique normals at the end-points.

Lee [44] presents a compact method for computing the above rational quadratic parametric
representation for each of the cdge conics. In particular. a p-conic parameterization is derived in
which the remaining one degree of freedom of each conic edge is controlled in terms of the p value.
The resulting topology of the wirelrame is that of the initial triangulation T, with cach triangular
face Fy, now consisting of conic edges. The shape of cach conic edge in turn being controlled by an
independent p parameter.

Bajajand Ihm [13] provide a local C'" implicit surface interpolant St of degree 5 which fills each
curvilinear triangular facet Fj. The degree 5 implicit surface suflices because its degrees of freedom
are 55 while the maximum number of C'! interpolatory constraints of Fy is 51. Each interpolant St
las thus four independent parameters of local freedom. which are used for shape control. Further

details on interactive shape coutrol are in section 6.
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Examples
Ex 5.1 Locally supported triangular C'' interpolunts for smoothing polyhedra

The input is an octahedron represented by vertices v,z = 0...5, edges e;,5 = 0...11 and faces
fi k = 0...7, together with vertex normals n;.{ = 0..5.

vo = (0.0,0.0.0.0) v =(2.0,4.0.0.0)

v = {—0.1,4.0,21) unz = (2.0,3.0,2.0)
v = {1.0,0.0,2.0}) &5 =(2.5,0.0,1.0)

eq = (4, to)
ez = (Yo, t5)
eq = {v3, vs)
eg = (v3,v1)
cg = (v, v2)

ero = (v1,v2)

Jfo=(eq.ca,65)
J2 = (es,eq, €3}

e = {vs,va)
€3 = (vs, 1)
o5 = (v, va)
cr = (2, va)
cg = (vo, 1)

e = (vg, tg)

fl = (61!65|63)

fz =(eq,e2,€3)

fi=(e1,ea,e5) f5 =(ey,ea,e2)

fo = (e2,eq,€0) fr =(e2,¢p,€1)

np = (—0.592524. —0.557271. —0.581691)

n = (0.573733.0.581132, —0.577162)
ne = (—0.593023.0.185.(80,0.642365)
na = (0.63379-1.0.213638. 0.731122)

ng = (—0.101040. —0.537266.0.836971)
ns = (0.840500.-0.511705, —0.010696)

Pirst a wireframe of conics is constructed where cach conic replaces an edge and C! interpolates
the corresponding vertices of the cdge. Next normals are constructed for each curvilinear conic
edge of the wireframe and varying quadratically along the conics. Since the normals are quadratic
functions and take on the value of the given normals al the vertex corners, specifving an additional
normal vector ab an interior point of each edge sullices.

edgenormy = (—0.706837.0.612762.0.333418)
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edgenornmy = (0.426-01, 0.639602, 0.639602)
edgenormy = (0.285582,0.639307, —0.713954)
edgenorms = (—0.515202, —0.267929, —0.814114)
edgenorm, = (—0.477035, —0.318458,0.806855)

edgenormg = (—0.608621.0.709693,0.354847)
edgenormg = (—0.898131.0.299377,0.322078)
edgenormy = (—0.828637, —0.214953. —0.516872)
edgenormg = (0.339020,0.766191, —0.545488)
edgenormg = (—0.87.4728.0.13736.,0.208721)
edgenormyg = (—0.673887, —0.302905, —0.673887)
edgenormy; = (0.158349,0..162070, —0.872592)

See Figure 10(a) where the conics are constructed for the p value of 0.7.

17

The interpolation algorithm of the above section then constructs triangular C! interpolants -
a 4 parameter family of quintic surfaces, one family per triangular facet of the wireframe. From
these families a single instance is chosen for each facet. These are listed below and displayed in

Figure 10(b).

faceto(z,y, z) : —0.000000000003 — 0.000000010437 * = — 0.351866100554 * 2°
+0.445697927749 * 25 — 0.1.19228349853 * = 4 0.006109705518 * 2°

—0.000000010003  y + 0.97-1854816609 *  * z + 1.047244055300 # y * z*
—0.813301645559 # ¢ 2> — 0.013779865829 # y + =* 4 1256871042976 + y° * z
+4.799466010280 * 2 * z — 1.773488566286 * y° * z* — 0.195440121483 * y° z°
+3.855336605660 + y° + 0.908723176875 * ¥ * z — 0.442893510064 * 7 * 22
+1.647368998297 + y* — 0.010965274559 * " * = + 0.194339210883 + °
—0.000000010651 * & — 0.770526180505 # 2 * z + 0.804811773765 * 2 * 2°
~0.321648406719 * 2 % z° -+ 0.050.162557369 + = * z* + 0.941573772622+ z * y
+2.046806343664 * z = 4 * = — 1.745493230117 * = * y * =2 4 0.282805348419 * z *+ y * 2°
+5.130053057327 + 2 + 32 # 5 — 2.2804997940R9 & 7 * y* % = + 0.402577042726 + = x y° * 2”
+1.476015162086 * 2 * 3> — 0.224321 757517 # 2 * > % z + 0.020644414286 + z * i
—0.419781907345 # z2 + 0.707388836219 = ” * 7 — 0.361120269463 + 2° + z
10.052301598348 # 2% # 23 & L.2SOTST267TI6] + 2% # y — 1547823381213 » s” + g * 2
+0.548579135713 % =2 % y+ 22 — 0.947015472062 * 2% + 47 + 0.3-11869768680 + = » Yz
—0.458319727905 * 22 % 3° + 0.355415780-106 » 2° — 0.263713673860 + 2° * z
+0.040381255615 * 2% + =7 — 0.554279391319 + 2% x y

2
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40.244614404766 * 2> + y + z — 0.283785418206 * 27 * y* — 0.072402573908 * z*
+0.041527902675 » 21 * z — 0.050857636030 * " » y — 0.001090526006 * =°

facety(z.y, =) : —5.391392848589 + 1.655691554529 « z — 0.10054013¢
+0.010695554310 » z* + 0.000015445336 * z° 4 0.391823657979 + y — 0.061907362326 *

~0.018698359648 # y * z° + 0.003550207987 * y # z* + 0.301365510162 -

+0.022675047248 + 32 # 22 — 0.000878155318  y* * z* — 0.062806190565 + y° + 0.016993251409 *
40.005728948099 = y* + —0.000835427317 * y* * z — 0.0001971:

—1.545576618926 + i * z + 0.012024864984 + = * z2 + 0.030745758603 * 2

—0.641646581928 # z * y * 0.185950839052 * = * y * = — 0.046653590100 T + y * 2 + 0.004901215538 + z * y +
+£0.043334490837 % z + y* # = — 0.003159988252 # z * y? * 22 + 0.020586984770 + z * y°

—0.000780200446 * = * y* x —3.6:48649986273 * =2 + 0.508225200029 * z-

—0.004480580092 # 22 # z° + 0.327506884178 * 2 * y — 0.068505682280 + 2 # y *

+0.034436178464 * 2 + y? + —0.004370304569 + =2 * y* * z — 0.002134126507

_0.070554872584 % 23 % z — 0.004678977249 = 2° * 2% — 0.069717197288 * z° 4

—0.002095499230 + z° *+ y2 * —0.108632130466 * z* + 0.003372556775 * =™ * z + 0.005137768147

facety(z,y, =) : —2.705288056399 + 4.638014160856 * z — 2.7683

+0.646097331317 * =3 — 0.036933002640 * z*! — 0.002695925262 * z° — 3.328"

$4.218478276240 * y + = — L.7-15210397975 % 3 * =% + 0.268535875414 * y * 2> ~ 0.0137341

—1.982500102765 * 42 + 1.101278297196 » y? % = — 0.288331641811 * y? x z* + 0.0263072¢

—0.137253125822 % y® # 0050273271544 = > = — 0.005863970988 + y* » 2 + 0.0088

—0.004595032313 * 3" # = + 0.000746755484 » y° + 1.892316604675 * z * —3.146735171698 * = * z + 1.7645240
—0.374869320718 * z % 2° 5

facets(z,y,2) : 3.838736319407 — 7.136639001525 * = 4 1.69353083-1395 * 2% — 1.357307983821 * z° + 0.17847
~0.008750076057 + z° + 1.122726212656 * y — 0.924668988889 * y * z + 0.05148237

+0.043930044239 % y * 5 — 0.005331770119 * y + 5* — 0.238054875023 + y° + 0.35790772

—0.087082462242 * y* # =2 + 0.005495431255 # y* * =° — 0.031650230022 * i % —0.0118794-

+0.002685939576 % y° + =% + 0.005379405336 * y* — 0.000368482605 * y* + z — 0.0001¢

+1.076620035651 % ¢ + —1.8358035957-18 # & = = + 0166818397131 * 7 + z° — 0.04150452

+0.001006188013 2 # ¥ — 0.0TS1-LI287132 # = % y + 0.318845175302 » z + y * = — 0.06893164724
10.001826387512 + = * y * = — 0.118628002020 # x = y° — 0.02523091246 * = * y* * z + 0.00703285133"
+0.034316738617 # = + y® % —0.002:123275.196 # v * y° * z — 0.001635387143 + = * gt * ~0.36435
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+0.506254734647 % 2° % z — 0.1636.139010.13 % 2% * =% 4 0.0157-18598439 # % » 2% — 0.1633618¢9
+0.041338782134 % 2% % y % £ — 0.004218519660 # 22 # y + 2> + 0.033117806359 % =2 » 4° * —~0.00171972149¢
—0.002952667841 % 2 + v + —0_117105799359 % 2> + 0.04489-1233242 + z° » 2 — 0.00124717(
—0.000490738665 * z° * y * —0.005187314917 % z° + ¥ z + 0.001670820372 + z° * 4% + 0.01267
—0.006535458049 * =" % z + 0.004543426917 * 2™ + y + 0.0008]

facety(z,y, ) : 0.000000000199 — 0.000000002731 * = + 0.011311493141 * 22 — 0.707079497272 * 2° — 0.09527
+0.000556875028 * z° — 0.000000002837 # 7 + 0.147337002089 # 7 + z — 1.97374861

—0.325401967187 + y * 2> — 0.020075131188 * y * =¥ 4 0.130769860685 * y2 + —2.0614141%
—0.390636480206 * 3> + =2 — 0.037636868985 # 4% + = — 0.782483149860 + 3> » —0.2147027<
—0.000404937002 * % # z* — 0.013014811932 % 3" 4 0.046594653662 * y* * z + 0.0295(

—0.000000003282 * & # 1.263562802083 * 2 * z — 0.731345998413 % z  z° + 0.2239452¢

+0.037962078216 +  * =" +-1.212571861013 % = * y + 0.15745901 1664 * z * ¢ * z 4+ 0.9920650787:
+0.045649837633 +  * y * 2> + 0.105200985255 # = + 3> + 1058072127816 * = + y* + z + 0.08378537692:
40.219319204394 * = * y° % 0.019810357415 * z + y° * 2 — 0.020:15912.1470 + T » v + 4.33122
—3.536565133014 % 2% + z + 0.195350676910 = 22 * =% + 0.028619664589 * 22 * 2° — 1.9496968¢
+0.339561326894 * 22 + y * z — 0.181985.109388 * 22 % y % 22 — 0.121048123933 * 22 + y* * —0.06351114610¢

—0.041199050054 * 2% * ° * —3.792830753729 * 2> + 0.818135003255 # 2= * z 4+ 0.02992250(

4+0.2609608719-14 * 23 + y + —0.161550553-190 % 2>  y * = + 0.065133155407 * > + 4 + 1.02734
~0.029769692122 % z* ¥ z — 0.042320347953 * =" * y — 0.0820C

facets(z,y,z) : —7.11982742121.0 + 2.4947053-12797 + = — 0.025857396309 * 2% — 0.069015620217 2> 4 0.009
—0.00057T9660067 * =° + 5.1102283-1-1925 # y — 1.51-1263796801 * y * = + 0.021228

+0.018426213370 % y * ° — 0.000796939990 % y # =1 — 1.438592661126 + y* * 0.345471
—0.003219912206 * y* * 22 — 0.001-156966611 + y* * = + 0.196047588059 + 3> + —0.034963
+0.000452558108 # #3 + =2 — 0.012821958380 * ' + 0.001312348329 + y* + z + 0.000:

4+2.837355-148195 + 2 + —1.092599315171 * z * z + 0.085301176633 * £ + =2 + 0.006858
~0.000328923757 * & * =1 — 1.610103182542 * 2 + y 4 0.478243910269 * z * y * z — 0.028642652:
—0.00150076998- % 2 # ¥ * z° + 0.352606376101 + 2 + y*> — 0.067471611808 * 2 * y* * = + 0.0027620029
—0.033501697-154 % 2 * y° + 0.002070051350 % = * y° * z + 0.001195381560 + z * ' x —0.10609
4+0.152063238488 22 « = — 0.019091571055 * % % 2 + 0.000523406532 * 2 + z° + 0.0-13862-
—0.043360845178 % 2 # 5+ z + 0.0027-16000652 * 2* * y * 7 — 0.00668162-1191 » 2% + y* x 0.0029108789
10.000397383658 * 7 # i° + —0.095363563333 * 2 — 0.005-131040837 * 2° + z 4 0.0014043
+0.027731372136 % 2> % i * 0.00061 1512007 + &> % y # z — 0.001963336031 * 2 « y* + 0.015:
—0.000136-153125 + 21 % = — 0.002235563671 * = * 3 — 0.000
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facelg(z,y,z) : —0.000000000001 + 0.00000000-1180 * z — 3.805-120989548 * 2% + 4.493996112967 + 2% — 1.611°

+0.160131916841 + 2* + 0.00000000-1005 * y — 2.922530506296 * y = z + 1.086707:

4+0.171045406740 * y + z° + 0.016939537720 * y * 2" + 0.695527270492 * y* + —1.7283567:
+0.628183410140 + 32 & 2> — 0.136300642717 = y? * z° + 0.843291361707 + y° + —0.439536!
+0.057573500509 * 5> * =% + 0.073538735839 * ¥ + 0.050084868667 * ¢ * = — 0.032:
+0.00000000-4185 * = # —3.167172786099 # = * = + 2.508846923454 * = * z° — 0.407822:
—0.052377100454 % 2 * 2% 4 1421707370428 + & * y — 3.335438470121 # z * y * z -+ 1.081415686
+0.043804038796 * = * 3 * z° + 2.114689.18-1420 * = * 3 — 1.504298946820 + = * y* * z + 0.1049082175
1+0.355506220077 % 2 * 4> + 0.000666711948 * z * y° + z — 0.043221139207 + z + y* * 0.725
_0.840946698144 * 22 * z 4 0.355870678528 » ©° * 22 — 0.065105570761 » =° + z° + 2.086369-
—1.565502136001 22 * y * = + 0.208582438735 % 2 % y * 22 + 0.624337656078  2° * y* + —0.1818616232
+0.0037-10004555 * 2% + y* + 0.857378-184356 * z* — 0.518862065863 + £° * z + 0.0447867
10.492T21657128 # 7° # 7 % ~0.12450982151-1 # 2% # 3 + = 4 0.046350113632 * z° + y*  0.143
—0.055879147512 % z + = + 0.038417706086 * = * y + 0.004:

facetz(z,y,z) : 0.000000000156 — 0.00000029-1686 * = + 2.3-19287281326 * 22 + 1.559485859400 * 23 — 0.17182
—0.0464196778-16 * 2% — 0.000000282296 * y — 2.190582451529  y * z + 0.73366181

0164254769910 + y * 2° — 0.019296336811 + y * 2* — 4.254791369719 * y* * 0.9863573"
—0.216306877928 * y? * =2 + 0.046011762281 # y* + z° + 1.840122660302 * y* + —0.1692327:.
+0.013962126112 * 5° # 2% — 0.260578353453 * y' + 0.010138447483 + ¢ + 2 + 0.01212

—0.000000300007 * z + £.6677828S5584 # z # = + 3.351301552208 * = + 2° — 0.1588711¢

—0.005164712180 % = * 27 — 2.304699354362 # z * ¢ — 0.299486486776 + 2 * y + z — 1.10703932097
10.081566524001 = # g * ° + 0.929213069532 * z # y* — 0.525207873539 * z * y* » z + 0.08565288278¢
—0.10T832884410 * & % ¢ + 0063377127126 v # 4 + = + 0.003356701228 + = + ¢ + 2.31710
+3.490045918816 # 22 % z + 0.034625547103 * 2 % =% 4+ 0.046251908196 + =* * z° + 0.734423.10
—1.197735369621 % 22 % y % = — 0.01.136627-1280 » 47  y # =% — 0.248426455413 = 2° + y* % 0.10044738535(
10.015222606-149 # 22 + 4 + 1.720783062333 = 27 — 0.078551062782 « z° * = + 0.05122518
0476963551788 * 17 % y + 0.063055.112264 # &2 * y * = + 0.020515511569 + z* + y* — 0.10432
+0.00-1173642110 # 2 + = — 0.039095324000 + = » y — 0.04428

Open Problems
1. Build a quadratic wircframe lor arbitrarily shaped 3D triangulated data.
2. Pravide interactive shape control for a p parameter family of implicit surfaces.

3. Provide trade-ofl bounds of degree ol implicit algebraic surfaces and the number of split
patches in C* interpolalion,
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6 Interactive Shape Control of Implicit Surface Patches

Problem
Interactively control the shape of an interpolating or approximating implicit surface by selecting
appropriate instances from a p-parameter family of solution surfaces.

Summary of Approaches

The problem of interactively selecting a surface instance from a p-parameter family of solutions
is equivalent to assigning values to each of the p parameters. When there are p parameters to be
instantialed, one may additionally specify a set of points, curves or even surfaces around the earlier
given input data, which approximately describes the final surface to be designed. The final solution
instance is computed via interpolation of the given input data and with least-squares approximation
of the additional data set. This scheme is presented in the paper by Bajaj, Ihm and Warren [14].
An example of this use is presented in Ex 4.1 ol section 4.

An alternate scheme based on Sederberg’s Bezier formulation of algebraic surfaces [60] is used
for shape control of a family of surfaces in Bajaj and Ihm [12]. They present a method which
allows a surface designer to intuitively and interactively control the shape of a C* interpolating or
approximating surface, tlereby choosing an appropriate instance from the family by automatically
selecting values for the p distinct parameters.

Recent Results

The result of multivariate C* interpolation algorithm for a given data set, is in general, a p-
parameter family of algebraic surfaces f(z,¥,z) = 0. satislying the given geometric data constraints.
A surface designer must be able to choose an appropriate instance from this family, to satisfy his
application by specifying valucs for the p parameters, (say r = r1,72,--+,7p). The equation for the
family has the form

n n—in—i—}

f($|1f|3)=zz Z t‘.‘jk-ﬂ:"yjzk=0 (4)

i=0;3=0 k=0

where ¢, is a homogeneous linear combination of r. Various distinct choices of values {or ¢ yields
interpolating surface instances possessing different shapes. Bajaj and Thm [12] present a method
which allows a surface designer Lo intuitively and interactively control the shape of a Hermite
interpolating surface, thereby clhoosing an appropriate instance from the family by automatically
selecting values for the p distinct parameters.

The essential idea is to consider the interpolating family [ as the zero contour w = 0 of
the trivariate function w = f(z,v,2). See Scderberg [60] where the same idea is used to define
algebraic surface patches. Of course. since onc considers a family of interpolating algebraic surfaces,
the coefficients of f herc have indeterminates ;. The trivariate [unction, when transformed into
Barycentric coordinates yields a control polyhedron with weights (the interactive control given lo
the designer). For the purpose here. Lhe trivariale polynomial f{z,y,z) is symbolically converted
into a polynomial F(s,¢ u) in Barycentric coordinates. specified over a tetrahedron. To concentrate
on a specific portion of the algebraic surface. the designer appropriately chooses the location of the
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[our vertices of the tetrahedron, enclosing Lhe desired region. Shape of the Ilermite interpolating
surface is now controlled by changing the weights of control points associated with the tetrahedron.

Let the trivariate Barycentric coordinates of points inside a tetrahedron be given by (s,1,u).
The tetrahedron is specified by the designer who selects the location of its four vertices Pnooo, Ponoo,
Poaano, and Pooon. The Cartesian coordinates P of a point inside the tetrahedron are related to its
Barycentric coordinates s, ¢,z by P = 5000+ { Ponoo + #Poono+ (1 — s — 1 — 1) Pooon. Control points
on the tetrahedron are defined by Fijx = -751- w000 + 5 FPosoo + %Pugng + “_—';J;knggn for nonnegative
integers 7, 7,k such that i + 7 + & < n. With cach control point there is also associated a weight
Wijk, corresponding to the coefficients ¢;j of (4), which is a lincar (not necessarily homogeneous)
combination of r. All Lthis together delines the p-parameter algebraic surface family in Barycentric
coordinates,

F(s,t,u) = Xn: HZ_IH_ZI_J Wyjk ( " ) . Sitjb:k(l —s—1— u)ﬂ"'i"j"k =10 (5)

i=03=0 k=0 by k:

There are ("':';3) Wijk, cxactly as many as the ¢;;;. Straightforward methods exist to converting a
trivariate polynomial in the power basis with cartesian coordinates, to the form above in trivariate
barycentric coordinales defined over a given tetrahedren.

Consider, as a simple example, a quadric surface which Hermite interpolates a line LN : (1 —
{,t,0) with a2 normal (0,0,1). Hermite interpolation algorithm returns a 5-parameter family of
surfaces f(z,y,z) as in (4) with n = 2 and where ¢z00 = 71, €110 = 27y, a1 = 74, €100 = =271,
€020 = T1, Co11 = T5, Coto0 = —2F1, Copz = T3, Copr = 2 ,and cgpo = 71. For a given tetrahedron with
vertices Prop = (2,0,0), Pono = (0,2,0), Poue = (0,0,2), and Pyoe = (0,0,0), the surface family
representation f(z,y,z) is transformed to F(s,t.u) as in (5) with » = 2 and where wgoo = 1,
wepy = Ty + T2, wopz = 71 + 2r2 + 4rg, worp = —ry, Wonn = —71 + 72 + 275, Wozp = T, Wioo = — T,
wigy = — 71 + 12 + 274, w10 = 71, and w0 = 71

As F(s,t,u) = 0 in (5), describes a constrained p-parameter family of algebraic surfaces of
degree n, the change of one of the weights w;;. associated with a control point of the tetrahedron,
affects the weights of other control points. For example, suppose wy = ry + 72+ 73+ 2ry — 1,
wq = 1y + 19 + 74 + 3, and w3 = 73 + 74. Then, we can derive the following linear relation between
the weights, : w) —wy — w3 — 6 = 0. {For notational simplicity we here consider, wlg, the weights
wij to be also indexed by a single parameter {, i.e. weights ;). From this invariant, we get
Auwq — Awp — Awg = 0, and every time weights are changed, the above invariant is maintained.

Hence, in general one derives a system of invariant equations

LiAw . Aws. - Aw,) = 0
Li{Aw, Aws, - Aw,) = 0

lAw), dwe, -+ Aw) = 0

from the linear weiglt expressions

wi{ry,rg,arp) =
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’Lﬂg(l'l,l‘g,'-- erp) wq

We(r1aT200 70 0p) = Wy

This is easily achieved by Gaussian elimination. Changing some weights can now be considered
as moving from a weight vector W = (wy,ws, - -, ) to another W’ = (wi, wy, ---,w}), with the
constraint that AW = W’/ — W is a solution of the computed system of invariant equations. Next,
suppose that a surface designer wants to see how the surlace shape changes with a value change of w
alone. However, a change in value of w; automatically changes the value of additional w;’s related
{0 it by the invariants [;’s. Usuaily, the linear system of invariant equations are underdetermined,
yielding an infinite number of choices of Aw;'s(i = 2,3,---,¢). Then how does the designer make a
choice of values for the w;’s that reflects the influence of a change of only w, as clearly as possible?

One possible heuristic is to minimize the 2-norm of (Aws,-- -, Aw,), and hence the 2-norm of
AW. Note that [[AW])2 = Aw? + AwZ +--- + Aw?. Tor a change Aw; = d, one sees that

IL{d,Awq,--- . Aw:) =
L(d, Awy, -, Aw,) =

L(d, Awy, - Aw,) = 0

will have a solution AW? = (d,Aw,---, Aw?) where Aw’s are expressed linearly through an-
other set of free parameters qu, 42, gp—1. llence, [AW?||; is a quadratic function of the new
parameters, which we denote by Q{q1, 42, 4p-1)-

In order to minimize the norm of AWy, the quadratic {unction Q(g1,42," -, qp—1) needs to
be minimized. Since () is quadratic, the minimum solution can be obtained straightforwardly
by solving the linear systcm VQ(q,q2, +*+gp—1) = 0. If the (unique) minimum solution point
is Q° = (¢%,a2,-- "T(p— y)s then AW = (d, Awd,---.Auw?) corresponding to Q% will define the
desired change of weights of ws, -+, wa having minimum cffect on the shape of the surface. The
instance surface for the new weights W' = W 4+ AW?O will then reflect predominantly the effect of
the change of wy by Auy = d.

Examples
Ex 6.1 Interactive Shape Conirol of a Family of Quartic Surfuces

Construct the lowest degree surface which can qmoothly join three truncated orthogonal circular
cylinders CY Ly : 224 y%~1=0forz > 2,CY Ly : if 2422 | =0forz > 2,and CYL3z: 2% +22—1 =
0 for ¥ > 2. C! interpolation shows that the minimum degree [or such a joining surface is 4, and
the null space of the interpolation matrix is a 2 homogenous parameter (or onc independent affine
parameter) family of algebraic surfaces. Consider a circle € : {—-——;-, —‘;—,' 2) on CY L, with the
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associated rational “normal” n;(2) : T:II-_]!F‘ %’;—,0), the circie Ca : (2, %;, 1%:2-) on CY Ly with

the associated rational “normal” ns(t) : (0, %;, "1‘—_'_":,1 , and the cirele Cy : (%;,2, }—;‘5-) on CY La

with the associated rational “normal” ns(t) : [%;, 2, JI‘T?:;- .

Again, all C1, Cz and Cq’s *normals” are respectively chosen in the same direction as the
gradients of their corresponding containing surfaces CY Ly, C'Y Lo, and C'Y La. This ensures that
any interpolating surface {or C}, Ca, and C3 will also meet CY Ly, CY L2, and CY Lz smoothly along
these curves. A degree three algebraic surface does not suffice since the rank of the resulting linear
system is greater than 19, the number of independent unknowns. Next as a possible interpolant
one considers a degree four algebraic surface with 34 independent unknown coefficients. Repeating
the interpolation for the original curves resulls in 52 equations. The rank of this linear system is
33, and thus there is a one affine independent parameter {family of quartic Hermite interpolating
surface, which is f(z,y, z) = ryz? + 2500 23 4 r2dl0n 753 _ 22420053 4 979222 + 240N gy 2% —
100,02 | opyg2a? - 202 4t L2tlin 3o 4 rblOn py2s  nlng?s 200 g 2yz —
ﬁ%xyl + ﬂ‘_‘h:ﬁl.yz + rz-i-l}fura: - r2+:10|:1_:r23.+ ::_-1-4&1.” +r +:10r 24yt 4 ;g%ﬂrl.zy.'i _

10ry .3 4 97 2292 — Ezj‘;ﬁLg:yz + 1oy + L’:il.LﬂLﬂ;Jy - Ezi:}ﬁla;zy + Iz:l:.‘iﬁL_ry + sz'::ﬁLy +rzi-—
rzi0rn .3 4ozl & r2+;Dr1$+ 5r157rg.

]

"An instance of this family (ry = 1, 72 = 10) is shown in Figure 11. Tigure 11 illustrates three
different instances of f{z,,z) = 0 obtained by changing the value of wggo. Each time wgoo is varied,
the invariant equations are met, and each instance surface Ilermite G! interpolates the three input
curves. As the value of wogo continually increases from wope < 0, the surface eventually passes
through Poge = (0,0,0) for wogo = 0, and then separates into 3 irreducible parts for wggg > 0. O

Open Problems

1. Derive other intuitive techniques for interactive shape control ?

7 Conclusion

Many ol the interpolation and approximation algorithims presented here were implemented by
Insung Ihm as part of SHILP, our solid modeling and display system [7]. The programs take as
input any collection of geometric data poinis and curves. with and without associated “normals™
and their derivatives. Both implicit and rational parainetric representations of the space curves and
their derivatives are allowed. The rank computation is done implicitly during the solution steps.
The cigenvalue computation for least square computations is done with the help of routines from
EISPACL. The result, when nontrivial solutions exist, are expressed in terms of symbolic coefficients
and represent a family of interpolation surfaces. Values are specilied for these coefficients by means
of either the least-squares approximation approach as indicated in section 3, or using Bezier control
weights as detailed in section 6. Desirable nonsingular and irreducible, real algebraic surfaces are
computed. Insung Ihm is currently improving this implementation to include, a more user-friendly
method of instantiating the interpolated solution. as well as a way of automatically incorporating
the nonsingular and irreducibility constraints [10].
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Figure 8: C' Mesh of Quadric and Quartic Patches
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Figure 11: Interactive Shape Control of a Family of Quartic Surfaces
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