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ABSTRACT

A well-known strength of the parametric representation of a curve or surface is the ease by which a pilecewise-
linear approximation is generated. This is often true in geometric design, where only smooth segments or patches
are considered over a well-chosen polynomial basis. Visualizing an arbitrary and possibly discontinuous parametric
surface is useful but non-trivial for algebraic surfaces defined by rational parameter functions. Such surfaces have
pole curves in their domain, where the denominators of the parameter functions vanish, domain base points that
correspond to entire curves on the surface, and other features that cause display algorithms to fail. These are
ubiquitous problems occurring even among the natural quadrics. Sophisticated but unsuspecting display techniques
(e.g. those implemented in MapleV, Mathematica) produce completely unintelligible results. We provide a general
solution and discuss our implementation. First, projective domain transformations are applied that map the entire
surface from a finite domain region. Then, domain pole curves are identified and numerically approximated. Using
Delaunay triangulation, a special decomposition of the domain is constructed that avoids discontinuities. This is then
mapped onto the surface and clipped against a 3D box. The implementation can display very complicated surfaces,
as we shall illustrate. Our techniques generalize in a straightforward way to rational varieties of any dimension.

1 INTRODUCTION

The main result of this paper is a practical algorithm that accurately displays the entire real part of an arbitrary
rational parametric or surface. Since points on a real curve or surface given in parametric form can be generated easily
by sampling across the real parametric domain, the display of continuous surfaces is well-understood (3, 22. 186, 10].
More recent methods address in detail the problem of generating a polygonal mesh on the surface that is sensitive to
variations in curve/surface curvature: view-dependent methods [26] as well as view-independent[15, 18, 1], to name a
few. All these methods assume continuity of the parametric functions over the domain of interest, since the emphasis
is on representing smooth shapes.

We are interested in a rational parametric surface as a mapping frem R? to R3, and we wish to visualize the mapping,
even in the presence of discontinuities or other misbehavior. That is, given an arbitrary rational parametric surface,
and a convex portion of the space it lies in, produce an accurate picture of all parts of the surface that lie inside that
portion. More precisely, given rational parametric functions (z(s,t), y(s, t), z(s, t)) defining a real surface, and real
numbers Zmin < Zmax, Ymin < Ymax, Smin < Zmax, compute the set S of all points (z,y, z) on the real surface that
satisfy (z,y,2) € [zminyxmax] X [ymina ymax] X [Zmin) zmax]-

The problem can be extended to include rational varieties, but we shall not discuss this here. The general flavor of
the methods discussed will still apply, although implementing higher-dimensional methods would require more tools.

[n this formulation, the problem is of more interest to mathematicians and free-form geometric designers, rather
than to CAD designers working with rational Bezier and B-spline patches with non-negative weights [7]. However,



researchers are increasingfy considering generalizations to rational patches (with negative weights) which include

~base poimts and poles [5, 7, 27]. Indeed our primary motivation to investigate this problem grew out of unsuccessful
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attempts (using our own implementation of standard techniques. as well commercial symbolic algebra and graphing
programs e.g. MapleV, Mathematica), to visualize the output of cubic surface parameterization algorithms. The
inadequacy of conventional graphing programs to plot even simple rational parametric surfaces made it imperative

- that new methods be developed for surfaces.

Since the point sets C and S are portions of continuous objects, in practice we will always compute only a piecewise-
linear approximation of these sets. The sets can be abstractly represented in terms of a union of closed regions in
the parametric domain, together with the parametric equations. One can approach the problem by either computing
the sets directly in the range space, or approximating the closed regions in the parameter (domain) space and then
applying the parameter functions to map these onto the curve or surface. There are tradeoffs between the two
approaches but in this work we focus on the latter.

The common conception of displaying parametric surfaces is that it is trivial: vary the parameters over some part
of the domain, generate points on the surface, and link the points to yield a piecewise-linear approximation of the
parametric. This is a misconception because the process works only for “well-behaved” curves and surfaces. Arbitrary
rational surfaces can possess unpleasant characteristics that cause naive methods to fail, as we discuss below.

1.1 Poles in the parameter domain

The poles of a rational function are the zeroes of the denominator polynoial. Since the denominator is a bivariate
polynomial for rational parametric surfaces, the poles form a one-dimensional set, which we call a pole curve. Only
real poles are considered in this paper. When poles are present, the curve or surface can be discontinuous, e.g. the

hyperbola (z(s), y(s)) = (s, -;) has a pole at s = 0. The real portion of the curve consists of two branches. A simple

stepping algorithm might select a closed interval [a, b] in the parameter domain, generate n equally-spaced parameter
values s; = a + ( fl'_'_‘;),z' =0,...,n, and then connect the points (z(si—1), y(si-1)), (z(s:), y(s:)) with a straight-line
segment. This method has the disadvantage that a line segment can be drawn between parameter values that lie

on opposite sides of a pole, which may result in a line segment being drawn between two branches that are not

connected in real affine space. The left picture in Figure 1 shows the output of the program Mathematica for plotting

the hyperbola above over the domain interval s € [~ 1].

A hyperboloid of one sheet, with implicit equation 22 4+ y? — 22 — | = 0, is a surface whose real part is connected.
However, if we work from the equivalent parametric representation

t2-s2 41 2st 2s

’t :_——) Yt =_——) : 1t =
z(s, ) s24t2-1 y(s:t) s24t2 -1 (s,0) s24t2 -1

(1)
then problems arise because of the pole curve described by s? + t2 — 1 = 0 in the parameter domain. The right
picture tn Figure 1 shows the output produced by MapleV for this surface with (s,¢) € [~2,2} x [-2.2] (a domain
region containing the pole curve).

1.2 Domain base points

The rational parameter functions describing curves and surfaces are generally assumed to be reduced to lowest
common denominators, i.e., the numerator and denominator of each rational function are relatively prime. Thus
for a curve, there is no parameter value that can cause both numerator and denominator of a rational parameter
function to vanish. For surfaces, the situation is different. A surface is defined by three bivariate rational functions
_ F[(S,t) _ FQ(S,t) F3(5,t)

z(s,t) = Fi(s.0)’ y(s, t) = m, z(s,t) = m (2)

Even if Fy, Fy, F3, Fy are relatively prime polynomials, it is still possible that there are a finite number of points
(@, b) such that Fy(a,b) = Fa(a,b) = F3(a,b) = F4(a,b) = 0. Each such point is called a base point of the parametric

1.9
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Figure 1: Domain poles: Mathematica (left), MapleV (right)

surface. There may also be base points at infinity in the parameter domain, and the base points can be complex as
well as real-valued. Information about base points can be found in books on algebraic geometry such as {13, 23, 29].

Base points are problematic since there is in general no single surface point for the corresponding domain point. To
each base point there may correspond a curve on the surface [23], and since there is no parameter value for surface
points on such a curve, the entire curve will be missing from the real parametric surface. Such a curve is called a seam
curve. See Figure 2 which shows a hyperboloid of one sheet (its equations are in Table 1, (a)). This parameterization
has the two base points (s,t) = (£1,0). The corresponding seam curves can be parameterized in parameters u, v by
(z(u), y(u), 2(v)) = (-1, 4, u) and (z(v),y(v), 2(v)) = (=1, v, —v). Thus for a truly accurate display of a parametric
surface. one should also display the seam curves, alongside the parametric surface. See Figure 5 of the Examples
section, 3.4.

Base points can also cause numerical problems when evaluating the parameter functions. Whereas domain points in
the neighborhood of a pole approach large values, domain points in“the neighborhood of a base point approach the
undefined value %, causing floating point division to return spurious values. Since every base point is also a point of
the pole curve, the methods of dealing with pole curves must necessarily deal with base points.

1.3 Summary and organization

-

We have introduced the difficulties that arise when attempting to display arbitrary rational parametric curves and
surfaces, and now go on to propose some means of handling them. A variety of methods are given, in shades ranging
from theoretically attractive to feasible for practical implementation. Some of the methods are implemented, and
we explore their relative strengths and weaknesses. We also use the advanced graphing facilities of the commercial
programs MapleV [4] and Mathematica [17)] as a means of comparison.

This paper is organized as follows. In section 2, some results are shown that handle the problem of infinite parameter
values that arise when rational parametric surfaces are displayed. These simplify the display algorithms that we
propose. In section 3, a number of solutions for surfaces are sketched, and our experiences with implementing some
of our solutions are detailed. We conclude in section 4 by summarizing our research, and indicate future work.
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Figure 2: Hyperboloid of one sheet, with seam curve “gaps”
2 INFINITE PARAMETER VALUES

Consider the unit circle given by the rational parametric equations (z(s), y(s)) = (::—;},,fﬁ) The point (1,0)
corresponds to the parameter value s = co. Simply using large values of s does not suffice to cover the gap, since as
the parameter grows larger the curve points tend to bunch together tightly. In [5], this example is mentioned and a
way to graph rational Bezier curves and surfaces is given, using a technique called homogeneous sampling. In [21], the
problem is considered for rational curves and surfaces in the monomial basis, and a reason for parameter compression
is given. Furthermore, the infinite parameter value problem is solved for rational varieties in the monomial basis
using projective linear transformations of the domain. We reproduce without proof the key results, which will be
applied in the following sections.

LEMMA. Consider a rational algebraic variety of dimension n in R™, n < m, given by parametric equations
z1(81,...,5n)
V(s) = y  8i € [—o0, +00]

Zm(s1,...,5n)

Let the 2" octant cells in the parameter domain R™ be labelled by the tuples < o4,...0, > with o; € {=1,1}. Then
the projective reparameterizations V(tco,, .s.>) given by

s.—a. t’
T =ty — .. =t

~—-t=1,...,n (3)

together map the entire rational variety using only ¢; > 0 such that 0 < ¢ +to+ ...+ ¢, <l

. t —t
COROLLARY 1. Rational curves C(s) = (z1(8), .-, 2m(5))T, s € [~00, +00] are covered by C(m),C(m

using only 0 < ¢ < 1.

)

COROLLARY 2. Rational surfaces S(s1,82) = (z1(s1, 82), ..., zm(51,52))7, 51,52 € [~o0, +00] are covered by
S'( ty Lo )b’( —i tn S( —ty —tq )

Tl —t =ty 1=t =t 1—t1—zg‘1—t1—tg)’ ’
using only t; > 0A0 < ¢y 4+t < 1.

L —i

l—tl—tg’l—zl—zg)’ (l—zl—tg’l—tl—tg
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Figure 3: Trimmed hyperboloid of two sheets, and trim curves

The projective reparameterizations are shown here as fractional affine domain transformations for convenience. In
practice, the parametric equations of the rational variety would be homogenized using an additional variable and
the numerator and common denominator substituted separately as polynomials, thus avoiding rational function
manipulation.

We note that the reparameterizations only allow us to reach all the real s parameter values using only real parameter
values ¢ in the specified regions. There may yet be real points on the variety corresponding to complex parameter
values.

3 RATIONAL PARAMETRIC SURFACES
3.1 Surface trimming

The parametric surface is intersected with the faces of the bounding region, whose plane equations are £ = Zmay, y =
Ymax, etc. The intersection is performed by substituting the parameter functions into the equations and equating
them to zero, leading to a set of bivariate equations. Each equation defines a trim curve in the parameter domain.
The trim curves jointly define regions of the surface that pass inside and outside the bounding box. The trimming
problem is addressed in [9, 19].

Consider a quadric surface, a hyperboloid of two sheets, whose parameterization is

(s ) 45 (s t) 4t
1: 1 = b) b =
562+ 6st+5s2—1' 7 5t2 + 6t + 5% — 1

The trimmed surface is given in Figure 3, and the trim curves are shown alongside. It is clear that implementing a
robust/stable trimming algorithm is difficult. The trim curves in question are all ellipses, but their interrelationship
and consequently the trim region is quite complex. The surface in this case is only quadric, so the trim curves are
conics, but higher order pole curves could have singularities and isolated points.

'3"( t)_5t2+6st—2t+532—23+1
A TR st 1 557 — 1

The situation is further complicated by the fact that the trim curves are implicitly defined; not only are implicit
curves considerably harder to approximate than parametric ones, but trimming algorithms need trim curves to be
given by parametric equations, or as a sorted list of points along the curve. Unfortunately, techniques for sorting
points on algebraic curves are very expensive [14].



_ We have sketched this method because it does provide a complet;é solution to the préblem of displaying surfaces with

M

—poles. If a robust trimming algorithm is ever developed, it should be applicable with little difficulty.

3.2 Subtracting pole curve offsets

We now turn to two approximate methods. The first method is to simply remove the offending pole curve. Given a
closed region of the parametric domain, we calculate a strip containing the curve as its “spine,” and then subtract
this strip from the parameter domain. We shall call such strips offset regions henceforth, since they can be defined
in terms of the curve offsets. Simply put, an offset region of width 2r around a curve can be defined as the union of
circles of radius r that are centered on a point of the curve. The outlines of the offset region are called offset curves.
Offsets are discussed in {20, 8, 2].

One practical method for accurately displaying a parametric surface consists of the following steps.

METHOD I

1. Apply the projective linear domain transformations of section 2. This immediately restricts the parametric
domain of interest to the unit simplex spanned by (0,0),(0,1),(1,0). The following steps are performed four
times, once for each reparameterization. Note that other than some slight overhead for reparameterizing, the
amount of work is the same: it is proportional to the size of the bounding region and the resolution of the
piecewise-linear approximation desired.

2. For the current reparameterization, calculate an offset region of some width 2¢ of the pole curve, within the
unit simplex.

3. Subtract this region from the unit simplex.
4. Map the remaining part of the unit simplex onto the parametric surface.

5. Clip the mapped portion of the surface against the bounding region.

The offset radius ¢ is user-dependent, and must be chosen small enough so that all parts of the surface inside the
bounding region are mapped, but large enough that effort is not wasted in calculating portions of the surface that
are outside the bounding region. It is possible to calculate an upper bound on ¢ based on the trim curves and their
relationship to the pole curve, but this investigation is currently incomplete.

The various steps are implemented as follows. First, an approximate offset region is calculated. This entails generating
a piecewise-linear approximation to the pole curve using the technique of [12], and then constructing a quadrilateral
that forms a strip around each line segment. The curve normal is calculated at each endpoint, a line is extended from
each endpoint to a distance of € in the normal and anti-normal directions. The four extended tips are linked together
to form a quadrilateral (shown on the left in Figure 4). Care must be taken to avoid “bow-tie” quadrilaterals being
formed this way, if the distance ¢ is too large with respect to the length of the curve segment. Singular points and
isolated points cause problems because of multiple tangents.

The subtraction of the offset region from the domain (in this case a rectangular grid) is shown on the right in Figure 4;
offset region polygons are subtracted from the grid polygons. A special data structure was created so that subtraction
operations would only occur between polygons that were likely to overlap. Two polygon subtraction algorithms were
implemented and experimented with: a Sutherland-Hodgeman algorithm clipper which we modified for subtraction
[25], and the Weiler-Atherton algorithm [28]. The first algorithm resulted in considerable fragmentation of polygons
(an intrinsic drawback of the algorithm), which led to loss of efficiency, and also minute gaps appeared on the surface
due to numerical inaccuracies, when it was shaded. While the second polygon subtraction algorithm we implemented
did not suffer the problems of the first, it was not robust, particularly in handling degeneracies.

After the triangles left over from the subtraction are mapped to the surface. a standard Sutherland-Hodgeman
clipping algorithm was implemented to clip against the bounding region [25].
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Figure 4: Approximation and subtraction of pole curve offset regions

While this method seems reasonable, our implementation left somewhat to be desired, in terms of accuracy and
stability. Better implementation of the sub-algorithms does appear possible although time-consuming. Minor mod-
ifications could be tried, such as subtracting the offset polygons directly from the entire unit simplex, and then
polygonizing the leftover regions. In general, it appears that implementing robust polygon clipping/subtraction is
quite difficult.

Our implementation of method I, however, is a vast improvement over the standard programs; we were able to
visualize a number of surfaces clearly. Due to artifacts such as cracks, proliferation of small polygons near the offset
regions, etc., we decided on the following approach, detailed in the next sub-section.

3.3 Outbound iteration

[n this method, an explicit offset region of the pole curve is not calculated, and we try to overcome the difficulty of
choosing the correct right offset width by using an iteration. It has more of an ad-hoc flavor, and some steps might
fail. Yet, the implementation of this method is more efficient and more robust than the previous one, and we can
very accurately display a wide variety of surfaces.

The idea behind the “outbound iteration” method is as follows: we want all domain triangles to correspond to surface
patches that lie entirely inside the bounding region, or straddle it. Those that correspond to surface regions that

are outside the region are dropped; those that correspond to straddling patches are mapped and the patch is clipped
against the bounding region.

G

Now, the domain is triangulated in such a way that triangles contain pole points and regular points at their vertices.
A domain triangle with a pole at a vertex may map onto an infinite-area surface patch, which may lie partly inside
the bounding region. If we determine this to be the case, we lteratively search the edges of the domain triangle for
points that lie outside the bounding box, and then attempt to construct a domain polygon whose vertices are all
regular points, which does not contain any pole points in its interior, and which straddles the bounding box. This

domain polygon is mapped onto the surface and the resulting patch clipped against the bounding box. The algorithm
is given in more detail below.

METHOD II.



1. Perform the projective reparameterization of section 2 so_the entire surface is mapped in four pieces. Perform
the next steps for each piece.

2. Generate points on the pole curve that lie inside the unit simplex.

3. Generate points in the rest of the unit simplex according to some scheme. The two kinds of points are to be
distinguished from each other.

4. Compute a triangulation of the points thus generated. If an edge of any such triangle touches the pole curve,
insert the intersection point and recompute the triangulation.

5. Every triangle will then have 0,1,2, or 3 pole points. If it has no pole points, it can be mapped immediately
to the surface. Suppose it has one pole point and two normal points. Let the pole point be called p and the
normal points qq, qp. We denote the surface point corresponding to a point x as S(x). We assume that S(p)
1s a point at infinity, which is likely since p is a pole. If S(qy),S(qq) both lie outside the bounding region,
this triangle will not be mapped. If both lie inside the region, then a bisection-like iteration is performed along
the edges from p to q1 and p to qg. Each iteration stops when a point x is reached, such that S(x) is outside
the bounding box. Then p is discarded from this triangle and a quadrilateral is constructed using the two
new vertices vertices. Now suppose there are two pole points, and one simple point. By a similar process this
triangle is either discarded, or the two pole points in the triangle are replaced by normal points whose images
lie outside the bounding box. A triangle with three pole points is discarded (this case occured rarely in our
experiments).

6. Each triangle is mapped onto the surface, and then clipped against the bounding box.

Once again, pole curve points are generated using the method of [12]. In the the second step, we just generate a
constant-size triangular grid on the unit simplex. The grid points are merged with the curve points in a special data
structure that allows them to be marked as pole or normal ponits, and the Delaunay triangulation of the entire set
of points is constructed [6, 11, 24].

The third step is omitted in our implementation because it has not been frequently needed, and it is inefficient. The
Delaunay triangulation is constructed incrementally, and once an intersection point is found, it can be inserted into
the existing graph. However, to check each edge for an intersection against the pole curve will be time-consuming if
done in a brute-force manner.

This method, while nowhere near as theoretically pleasing as even method I, works generally very well in practice. It
is also quite easy to apply to non-faithful parameterizations, where it is required to triangulate a multiply mapped
region. Problems that do occur often involve base points, since the outbound iteration does not terminate if one of
the pole points is actually a base point; thus we put limits on the iteration count.

3.4 Examples

We now show some examples of parametric surfaces, whose equations are given in Table 1. In Figure 5, (2) shows a
hyperboloid of one sheet, and with the surface are drawn two lifes which are the seam curves corresponding to the
two domain base points. Figure 5(b) shows a “elbow” cubic surface of algebraic degree 3 that smoothly blends two
cylinders. Part (c) of the same figure shows a singular cubic surface of algebraic degree 3, and (d) a steiner surface
of algebraic degree 4. The last does not have any poles or base points, but we show it to illustrate the total surface
mappings of section 2. All pictures are generated using an implementation of method II in Ganith [1].

4 CONCLUSIONS AND FUTURE WORK

We have discussed the problem of displaying an arbitrary parametric curve or surface, and shown that many difficulties
arise that have not been considered to date. The most common problem is the vanishing of the denominators of the
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| Figure ] (z(s,t), y(s, 1), (s, 1))

(a) 2 — s+ 1 2st 2s )
a
: 242 —1" 242 -1 s24t2-1

—8t% + (—2s° — 125 — 8)t + 85+ 16
(b) —8t% + (25% + 125 + 40)t — 452 — 165 — 32 | /(—4t* + 8t — 25? — 85 — 16)
(—4s — 12)t? + (85 + 24)t + 252 + 8s

© B+ +s5—-Ts2+1 2 +2U2 -T2t +25° +2 23t—733)
B3 4+s341 ' 3 +s341 34341
(d) 2s 2t 2st
2482417 2482417 1245241

Table 1: Rational parametric equations of surfaces in Figure 5

Figure 5: (a)-(d) clockwise from upper left



rational parametric functigns, which we showed causes chaos in ardinary display algorithms. Several ways of handling
this problem were outlined. Our implementation required several moderately powerful subprograms: implicit curve
approximation, polygon subtraction, polygon clipping, and Delaunay triangulation. More work is needed on several
fronts, before the robust display problem can be considered fully solved. Nevertheless, we feel that we have made
considerable headway, and while future methods will be more robust, they will not lead to our being able to visualize

—. any significant class of rational parametric surfaces that is impossible now. For almost all surfaces, the current

implementation generates a good enough approximation to at least get a good feel for the shape of the surface, even
if minute gaps are present.

The implementation has proved time-consuming and often frustrating, because of the many numerically delicate
problems that arise. However, we feel amply rewarded by being able to visualize the extremely complex and often
aesthetically pleasing geometry of rational parametric surfaces.
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