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Abstract

Polyhedron “smoothing” is an efficient construction scheme for

generating complex boundary models of solid physical objects. This

paper presents efficient algorithms for generating families of curved

solid objects with boundaty topology related to an input polyhedron.

Individual faces of a polyhedron are replaced by low degree implicit

algebraic surface patches with local support. These quintic patches

replace the @ contacts of planar facets with C’ continuity along

all irtterpatch boundaries. Selection of suitable instances of implicit

surfaces as well as local control of the individual surface patches are

achieved via simultaneouss interpolation and weighted least-squares

approximation.

1 Introduction

The generation of a C] mesh of smooth surface patches or spfines

that interpolate or approximate triangulated space data is one of

the central topics of geometric design. TWo surfaces ~(z, y, z) = O

and g(z, y, z) = O meet with Ck-continuity along a curve C if

and only if there exists hmctions cr(z, g, z) and @(z, y, z) such that

all derivatives upto order k of of – @g equals zero at aU points

along C, see for e.g., [13]. Chui [8], Dahmen and Michelli [10]

and Hollig [18] summarize much of the history of multivariate

splines. Prior work on splines have traditionally worked with a

given planar triangulation using a polynomial finction basis [1,

32, 35]. More recently surface fitting has been considered over

closed triangulations in three dimensions using parametric surface

patches [6, 7, 12, 15, 16, 17,21,24,26,27,29,33, 37].
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Little work has been done on spline bases using implictly de-

fined algebraic surface patches. Sederberg [34] showed how vari-

ous smooth implicit algebnac surfaces in trivariate Bernstein basis

can be manipulated as functions in Bezier control tetrahedral with

finite weights. Patrikalakis and Kriezis [25] extended this by con-

sidering implicit algebnac surfaces in a tensor product B-spline

basis. However the problem of selecting weights or specifying

knot sequences for C’t meshes of implicit algebraic surface patches

which fit given spatial data, was left open. Dahmen [9] presented a

scheme for constructing C’ continuous, piecewise quadric surface

patches over a data triangulation in space. In his construction each

triangular face is split and replaced by six micro quadric triangular

patches, similar to the splitting scheme of Powell-Sabirt [30]. Dsh-

men’s technique however works only if the original triangulation

of the data set allows a transversal system of planes, and hence is

quite restricted. Moore and Warren [23] extend the marching cubes

scheme of [22] and compute a C’ piecewise quadratic approximat-

ion (least-squares) to scattered data. They too use a Powell-Sabin

like spli~ however over subcubes.

In this paper we consider an arbitrary spatial triangulation T

consisting of vertices p = (z,, V,, z, ) in IR.3 (or more generally

a sirnplicial polyhedron ‘P when the triangulation is closed), with

possibly “normal” vectors at the vertex points. We present an
algorithm to construct a C1 continuous mesh of low degree real

algebraic surface patches S, , which respects the topology of the

triangulation T or simplicial polyhedron 7, and C’ interpolates

aU the vertices. Our technique is compleletly general and uses

a single implicit surface patch for each triangular face of ‘T of

P, i.e. no local splitting of triangular faces. Furthermore, our C]

interpolation scheme is local in that each triangular surface patch has

independent degrees of freedom which maybe used to provide local

shape control. In this paper, we show how these extra parameters

may be adjusted and the shape of the patch controlled by using

weighted least squares approximation from additional points and

normals, generated locally for each triangular patch.

Algebraic surfaces: For our polyhedron smoothing problem we

only considered fitting with algebraic surfaces, i.e. two dimensional

zero sets of polynomial equations. ‘l%is was primarily motivated

from the fact that manipulating polynomials, as opposed to arbitrary
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analytic functions, is computationally more efficient [3]. Further-
more, algebraic surfaces provide enough generality to accurately

model almost all complicated rigid objects. A real algebraic surface

Sin ~3 is implicitly defined by a single polynomial equation 3:

i(z, y, z) = O, where coefficienta of t are over the real numbers R.

While aU real algebraic surfaces have an implicit definition F only a

small subset of these real surfaces can also be detinedpsrametricalfy

by the triple ~(s, t) : (z = GJ(s, t), y = G2(s)t), z = GJ(s, t))

where each Gi, i = 1,2,3, is a rational function (ratio of polynomi-

als) in s and t over R. The primary advantage of the implicit defi-

nition ~ is its cIosure properties under modefing operations such as

intersection, convolution, offse~ blending, etc. The smaller class of

parametrically defined algebraic surfaces G(s, t) is not closed under

any of these operations. Closure under modeling operations allow

cascading repetitions without any need of approximation. Further-

more, designing with the complete class of algebraic surfaces leads

to better possibilities (as we show here) of being able to satisfy

the same geometric design constraints with much lower degree al-

gebraic surfaces. The implicit representation of smooth algebraic

surfaces also naturally yields haM-spaces F+ : ~(z, y, z) ~ O and

~- : ~(z, y, z) <0, a fact quite useful for intersection and offset

modeling operations. Finally, since prior approaches to scattered

data fitting over h-iangulations had focused on the parametric rep-

resentation of surfaces our aim here was to exhibit that implicitly

defined algebraic surfaces were also equalfy (if not more) amenable

to the task.

Why is low degree important ? Let the geomaric degree of an

algebraic surface is the maximum number of intersections between

the surface and a line, counting complex, infinite and multiple in-

tersections. It is a measure of the “wavi-ness” of the surface. This

geometric degree is the same as the degree of the defining polyno-

mial ~ of the algebraic surface in the implicit definition, but may

be as high as nz for a parametrically defined surface with rational

functions Gi of degree n. The geometric degree of an algebraic

space curve is the maximum number of intersections between the

curve and a plane, counting complex, infinite and multiple inter-

sections. A well known theorem of algebraic geometry (Bezout’s

theorem) states that the the geometric degree of an algebraic in-

tersection curve of two algebraic surfaces may be as large as the

product of the geometric degrees of the two surfaces [36]. The

use of low degree surface patches to construct models of physical

objects thus results in faster computations for subsequent geometric

model manipulation operations such as computer graphics dkplay,

animation, and physical object simulations, since the time com-

plexity of these manipulations is a direct function of the degree

of the involved curves and surfaces. Furthermore, the number of

sirtgulsritiesz (sources of numerical ill-conditioning) of a curve of

geametric degree m may be as high as rn2 [38]. Keeping the degree

low of the curves and surfaces thus leads to potentially more robust

numerical computations.

The main results of this paper are:

1. an efficient algorithm in sections 2, 3, 4 which computes

1l%e output of one operation acts as the input to snother operation
apoisstson the curve where all derivatives are zero
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2.

C’ smooth models of a convex polyhedron using degree 5

algebraic surface patches, and of an arbitrasy polyhedron using

al mosf degree 7 algebraic surface patches,

a numerically stable method in section 5 for the simultaneous

Ci interpolation and weighted least squares approximation

used for both the selection of a smooth, single-sheeted solution

surface as welf as local shape control,

Both our solution surface degree bounds 5 and 7 are also signif-

icantly better than the geometric degree 18, parametric blcubtc

surface patch solutions for the same problem achieved by Peters

[26]. Note that this comparison is only between the prior known

fitting algorithm which dtd not additionally split the meshed data

and had the best degree bound. Details on the implementation of our

algorithms and illustrative examples are given in the section 6.1.

2 The Polyhedron Smoothing A1go-
rithm

Inthissection, we present an outline of the algorithm to smooth a

simple polyhedron P with C] -continuous implicit algebraic surface

patches.

Algoriihm

1.

2.

3.

4.

5.

Triangulate each of the nosttriangular polygonal faces of the

given polyhedron P. Each face of P is a simple polygon

which can be h-iangttlated by adding non-intersecting inner

diagonals[3 1]. See Figure 2.

Specify a single “normal” vector at each vertex of P. This

provides a single tangent plane for all patches which shaU

interpolate that vertex with C1 continuity.

NexC construct a curvilinear wire frame by replacing each

edge of P with a curve which G] -interpolates the endpoints of

the edge and the specified “normals”. Any remaining degrees

of freedom of the C’ interpolator curve are used to select

a desired shape of the curve and indirectly thereby a desired

shape of the smoothing surface patch. See Figure 2.

Spec@ normal vectors along each of the edge curves. This

provides the tangent planes for the two incident patches which

shall C1 interpolate the edge curves. See Figure 3.

Finally, C1 -interpolate the three edge curves and curve nor-

mals of each face. The remaining degrees of freedom for each

individual patch are consumed via weighted least squares ap-

proximation to achieve a suitably shaped single-sheeted al-

gebraic surface patch. The resulting surface patches yield a

globaUy C’ smooth curved model for the given polyhedron.

See Figures 3 and 6.

Details of each of the steps 2 to 5 of the algorithm for specitic

classes of polyhedra (convex, non-convex) together with explicit

degrees of the required curves and surfaces are presented in subse-

quent sections. Steps 2 to 4 are detailed in section 3 and step 5 in

sections 4.
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3 Wireframe Construction

3.1 Choice of Vertex Normals

The single “normal” vector assigned to each veriex of the triangu-

lated polyhedron P can be chosen independently and quite arbitrar-

ily. However the relative directions of each adjacent vertex normal

pair can affect the degree of the C’ interpolating edge curve which

replaces th e stsaight edges of P. Let the two normal vectors at the

two end points of an edge be called an edge-normal-pair. Certain

relative directions of art edge-normal-pair induce an inflection point

for arty C} interpolating curve. Since conies do not have inflection

points one is then forced to either switch to cubic curves at the least

or to artificially split the edge. Splitting an edge in turn induces

splitting of the triangular face of P. In this section, we restrict

ourselves to surface fitting without the splitting of any 12iangular

faces of P.
We first derive a necessary and sufficient condition for the relative

directions of an edge-normal-pais to allow a singly connected C’

conic interpolating curve. Here, the interpolation is strict in that

the curve’s normal at the vertex points and the prescribed vertex

normal are in the same direction and not opposite. This restriction

grrasantees the construction wire frames which are free of cusp-like

connections. In the following definitions and lemmas we make all

of this more precise.

Definition 3.1 Let I’o = (po, no) and Pl = (PI, nl ) be an edge-

normal-pair. A conic segment S (Po, Pl ) is said to C1-interpolate Po

and Pi if there exists a non-degenerate quadratic surface a(quadric)

F:azz+byz +czz+dzy+eyz+fzz +gz+hy+iz+j=o
such Ihal

● S( P., PI ) is a singly connected conic segment on F,

● POand PI are (he end poin[s of S( Po, Pl ),

● [he gradierrf of f(x, y, z) = O al PO and p] have (he

same directions as no and n 1, respectively. In olher words

V~(pO) = ano and Vf(pl) = ~nl for cons[antsa, (3 >0.

For a given point-normal pair P = ((p=, pY, p,), (n., n~, n.)),

wehave Tp(r, y,z) = n=(z –p. ) + nu(y –pY)n, (z –p. ) =

O as the equation of the tangent plane that passes through

(P. P,, P.) and has a normal direction (nr, nY nz). The UVI-
gent plane 7’P (z, y, z) = O divides space into a positive half-

space {(z, y, z) c R3\TP(Z, y, z) > O}, and a negative half-

space {(z, y,z) E R31TP(Z, y,Z) < O}. Note also, that for

a surface ~(z, y,z) if Vf(p=, pv, pz) = cs(nz, ny, nz ) then

TP = T((Pr,P,,Px )>vf[Pr,PV)P. )).

Theorem 3.1 There exists a single connected conic segmenl

S(PO, P] ) on a non-degenerate quadric F (hat C1-interpolates
PO= (po, no) and PI = (pl, nl) ifandonlyfTPO(pl). TP, (po) >

0.

Proof. (*) Let~(z, y, z) = az2+by2+cz2 +dzy+eyz+fzr+

gr + hy + iz + j = O be the non-degenerate quadnc F. From def-

inition 3.1 of a C’ interpolating conic segment on F, it follows that

TP, (Pl )” ~R(PO) = %o,vI(m))(PI) ~~(P,,v~(~,))(Po). Wi*out
loss of generality, assume that pO = (O, 0,0), and p, = (1 ,0, O).

Since V~(z, y, z) = (2az + dy + fz + g,2by + dz + ez +

h,2cz+ ey + ~z + i), V-f(O, O,O) = (g, h,i) and Vj(l, O,O) =

(2a+g, d+h, ~+i). Hence, ~~,Vj(m))(z, y, Z) = gz+hy+iz,
and T(pl,vf(p, ))(z, y,z) = (2a+g)(z– I)+(ri+ lt)y+(f+i)z.

From the containment conditions of the two points, f (0,0, O) =
j=i), and f(l, O,O)=a+g+j =a+g=O. Then,

T’mlVfb))(PI )T(P,,VI(P,J)(P13) = 9(–(2a+9)) = –9(2(–9)+
g) = g2 > 0, as g cannot be zero. For if g = O, it would follow

that a = g = j = O, and either TPO (pI ) or T~ (PO) or both
would be zero (i.e. the tangent plane at ~ contains pl or the tan-

gent plane at p} contains po, both). In each such case the quadric

j(z)y, z)= by2+cz2+ dzy+eyz+fzz +hy+iz=O isa

degenerate quadnc as its intersection with any plane section through

POand pI yields a pais of lines (a degenerate conic).

(*) If TP, (P1) ~P, (PO) > 0, then the conic segment on

f(z, Y,z) = L(Z, Y,Z)2 – K TPo(z, Y,z) TPI(Z, Y,z) = Oor
– f (z, y, z) = O will C] interpolate the pair POand PI, where

L(z, y, z) = O is a plane containing po and pI, and K is a constant.

4
The geomeizic interpretation of the inequality ~m ,vj(n)) (pt )

T(P, ,v~(P, )) (PO) >0 is Wat PO is on the positive (negative) haffs-
pace of TP, if and only if PI is on the positive (negative) halfspace

of TPO.

3.2 Generation of a Conic Wireframe

Fisst, we give a definition of the term quadric wire.

De6nition 3.2 Let C(t) = (~, ~, ~) and N(t) =

~~ ~ ~)be~olrip~esof ~uadra~icrationa, puwel-
ric polynomials. Then, /he pair W(t) = (C(t), N(t)) is called

a quadric wire f there exists a quadric q(z, y, z) = O such that

q(C(t)) =Oand Vq(C(t)) = rrN(t), for a > Oandall t.

The rationale in our construction of a quadric wire is that a

conic curve is naturally associated with curve normal vectors taken

from a quadric. Our first step to smoothing a convex polyhedron

is to compute a C1 interpolating conic curve C(t), from an edge-

normal-pair (po, rIO), (P1, m ) and a normal npl of a plane Q which

contains PO and pi. In particular, we set W(O) s (PO, ni ) and

W(1) s (P], n! ), 3 and hence use the segment of W(t), O s t ~ 1.

To compute C(t), the normal vectors rto and nl aze projected into

the plane P on which C(t) will lie. (See Figure 1). This projection

results in a control triangle pO – p2 –pI. Lee [20] presents a compact

method for computing a conic curve C’(t) from such a contsol

biangle. In his formulation, the conic is expressed in Bemstein-

B4zier form :

c(t) =
Wopo(l – t)*+2w2p2t(l – t) + wlpl~

wo(l –t)*+2#2t(l – t)+wl# ‘

where w, >0, i = O, 1,2 are shape control parameters. An often

used parameterization, called the rho-conic paramelerization, is

%y ~, we mean the points are the same, and the normal vectors are
proportional, maintaining positivity.
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Figure 1: Computation of a Conic Curve

given by the special choice WJO = w = (1 – P), w = P, P >0.

Let pol = (po + PI )/2 be the midpoint of the chord POPI. Then, p

has a property that C(O.5) – pol = p(p2 – pol ). From this, we can

see that as p is increased, the conic gets more curved. In particular,

it canbe shown that p = 0.5 for a parabola, O < p <0.5 for ellipses

and 0.5 < p < 1.0 for hyperbolas.

3.3 Assigning Normals along Edge curves

Once C(t) is fixed, we find a quadratic surface q(z, y, z) = O

such that N(t) is proportional to Vg(z, y, z) along C(t) and in-

terpolates no and nl. Consider a quadric surface q(z, y, z) =

COZ2+CI#+C2Z2 +C3Z~+C4~Z+ C5ZZ+C6Z+C?7V+@Z+q =0.

q(z, y, z) = O has 10 coefficients, and since dividing the surface by

any nonzero coefficient does not change the surface, there are 9 de-

grees of freedom. The first requirement is that q(z, y, z) = O must

contain the computed conic C(t). The C’ interpolation algorithm

for algebraic surfaces [5] gives 5 linear equations in terms of the

unknowns Cl for the containment requirement. That 5 constraints

on c, are required also follows from Bezout’s theorem which says

if a non-degenerate conic intersects with a quadric at more than 4

points, then the conic must lie on the quadnc.

Hence, 4 (= 9 – 5) degrees of freedom in choosing c, are lefi

and these are used to interpolate the normal vectors at the two end

points. Interpolating nO and nl at po and pl, respectively, gives

2 more linear constraints which leaves 2 degrees of freedom in

choosing the quadric. We now explain why specifying one more

normal vector at a point on the C+ interpolating conic fixes the

normal vectors along the entire conic. Consider the gradient vector

Vq(z, y, z) of the quadric. Its components are linear and the vector

function Vq(C(t)) is a degree 2 polynomial parametric curve in

projective space. Hence, three independent constraints fixes the

curve Vg(C(t)) and thereby the normal vector along C(t).

Using similar reasons as above one obtains the following lemma.

Lemma 3.1 Let W(t) = (C(t), IV(t)) be a quadric wire. Then

the quadrics which C1 interpolate W(t) comprises of a fwily of

surfaces with one degree ofji-eedom.

What we do in our implementation in order to 6X the additional

normal vector on the conic is the following. FirsL the average

nol = (no + n] )/2 is computed, and then rw is projected onto the
plane which contains C(t). (All conies are planar). Next we require

that the projected vector be perpendicular to the tangent at C(O.5)

i.e. the vector C’(0.5). This then fixes all the normal vectors N(t)

along C(t).

For a convex polyhedron, we can always specify a normal vector

at each vertex such that the condition in Theorem 3.1 for each edge-

normal-pair is satisfied. (For example, the average of normal vectors

of incident faces of a vertex is one possible choice.) This implies

that we can always construct a wiretkarne for a convex polyhedron

whose curves and associated normal vectors are described in terms

of quadric rational polynomials. Whether we cw construct a similar

conic wireframe for non-convex polyhedra is currently unresolved.

3.4 Generation of a Cubic Wireframe

The construction of a cubic wireframe follows along very sirni-

Iar lines as the conic wireframe construction. Each edge is now

replaced by a polynomial parametric cubic curve, C1 interpolat-

ing the vertex-normal pairs of the edge. Here no restrictions are

imposed on the vertex-normal pairs as was the case for the conic

wireframe of the earlier section. The construction of this cubic

wireframe or cubic mesh of curves, see for example [11], is what

has been used in the past and previously reported for example in

[26]. We therefore omit further discussion of this construction and

refer the reader to the earlier references.

4 Local Patch Generation

4.1 C1 Interpolation of a Quadric ‘IYiangle

Definition 4.1 An augmented triangle is an 9-tuple T =

(P0,pl)P2) no, nl, nz, npht, npln, nplw) w~re t~ points Pi are
three vertices of a triangle with the corresponding unit normal vec-

tors n,, and nplil is the normal of the plane which will contain the

quadric wire madefiom (pi, n,) and (p,, nJ ).

Definition 4.2 A quadric triangle is a triple QT =

(We(t), WI (t), W2(t)) ofquadricwiressuchthat kVO(l) s W, (0),

w,(1) s W2(0),andW2(1) z We(o).

Given an augmented triangle, each quadric wire is computed as

described in the foregoing section. Next the quadric triangle is

fleshed using a single algebraic surface ~(z, y, z) = O. For this we

use the C1 interpolation of Bajaj and Ihm [5]. This algorithm takes

as input positional and first derivative information of points and

space curves, given parametrically or implicitly, and characterizes,

in terms of the nullspace of a matrix, the space of all the algebraic

surfaces of a specified degree that C1 interpolates the specified geo-

metric data. For the quadnc tiangle the C’ interpolation is applied

to all three quadric wires and produces a homogeneous linear sys-

tem MIx = O,where unknowns x are coefficients of ~(z, y, z) = O,

such that any algebraic surface with coefficients that are solutions of
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the system Ci interpolates the quadric triangle. The nontrivial solu-

tions in the nulkpace of MI form a family of all possible algebraic

surfaces of degree n, satis~ing the given input constraints, whose
coefficients are expressed by homogeneous combinations of q free

parameters where q = n. – r is the dimension of the nullspace.

Since dividing ~(z, y, z) = Oby a nonzero number does not change

the surface, there are, in facL n. – r – 1 degrees of freedom in

choosing an instance surface from the family. Hence, the rank r

of MI must be less than the number of the coefficients n., should

there exist an interpolating surface.

We now derive general degree bounds for Cl intcrpolatory tri-

angular patches with degree m interpolator curves and from this

obtain lower bounds on the degree of surfaces which C1 inter-

polate a quadric triangle. Assume that we use a degree n alge-

braic surface j(z, y, z) = O to C’t interpolate a wire of degree m

W(t) = (C(t), N(t)). According to Bezout’s theorem, mn + 1

constraints on the coefficients of j are required for the algebraic sur-

face ~ to contain C(t) which is of degree m. Additionally for C’

continuity, consider the restricted normal vector V\(C(t)). Since

the degree of each component of Vf(z, y, z) is, at most n – 1, each

component of V~(C(t)) has degree m(n – 1). Furthermore, the

vector function Vj(C(t))—crN(t)is a degree m(n– 1) parametric

polynomial curve in projective space, with N(t) of degree m and

a any polynomial of degree at most m (n – 2). Finally, since the

surface ~(z, y, z) = O contains C(t) the component of the above

vector function along the tangent direction of C(t) is already sat-

isfied. Hence m(rs – 1) + 1 additional constraints are enough to

guarantee C’ continuity along C(t).

Lemma 4.1 Le~W(t) = (C(t), N(t)) beadegreem wire. For an

algebraic surface f (z, y, z) = Oof degree n to smoothly interpolate

W(t), atmos12rnn-m+2(= mn+l+m(n–l )+l)independenl

linear constraints on the f‘s coefficients must be satisfied.

This lemma says that the rank of the matrix for Hermite inter-

polation of a degree m wire with a degree n surface is at most

2mn – m + 2. For C’ interpolation of a triangular patch, there

exists a geometric dependency between the three wires which also

leads to dependency amongst these linear C’ constraints. FirsL since

the curves intersect pairwise, there must be three rank deficiencies

between the equations from the containment conditions (i.e. three

equations are generated twice). For the same reasons there must be

three rank deficiencies between the equations for the matching of

normals. Secondly, at each vertex of the curvilinear triangle, two

incident curves automatically determine the normal at the vertex.

It is obvious, from the way the curve wire construction, this vector

is proportional to the given unit normal vector at the vertex. So,

satisfying the containment conditions for the 3 curves guarantees

that any interpolating surface haa gradient vectors at the three pointa

as required. This fact implies that there are three rank deficiencies

between the linear equations for the containment conditions, and

the equations for the C1 condition. This yields a total of 9 overaff

deficiencies.

Lemma 4.2 Ler QT = (WO(t), WI(t), W2(t)) beaquadrictrian-

gle. The rank of the linear system MJX = Owhich is constructed by

the Hermi;e interpolation for the algebraic surfae f (z, y, z ) = O

of degree n that smoothly fieshes QT, is at most 12n – 9.

Proof For C’ interpolation of aff three quadric wires, 3(4n – 2 +

2) = 12n linear equations are generated according to Lemma 4.1.

Subtracting 9 deficiencies from this yields 12n – 9. ~

Since f (z, y, z) = O of degree n has (“:3) coefficients, and the

rank of the linear system should be less than the number of coeffi-

cients for a nontrivial surface to exist we see that 5 is the minimum

degree required. In the quintic case, there are 56 coefficients (55

degrees of freedom) and the rank is at most51, which results in a

family of interpolating surfaces with at least 4 degrees of freedom

in selecting an instance surface from the family.

Even though some special combination of three quadric wires

can be interpolated by a surface of degree less than 5, for example,

three quadric wires from a sphere, the probability that such spatial

dependency occurs, given an arbitrary triple of conies with normals,

is infinitesimal. Hence, we can say that 5 is the minimum degree

required with the probability one.

Lemma 4.3 Let QT = (WO(t), W](t), W2(t)) beacubic!riangle

whose wires are cubic rational polynomials. The rank of the linear

system MIX = O which is constructed by the Hermite interpolation

for (he algebraic surface f (r, y, z) = O of degree n that smoothly

ffeshes QT, is at most 18n – 12.

Proof For C’ interpolation of all three degree 3 wires, 3(6n –

3 + 2) = 18n – 3 linear equations are generated according to

Lemma 4.1. Subtracting 9 deficiencies, yields 18rr – 12. ~

The minimum degree of the C] interpolating surface is 7. In the

quintic case, there are 120 coefficients(119 degrees of freedom) and

the rank is at most 114, which results in a family of interpolating

surfaces with at least 5 degrees of freedom in selecting an instance

surface from the family.

Lemma 4.4 Le( QT = (WO(t), Wl(t), WZ(t)) be a quadric /ri-

angle with one edge a cubic wire. The rank of the linear system

MIx = Owhich is constructed by the Hermite interpolation for the

a&ebraic surface f ( z, y, z) = O of degree n that srnoothlyjleshes

QT, isat most 14n – 10.

Proof For C1 interpolation of two quadric wires and a cubic wire,

2(4n – 2 + 2) + (6n – 3 + 2) = 14n – 1 linear equations are

generated according to Lemma 4.1. Sub&acting 9 deficiencies from

this yields 14n – 10. ~

The minimum degree of the C’ interpolating surface is 6. In the

degree 6 case, there are 84 coefficients (83 degrees of freedom) and

the rank is at most 74, which results in a family of interpolating

surfaces with at least 9 degrees of freedom in selecting an instance

surface from the farnify.

bmma 45 Le~ QT = (WO(t), Wl (t), W2(t)) beacubic(riangle

with one edge a quadric wire. The rank of the linear sys:em Mfl = O

which is constructed by the Hermite interpolation for the algebraic

surface f (z, y, z) = O of degree n that smoothly j?eshes QT. is at

most 16n -11.
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Proofi For C1 interpolation of two cubic wires and a quadric wire,

4n – 2 + 2) + 2(6n – 3 + 2) = 16n -2 linear equations are

generated according to Lemma 4.1. Subtracting 9 deficiencies from

this yields 16n -11. ~

The minimum degree of the C’ interpolating surface is 7. In the

degree 7 case, there are 120 coefficients(119 degrees of freedom)

and the rank is at most 101, which results in a family of interpolating

surfaces with at leaat 18 degrees of freedom in selecting an instance

surface from the family.

4.2 Surface Selection and Local Shape Control

The result of a C’l interpolation of a quadric triangle QT is a

family of degree 5 algebraic surfaces ~(z, y, z) = O with at least 4

degrees of freedom. Similarly C1 interpolation of a cubic triangle

is achieved with a 5 parameter family of degree 7 surfaces. These

families are expressed as a linear combination of the nontrivial

coefficients vectors in the nullspace of MI. To select a degree 5

or 7 surface horn their respective families, values must be specified

for these extra degrees of freedom.

We now show how weighted least squares approximation to ad-

ditional pointa around the triangular patch, can be used for both

selecting a suitable non-singular surface from the family as well

as aslocal shape contmI. Let SO = {vi E R31; = 1,. ., ,/} be

a set of points which approximately describes a desirable surface

patch, (These points can be selected for example from a sphere,

paraboloid etc., centered around the curvilinear triangle). A linear

system MAX = O, where each row of NfA is constructed fbm

the linear conditions ~(~: ) = Owith x contianing the undetermined

coefficients of the family. Conventional least squares approxima-

tion is to minimize II M x II*over the nuUspace of MI. Though
4m~fitiing 1] MA x II does yield a good distance approxima-

tion it does not prevent the resulting surface from self-intersecting,

pinching or splitting inside the triangle.

To rid our solution surfaces of such singularities and provide

more geometric control , we instead approximate a monotonic tri-

variate function w = j(z, y, z) rather than just the implicit surface

~(z, V, z) = O, the zero contour of the function. We first generate

SO = {(~1, n,)li = 1,., /} where vi are approximating points,

and ni are approximating gradient vectors at vi. Then, from this set

reconstruct hvomoresets Sl = {Uil Ui = Vi+CY~g,i= 1, ..., 1},

~d S-1 = {wl[wl = vi — ~nl,i = 1,...,/} for some small

a > 0. Next we set up the least squares system NfA = b from

the foUowing three kinds of equations : ~(ut) = O, ~(u, ) = 1,

and j(w, ) = – 1. These equations give an approximating contour

level shucture of the function w = ~(z, y, z) near the inside of a

quadric triangle. We found out that forcing well behaved contour

levels rids the selected surfaces of se~-intersection in the spatial

region enclosed by the points. See Figures 6, 8,9 and 10.

4.3 Compatibility and Non-Singularity Con-
straints

h thissubsection, we briefly discuss why quintic surfaces which

C1 -interpolate quadric triangles maybe singular at the end vertices.
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Ihm [19] gives a theorem which presents a necessary regularity

condhion on C1 interpolating surfaces.

Theorem 4.1 Lef Cl (u) and ~(u) be two paratnefric curves wifh

parametric normal directions N, (u) and Nz(u) such thaf C} (0) =

C2(0) = p, and that N1 (0) and A5(0) are proportional. Then,

any surface S, which interpolates the curves with tangent plane

‘N ‘0:” ‘0)) = %%?”
continuity, is singular at p unless ~

The above theorem implies that enforcing two cumes to have the

same normal vectors at intersection points, does not guarantee the

regularity of an interpolating surface at those points. The equation

in the theorem is a necessary condition for regularity, indicating tha~

if the given curves and their normals do not satisfi the equation,

any smoothly interpolating surface must be singular at p. In most

cases, the above condition is not met when quadric triangles are

constructed, and hence we obsewe singularities at the vertices.

A good side-effect of these vertex singularities is that the vertex

enclosure problem is automatically resolved.

This issue has been also addressed in the literature of parametic

surface fitting. Peters [27] showed that not every mesh of parametric
curves with well-defined tangent planes at the mesh points can be

interpolated by smooth regularly parametrized surfaces with one

surface patch per mesh face (also known as the vertex enclosure

problem). In [28], he used singularly parametrized surfaces to

enclose a mesh points when mesh curves emanating from the point

do not satisfy a constrain~ called the vertex enclosure constraint.

5 Computational Details and Examples

5.1 Solution of Interpolation and Least-
Squares Matrices

For an algebraic surface S : f(z, y, z) = O of degree n, the C’

interpolation conditions of section 4.1 produces a homogeneous

linear system MIX = O, MI E R“’ ‘“v of n, equations and

n“ unknowns where x is a vector of the n. (= (n~3) ) coefficients

of S. A matrix MA E R“” X‘w for least-squares approximation
is next construct, simiIar to the construction of MI, for the

additional points generated around the triangular patch as described

in section 4.2.

For the case of quintic algebraic surface patches we solve the

following, simultaneous interpolation and weighted least-squares

approximation problem below. The case of other low degree (6

or 7) C’ algebraic surfaces is nearly identical, with only moditied

sizes of the matrices.

minimize II MAX - b 112

subject to MIX = O,

where MI E R’” ‘w is a Hermite interpolation matrix, and
MA E R.* x% and b E R“” are matrix and vector, respec-

tively, for contour level approximation, and x c R% is a vector

containing coefficients of a quintic algebraic surface f (z, ~, z) = O.

To find the nullspace of MI in a computationally stable man-

ner, the singular value decomposition (SVD) of MI is com-

puted [14] where MI is decomposed as MI = .!JXVT where
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U E R“l X”Iand V E R%”%are orthonormal matrices, and

X = rfiag(al, IYZ,. . . . IY.) E R’1*‘% is a diagonal matrix with di-

agonal elements al ~ uz ~ . . . ~ u, ~ O (s = min{n,,56}).

It is known that the rank r of MI is the number of the positive

diagonal elements of Z, and that the last 56 – r columns of V span

the nuflspace of Mr. Hence, the nullspace of MI is expressed as:

{x E R%lx = ~~~r ~ivr+,, V.J~e~e W, E
R, and v, is the jth column of V}, or x = Vfi_, w

where VW.. E R~xI%–’l “M made of the last 56 — r columns

of V, and w a (56 – r)-vector. 4 x = V%_. w compactly ex-

presses all the quintic surfaces which Hermite-irrterpolate the three

quadnc wires.

After substitution for x, we lead to II MAX – b II =

II MA V2_,W - b Il. Then, an orthogonal matrix Q c R“” ‘“0
is computed such that

()RI
Q= MAV%-. = R = ~

where RI E RI%–”)‘(~-r) is upper triangular. (This factorization

is called a Q-R faclm-iza/ion [14]). Now, let

()Q’b = :

where c is the first 56 – r elements. Then, II MA V’-, W – b 112
= IIQTMAVM_rW - Q~b 112=IIRIW - c 112+ II d 112.The

solution w can be computed by solving RI w = c, from which the

final fitting surface is obtained as x = V%–rw.

5.2 Examples

In prior sections, we described how to compute low degree

triangular algebraic surface patches from a given augmented

curvilinear triangle. A polyhedron is smoothed by replacing

its faces with the triangular patches meeting each other with

tangent plane continuity. For the augmented triangles 2’ =

(~j pl, w, ~0) ~1, nzj nP~ol, np~l’, TSPbO)of tie faces of a Poly-
hedron, the normal data, i.e., three vertex normals and three edge

normals, must be provided as well as the given three vertices. In

some applications, the normal data may come with a solid, bu~ in

general, only vertices and their facial information are provided.

The vertex normal n, at each vertex p, cart be computed by

averaging the normals of the faces incident to the vertex. Other as-

signment schemes which rely on the normals arsiing form a sphere

or a paraboloid are also possible. For a convex triangulation T or

polyhedron P, the above choice of normals at vertices always yields

compatible vertex-normal pairs (as per section 3) for C1 conic irt-

terpolation and hence degree five surface patches suffice by results

in section 4. However the abve simplistic choice of vertex nor-

mals may yield incompatible vertex-normal paira for a non-convex

triangulation or polyhedron. To come up with a compatible vertex

normal assignment for the non-convex case is an open problem. For

4,A~~entimcd &fom, jn most cases, the rank r of MI is 51. However.

we keep the variable r because it is possible that there am more dependency
between boundaty cuwes and nomral vectors though the chances are rare.

now, we use a C1 interpolating cubic curve whenever an incompat-

ible vertex-normal pair arises, as in the non-convex case. Hence in

this case we may need to use algebraic surface patches of degree

7, (as per section 4). Also, we average the normals of the faces

incident to each edge (p,, p] ), and take its cross product with the

vector p, – p, to get the edge normal vector npl,~. After the normal

data is computed, quadric wires are generated for the p value which

is interactively controlled by the user.

Example 5.1 Construction of Quadric Wire Frames

Figures 5 and 7 show two quadric wire frames for the same con-

vex po1yhedron5 with the p values 0.4 (yielding ellipses) and 0.75

(yielding hyperbolas), respectively. ❑

Example S.2 Polyhedra Smoothed with Quirs/ic Algebraic Sur-

faces

Each of 32 faces of the polyhedron in Example 5.1 is replaced

by a quintic implicit algebraic surface which smoothly fleshes its

quadric triangle. Figures 6 and 8 respectively illustrate the C’

surface meshes of p = 0.4 and 0.75.0

6 Remarks and Open Problems

6.1 Implementation Issues

We have presented a method that smooths out a polyhedron with

C’ continuous biangular algebraic surface patches. The polyhedron

smoothing algorithms have been implemented in our distributed and

collaborative geometric design environment SHASTRA [z], cur-

rently consisting of independent toolkit processes SHILP, GANITH

and VAIDAK. For polyhedron smoothing, SHILP takes as input a

polyhedron P and a user specitied p value (for shape control), and

computes quadric wires (if the normal condition is satisfied for the

edge) or cubic wires. Next, for each triangular facet of curves, a

GANITH computation is invoked via inter process communication

and the facet C’ fitted with a low degree (5 to 7) algebraic sur-

face patch. Potentially, a separate GAN ITH process can be invoked

for each individual facet on a network of workstations, to achieve

maximal distributed parallelism. See Figure 10.

6.2 Open Problems

A number of open problems do remain. First we need to devise a

more robust way of generating the points and contour levels for the

least squares approximation of section 4.2. While the heuristics for

weighted least square approximation usually work well, sometimes

we need to manually change, for example, the value of a in S1

and .S_I. Secondly, we continue to work on smoothing an arbitrary

polyhedron. We feel that quirrtic algebraic surfaces are also flexible

enough for generating C’ smooth nonconvex triangular surface

patches. In this paper, we have shown that degree seven algebraic

surfaces are sufficien~ however not necessary. (See Figure 9 for a

5~is ~lyhedmn is gyrmlonga~d triangular bicupcdawirb its _gu -

Iar faces triangulated.
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C’ mesh of quintic surface patches over a nonconvex combination

of qrradric wires.) An open problem is to construct a wire frame

for a non-convex polyhedron with conic curves. In this paper,

we have shown that cubic wires are sufficient for the nbn-convex

case, however they are not shown to be necessary. On approach to

accommodateincompatible adjacent normals in the non-convex case

is to subdivide edges into sub-edges and thereby faces into subfaces.

We are currently exploring this approach.

Our ultimate goal is to construct arbitrary curved solids with the

lowest algebraic degree surface patches, and to manipulate them

through geometric operations such as boolean set operations. This

ability will provide a geometric modeling system with a complex

way of creating and manipulating models of physical objects with

various geometries. One current application of our polyhedron

smoothing algorithms haa been in the smooth reconstmction of

skeletal structures from three dimensional ~/NMR imaging data,

using the SHILP, GANITH and VAIDAK toolkits of our SHASTRA

system [2], See also [4] for algorithmic details of the skeletal

model reconstruction via approximation of the imaging data, using

relatively sparse number of curved patches.
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Figure 2: A Convex Polyhedron  and its C’ Conic Wireframe

Figure 3: A Quadric Triangle and its C’ Patch

Figure 4: A Triangulation for Display  and Additional  (+) Points for
Shape Control
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Figure 5: A Convex Polyhedron with Quadric Wires : p = 0.4 

Figure 6: A C’ Smooth Polyhedron with Quintic Algebraic Patches 

: p = 0.4 

Figure 7: A Convex Polyhedron with Quadric Wires : p = 0.75 

Figure 8: A C’ Smooth Polyhedron with Quintic Algebraic Patches 

: p = 0.75 

Figure 9: Smoothing the Non-Convex Polyhedron with Quintic 

Algebraic Patches 

Figure 10: A Polyhedron Smoothed in the SHASTRA Distributed 

and Collaborative Geometric Design Environment 

88 


