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Abstract

This paper highlights algebraic curves and surfaces and illustrates its use in geometric
design applications. It contrasts the implicit and parametric representations for algorithms
in Geometric Modelling, Scattered Data fitting and Computer Graphics/Mesh Generation.
In this framework the choice of which of the two representations to use is determined entirely
by the desired optimality of the geometric algorithm.
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1 Introduction

Our approach to the design and analysis of geometric algorithms for operations on algebraic
curves and surfaces is to take the view of abstract data types, that is, a data representation
coupled together with the operations on them. In this framework, the choice of which Tepre-
sentation of the algebraic curve or surface to use is determined by the desired optimality of the
geometric algorithms for the operations. Algebraic curves and surfaces can be represented in
an implicit form, and sometimes also in a parametric form. The implicit form of a real algebraic
surface in IR3 is

f(:z:,y,z):O (1)

where f is a polynomial with coefficients in IR. The parametric form, when it exists, for a real
algebraic surface in IR is

_ fl('s’t)

T f4(s’t) (2)
_ fg(s,t)

Yy = f4($,t) (3)
_ f3(37t)

z = —f4(s,t) (4)

where the f; are again polynomials with coefficients in IR. The above implicit form describes
a two dimensional real algebraic variety (a surface) with a single polynomial equation in IR3.
The parametric form also describes a real two dimensional algebraic variety (a surface), how-
ever with a set of three independent polynomial equations in IR®, with coordinate variables
,y,7,s,t. Alternatively, the parametric form of a real surface may also be interpreted as a
rational mapping from IR? to IR3. We can thus compare the implicit and parametric repre-
sentations of algebraic surfaces by considering the the parametric form either as a mapping or
alternatively, an algebraic variety.

In this paper, we consider specific geometric operations in geometric modeling, scattered
data fitting, computer graphics and finite element mesh generation, and compare the implicit
and parametric forms for their superiority (or lack thereof ) in optimizing algorithms for oper-
ations in each of these three categories. In these comparisons we factor out the choice of the
polynomial basis, i.e. whether the polynomials in the implicit and parametric form are defined
over the power [14], barycentric Bernstein or B-spline basis [44]. This, so as not to overly com-
plicate the comparison and also because the numerical or geometric advantages of these forms
occurs for both the implicit and parametric curve and surface representations.

Section 2 sets the terminology and introduces some mathematical definitions. Section 3 pro-
vides some simple facts about algebraic curves and surfaces. Section 4 compares the implicit
and parametric representations for geometric modeling operations. Some of these operations
(intersection, offset, blending, etc.) exploit the simpler algebraic variety of the implicit form
while others (sorting, neighborhood classification, etc.) benefit from the rational mapping of
the parametric form. Section 5 considers the tradeoff between implicit and parametric represen-
tations for scattered data fitting operations where primarily the algebraic variety interpretation
for algebraic surfaces is the most natural. The rational mapping of the parametric form does
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not seem to provide any simplification. Section 6 compares the implicit and parametric rep-
resentations for graphics display and triangular mesh generation operations. Here the rational
mapping gives a clear advantage to the parametric form, though the algorithms to solve this
problem in this representation are still non-trivial. Several examples are given in the subsections
to illustrate the above comparisons.

2 Mathematical Preliminaries

In this section we review some basic terminology from algebraic geometry that we shall be using
in subsequent sections. These and additional facts can be found for example in [49, 53].

The set of real and complex solutions (or zero set Z(C)) of a collection C of polynomial
equations

fl(:l:l, ...,xd) =0

fm(zl,...,xd) =0 (5)

with coefficients over the reals IR or complexes T, is referred to as an algebraic set. The algebraic
set defined by a single equation (m = 1) is also known as a hypersurface. A algebraic set that
cannot be represented as the union of two other distinct algebraic sets, neither containing the
other, is said to be irreducible. An irreducible algebraic set Z(C) is also known as an algebraic
variety V.

A hypersurface in R?, some d dimensional space, is of dimension d— 1. The dimension of an
algebraic variety V is k if its points can be put in (1,1) rational correspondence with the points
of an irreducible hypersurface in k41 dimensional space. Let the algebraic degree of an algebraic
variety V' be the mazimum degree of any defining polynomial. A degree 1 hypersurface is also
called a hyperplane while a degree 1 algebraic variety of dimension & is also called a k-flat.
The geometric degree of a variety V of dimension k in some R? is the maximum number of
intersections between V and a (d — k)-flat, counting both real and complex intersections and at
infinity. Hence the geometric degree of an algebraic hypersurface is the maximum number of
intersections between the hypersurface and a line, counting both real and complex intersections
and at infinity.

The following theorem, perhaps the oldest in algebraic geometry, summarizes the resulting
geometric degree of intersections of varieties of different degrees.

[Bezout] A variety of geometric degree p which properly intersects a a variety of geometric
degree ¢ does so in an algebraic set of geometric degree either at most p * ¢ or infinitely often.

The normalor gradientof a hypersurface H : f(21,...,Zx) = 0is the vector V f = (fuy, fags++» fon )
A point p = (ao, @1, ...a5) on a hypersurface is a regular point if the gradient at p is not null;
otherwise the point is singular. A singular point q is of multiplicity e for a hypersurface H of
degree d if any line through q meets H in at most d — e additional points. Similarly a singular
point q is of multiplicity e for a variety V in IR™ of dimension & and degree d if any sub-space
R * through q meets V in at most d — e additional points. It is important to note that
even if two varieties intersect in a proper manner, their intersection in general may consist of
sub-varieties of various multiplicites. The total degree of the intersection, however is bounded
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by the above Bezout’s theorem. Finally, one notes that a hypersurface f(z1,...yz) = 0 of
degree d has K = (":d) coefficients and one less than that number of independent coefficients.
Hypersurfaces f(21,...,2,) = 0 of degree d form K dimensional vector spaces over the field of
coefficients of the polynomials.

Finally, two hypersurfaces f(z1,...,2,) = 0 and g(z1,...,2,) = 0 meet with C*-continuity
along a common subvariety V if and only if there exists functions a(zy,...,Ty) and f(z1,...,2,)
such that all derivatives upto order k of af — 8g equals zero at all points along V, see for e.g.,
[28].

3 Algebraic Curves and Surfaces

We cast our real implicit and parametric curves and surfaces, in the terminology of section 2. A
real implicit algebraic plane curves f(z,y) = 0 is a hypersurface of dimension 1 in IR?, while a
parametric plane curve [f3(s)z— fi(s) = 0, f3(s)y— f2(s) = 0] is an algebraic variety of dimension
1 in IR®, defined by the two independent algebraic equations in the three variables z,y, s.
Similarly, a real implicit algebraic surface f(z,y, z) = 0 is a hypersurface of dimension 2 in IR3,
while a parametric surface [f4(s, )z — fi(s,1) = 0, fa(s,t)y— fa(s,t) = 0, fa(s,t)z— fa(s,t) = 0]
is an algebraic variety of dimension 2 in IR®, defined by three independent algebraic equations
in the five variables z,y, z, s, t.

A plane parametric curve is a very special algebraic variety of dimension 1 in z, Y, § space,
since the curve lies in the 2-dimensional subspace defined by z,y and furthermore points on the
curve can be put in (1,1) rational correspondence with points on the 1-dimensional sub-space
defined by s. Parametric curves are thus a special subset of algebraic curves, and are often also
called rational algebraic curves. Figure 1 depicts the relationship between the set of parametric
curves and non-parametric curves at various degrees.

Example parametric (rational algebraic) curves are degree two algebraic curves (conics)
and degree three algebraic curves (cubics) with a singular point. The non-singular cubic is not
rational and are also known as elliptic cubics. In general, a necessary and sufficient condition for
the rationality of an algebraic curve of arbitrary degree is given by the Cayley-Riemann criterion:
a curve js rational iff g = 0, where g, the genus of the curve is a measure of the deficiency of
the curve’s singularities from its maximum allowable limit [51). Algorithms for computing the
genus of an algebraic curve and for symbolically deriving the parametric equations of genus 0
curves, are given in [1, 2, 3].

Similarly, a parametric surface is a very special algebraic variety of dimension 2 in z, Y, 2,8,1
space, since the surface lies in the 3-dimensional subspace defined by z,y,z and further-
more points on the surface can be put in (1,1) rational correspondence with points on the
2-dimensional sub-space defined by s,t. Figure 2 depicts the relationship between parametric
and non-parametric surfaces. :

Example parametric (rational algebraic) surfaces are degree two algebraic surfaces (quadrics)
and most degree three algebraic surfaces (cubic surfaces). The cylinders of nonsingular cubic
curves and the cubic surface cone are of not rational. Other examples of rational algebraic
surfaces are Steiner surfaces 11 which are degree four surfaces with a triple point, and Pliicker
surfaces which are degree four surfaces with a double curve. In general, a necessary and sufficient
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condition for the rationality of an algebraic surface of arbitrary degree is given by Castelnuovo’s
criterion: P, = P, = 0, where P, is the arithmetic genus and P, is the second plurigenus [52].
Algorithms for symbolically deriving the parametric equations of degree two and three rational
surfaces are given in (1, 2, 3, 4].

3.1 Degree & Singularities

For implicit algebraic plane curves and surfaces defined by polynomials of degree d, the maxi-
mum number of intersections between the curve and a line in the plane or the surface and a line
in space, is equal to the maximum number of roots of a polynomial of degree d. Hence, here the
geometric degree is the same as the algebraic degree which is equal to d. For parametric curves
defined by polynomials of degree d, the maximum number of intersections between the curve
and a line in the plane is again equal to the maximum number of roots of a polynomial of degree
d. Hence here again the geometric degree is the same as the algebraic degree. For parametric
surfaces defined by polynomials of degree d the geometric degree can be as large as O(d?), the
square of the algebraic degree d. This can be seen as follows. Consider the intersection of a
generic line in space [a12 + b1y + ¢12 — dy = 0,432 + bay + c2z — d = 0] with the parametric
surface. The intersection yields two implicit algebraic curves of degree d which can potentially
intersect in O(d?) points (via Bezout’s theorem), corresponding to the intersection points of
the line and the parametric surface.

A parametric curve of algebraic degree d is an algebraic curve of genus 0 and so may have
gd_—llzﬁl = O(d?) singular (double) points. This number is the maximum number of singular
points an algebraic curve of degree d may have. From Bezout’s theorem, we realize that the
intersection of two implicit surfaces of algebraic degree d can be a curve of geometric degree
O(d?). Furthermore the same theorem implies that the intersection of two parametric surfaces
of algebraic degree d (and geometric degree O(d?)) can be a curve of geometric degree O(d?).
Hence, while the potential singularities of the space curve defined by the intersection of two
implicit surfaces defined by polynomials of degree d can be as many as O(d*), the potential
singularities of the space curve defined by the intersection of two parametric surfaces defined
by polynomials of degree d can be as many as O(d®).

4 Geometric Modeling Operations

Geometric modeling operations are dependent largely on the application for the modeling sys-
tem. Our comparisons here are limited to operations such as Boolean set (intersection, union,
difference), blending, rounding, joining and the properties these operations should have.

4.1 Boolean Set Operations

4.1.1 Closure

One desirable property which we would like to optimize by the choice of curve and surface
representation is closure under most modeling operations. By closure we mean that the result
of an operation (without any approximation) has the same representation as the input. The
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Figure 3: A non-parametric intersection curve of two parametric surfaces

closure property allows the cascading of similar operations with the output of one operation
serving as the input of another. The set of rational curves and surfaces are a subset of algebraic
curves and surfaces of the same degree. While all algebraic curves and surfaces have an implicit
representation, only the class of rational algebraic curves and surfaces also have the alternate
parametric representation. The non-closure property of the parametric representation stems
from this restriction.

One of the generic sub-operations in intersecting two solid models is the intersection of two
surfaces. Figure 3 depicts an example where the intersection of two parametric (degree two)
surfaces produces a (degree four) curve which is non-parametric. This can be seen as follows:

Example 4.1 The intersecting surfaces are a sphere z2 +y*+ 2% —2 = 0 and a circular cylinder
2+ (y—1)? = 1 = 0. Both being of degree two are parametric[4{9] and their parameterizations
can be easily derived [1]. The projection of the intersection curve onto the x — y plane is given
by C : z*+4xz?—4 = 0. The plane curve C has no affine singularities but a simple double point



4 GEOMETRIC MODELING OPERATIONS 9

at the origin. Hence, its genus and also the genus of the intersection curve is 2 and therefore
non-rational.

This implies that the result of an intersection operation on parametric representations, in
general, are curves and surfaces that are not rational. To compute parametric representations
for these non-rational results requires approximation [16, 17]. As the solution to most modeling
operations are expressible by polynomial equation, from the projection theorem of algebraic
varieties it follows that the implicit representation is closed under modeling operations.

4.1.2 Space & Time Complexity

The implicit representation of an algebraic plane curve of degree d requires (d+2) O(d?) real
coefficients. On the other hand the parametric representation of a rational curve of algebraic
degree d requires only 3(d + 1) = O(d) coefficients. Similarly the implicit representation of an
algebraic surface of degree d requires (d+3) O(d®) real coefficients, while the parametric rep-
resentation of a rational surface of algebraic degree d requires only 4(d+2) O(d?) coefficients.

The time complexity for Boolean set operations (amongst others) are governed by the num-
ber of polynomial equations and variables needed to express the result of the corresponding
operation. The intersection of two implicit surfaces of algebraic degree d, viz., fi(z,y, z)=0
and f(z,y,2) = 0 where f; and f, are polynomials of degree d, is expressible as the simul-
taneous solution of the two polynomial equations f; = 0 = f, in the three variables z,y, 2.
On the other hand the intersection of two parametric surfaces of algebraic degree d, viz.,
[z = ﬁgi 3’3/ f’fls g, ﬁ :’:)] and [z = %,y z—:((z—:z%,z = g—igz—:z))-] is expressible as
the simultaneous solution of three polynomial equations

fl(svt)g‘!(u?v) - gl(u, 'U)f4(3,t) = 0
fa(s,t)ga(u, v) — ga(u,v) fa(s,t) = 0
fa(s,t)ga(u,v) — g3(u,v)fa(s,t) = 0

in the four variables s,t¢,u,v. The simplicity of the intersection solution definitely makes the
implicit representation as the more desirable form. Furthermore, it may noted again that while
the geometric degree of the intersection curve of the two implicit surfaces of algebraic degree
d is no larger than d2, the geometric degree of the intersection curve of the two parametric
surfaces of algebraic degree d may be as large as d*.

4.2 Blending & Joining

The mechanics of blending and joining operations in geometric design are

1. geometric features of a surface to be designed are described in terms of a combination of
points, curves, and possibly associated normal vectors, derived from the primary attach-
ment surfaces

2. these properties are translated into a homogeneous linear system of equations with extra
surface constraints
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Figure 4: A smooth three way join using a degree four algebraic surface

10
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Figure 5: The joining surface as a C! interpolant

3. nontrivial solutions of the linear system are computed

A common technique for the translation in step 2. above is to use C* interpolation and
approximation. See Figures 4, 5. The basic problem here can be described as follows: Construct
a single real algebraic surface § which C* interpolates a collection of { points p; in IR3 with
associated fixed “normal” unit vectors m;, and m given space curves C; in IR3, possibly with
associated “normal” unit vectors n; and additionally upto k** order derivatives of n; varying
along the entire span of the curves.

4.2.1 Linearity

In comparing the implicit and parametric surface for this fitting problem in (z, y, z) space, one
notes that the problem straightforwardly reduces to a linear problem for the implicit repre-
sentation in (1) as the unknowns are the coefficients of the polynomial. The same problem
is however non-linear for the parametric representation in (2) as the unknowns are the coeffi-
cients and the domain parameters s,¢. To reduce the interpolation to a linear problem for the
parametric surface requires some assignment of s, ¢ values to each of the original data points in
z,Yy, Z space.

4.2.2 Degrees of Freedom

Note also that if one works with polynomials of degree d in both the implicit and parametric
form, one has O(d®) degrees of freedom (independent coefficients) for the implicit representation
as compared to only O(d?) degrees of freedom (independent coefficients) for the parametric.
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Figure 6: A smooth quartic surface blend of the four cylinders

Figure 7: A degenerate blend of the four cylinders

A straightforward combinatorial argument shows that the larger number of degrees of freedom
for the implicit representation, coupled with the smaller number of constraints, leads to lower
degree interpolatory surfaces.

The total number of linear equations generated for a possible implicit surface of algebraic
degree d to C! interpolate k points with fixed constant normal directions and also to contain,
with C! continuity, ! space curves of degree e with assigned normal directions, varying as a
polynomial of degree m < d, is 3k + (2d — 1)el + 2I. This number becomes 3k + (2d% — 1)el + 2!
when the C' interpolating surface is a parametric surface of algebraic degree d [15].

For a given configuration of points, curves, and normal vectors, the above interpolation
scheme allows one to both-upper and lower-bound the degree of the blending or joining surface.

1. Lower Bound Let 7(n) be the rank of a homogeneous system of linear equations, obtained
from the given geometric configuration and surface degree n. The rank tells us the exact
number of independent constraints on the coefficients of the desired algebraic surface of
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degree d. Dependencies arise from spatial interrelationships of the given points and curves.
From the rank, we can conclude that there exists no algebraic surface of a degree less than
or equal to do where do is the largest d such that F(d) < 7(d) with F(d) = (4;3) -1
for an implicit surface of algebraic degree d and with F(d)= 4(d';2) — 4 for a parametric
surface of algebraic degree d.

2. Upper Bound Alternatively, the smallest d can be chosen such that F(d) > r(d). The
nontrivial solutions of the linear system represents a (F(d) — r(d) + 1)-parameter family
(with F(d) — r(d) degrees of freedom) of algebraic surfaces of degree d which interpolate
the given geometric data. We select suitable surfaces from this family. See Figure 6.

The advantages of lower number of interpolatory contraints and higher degrees of freedom,
both favour the implicit form. In general this translates to a lower geometric degree blending
or joining solution. However, some of these interpolating surfaces of a interpolating family may
not be suitable for the design application they were intended to benefit. These problems arise
when the given points or curves are smoothly interpolated, but, lie on separate real components
of the same nonsingular, irreducible algebraic surface. See Figure 7. Solutions to counter this
problem in the implicit case have been given in [15, 9]. For parametric surfaces this problem is
circumvented by restricting to polynomial parametric surfaces or to rational Bezier or rational
B-splines(25]. For these classes of parametric surfaces, the domain parameters are confined to
regions which have no real poles or base points and hence correspond to single sheeted surfaces.

5 Scattered Data Fitting

Consider the problem of constructing a C* mesh of smooth surface patches or splines that
interpolate or approximate scattered data in IR®. Computations which we would like to optimize
by our choice of curve and surface representation include:

e solution requiring a small number of surface patches
¢ reduction of the fitting problem to solving small linear systems
¢ low geometric degree of the solution surfaces

There are several possible variants of the problem depending on the nature of the interpo-
lation problem on hand:- local versus non-local patch interpolation, splitting v.s. non-splitting
of the surface patches per triangulation face, the convexity versus non-convexity of the given
triangulation, etc. In each of these cases, the comparison between the implciit versus para-
metric representation does not yeild a clear winner. While the implicit representation yields
lower geometric degree solutions (for reasons relating to degrees of freedom and the number of
constraints, similar to subsection 4.2), the parametric surfaces shows a clear advantage when
suitable surfaces need to be selected from an infinite family of interpolatory solutions. As
discussed in subsection 4.2 straightforward conditions on the parameter domain can yield para-
metric surface solutions which are free of poles and base points. The selection of suitable
implicit surfaces '
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Figure 8: C' Implicit Splines over a Spatial Triangulation

The generation of a C! mesh of smooth surface patches or splines that interpolate or ap-
proximate triangulated space data is one of the central topics of geometric design. Alfeld [5],
Chui {22], Dahmen and Michelli (24] and Hollig [33] summarize much of the history of scattered
data fitting and multivariate splines. Prior work on splines have traditionally worked with a
given planar triangulation using a polynomial function basis [5, 44, 48]. More recently sur-
face fitting has been considered over closed triangulations in three dimensions using parametric
surface patches [18, 21, 27, 29, 30, 32, 34, 37, 39, 40, 42, 45, 50]. Little work has been done
on spline bases using implictly defined algebraic surface patches. Sederberg [47] showed how
various smooth implicit algebriac surfaces in trivariate Bernstein basis can be manipulated as
functions in Bezier control tetrahedra with finite weights. Patrikalakis and Kriezis [38] extended
this by considering implicit algebriac surfaces in a tensor product B-spline basis. However the
problem of selecting weights or specifying knot sequences for C! meshes of implicit algebraic
surface patches which fit given spatial data, was left open. Dahmen [23] presented a scheme
for constructing C! continuous, piecewise quadric surface patches over a data triangulation
in space. In his construction each triangular face is split and replaced by six micro quadric
triangular patches, similar to the splitting scheme of Powell-Sabin [43]. Dahmen’s technique
however works only if the original triangulation of the data set allows a transversal system of
planes, and hence is quite restricted. Moore and Warren [36] extend the marching cubes scheme
of [35] and compute a C! piecewise quadratic approximation (least-squares) to scattered data.
They too use a Powell-Sabin like split, however over subcubes.
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In paper [9] the authors consider an arbitrary spatial triangulation 7 consisting of vertices
p = (i,9i,%) in IR (or more generally a simplicial polyhedron P when the triangulation
is closed), with possibly “normal” vectors at the vertex points. An algorithm is given to
construct a C! continuous mesh of low degree real algebraic surface patches S; over 7 or
P. The algorithm first converts the given triangulation 7 or simplicial polyhedron P into a
curvilinear wireframe (with at most cubic parametric curves) which C! interpolates all the
vertices, followed by a fleshing of the wireframe with low degree algebraic surface patches.
See Figure 8. The technique is completely general and uses a single implicit surface patch
of degree at most 7, for each triangular face of 7 of P, i.e. no local splitting of triangular
faces. Furthermore, the C'! interpolation scheme is local in that each triangular surface patch
has independent degrees of freedom which may be used to provide local shape control. Extra
free parameters may be adjusted and the shape of the patch controlled by using weighted least
squares approximation from additional points and normals, generated locally for each triangular
patch. Similar techniques exist for parametrics [21, 27, 29, 40, 45] however the geometric degree
of the solution surfaces tend to be prohibitively high.

One should note that the above surface patches which C!-interpolate the vertices of the
spatial triangulation may be singular at the end vertices. A well known necessary condition
[20] for the regularity of surfaces which C? interpolate a point is given by:

Theorem 5.1 Let Cy(u) and Ca(v) be two parametric curves with parametric normal directions
Ni(u) and Ny(v) such that C1(0) = C3(0) = p, and that N1(0) and No(0) are proportional.
Then, any .?urfat’:e S, whiclf interpolates the curves with tangent plane continuity, is singular at
p unless (N1(131,%‘2)|(0)) _ (011(1(3,)2,1(\)’2)(0))_

The above theorem implies that enforcing two curves to have the same normal vectors
at intersection points, does not guarantee the regularity of an interpolating surface at those
points. The equation in the theorem is a necessary condition for regularity, indicating that, if
the bounding curves of the surface patches, and their normals do not satisfy the equation, any
smoothly interpolating surface must be singular at p. In cases where there is a strict requirement
for completely nonsingular C'-interpolant surface patches, the above equation, also known as
the verter enclosure constraint, must be met by the curvilinear wireframes which replace the
underlying given triangulation. This issue has been addressed in the literature of parametric
surface fitting. Peters [40] showed that not every mesh of parametric curves with well-defined
tangent planes at the mesh points can be interpolated by non-singular, regularly parametrized
surfaces with one surface patch per mesh face.

One way to satisfy the vertex enclosure constraint is to generate curvlinear wireframes
(meshes) which are C? at the vertex endpoints. For arbitrary triangulations such C? curvlinear
meshes can be quickly generated using only cubic polynomial parametric curves [26]. Hence
there is no increase in the surface degree of the C! mesh of interpolating patches and at most
degree 7 surfaces still suffice for the implicit representation. For cases where the singularity
at vertex end points of smooth patches is permissible, the vertex enclosure constraint is au-
tomatically resolved [9]. In [41], Peters also used singularly parametrized surfaces to enclose
a curvilinear mesh where the mesh curves emanating from a point do not satisfy the vertex
enclosure constraint.
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Figure 9: A Quadratic Parametric Surface with Domain Poles

6 Computer Graphics & Mesh Generation

We consider the problem of computing piecewise linear or polygonal approximations of real alge-
braic surfaces. Modern day computer graphics hardware accept such polygonal approximations
and accurately render the complicated surfaces with sophisticated lighting and shading mod-
els. Similar, more structured, linear approximations of surfaces are required for finite element
approaches to solving system of partial differential equations.

A well-known strength of the parametric representation (its mapping from IR? to IR3) is the
ease by which real points can be generated on the parametric curve or surface. To compute real
points on implicit algebraic surfaces requires the solution of polynomial equations. Furthermore,
the problem of constructing a polygonal approximation, especially for finite element meshes, is
complicated by the need for a correct topology of the mesh even in the presence of singularities
and multiple sheets of the real algebraic surface. Direct schemes which work for arbitrary
implicit algebraic surfaces are based on either the regular subdivision of the cube [19] or a
finite subdivision of an enclosing tetrahedron [31]. However, such sampling methods fail in the
presence of point and curve singularities of the algebraic surface, or yield ambiguous topologies
in neighborhoods where multiple sheets of the surface come close together. Symbolic methods
are necessary to disambiguate or calculate the correct topology for general algebraic curves and
surfaces[3, 46]

While the issue of surface singularities are not as critical for rational parametric surfaces,
the problems of constructing polygonal approximations with consistent topology is still highly
non-trivial. Rational parametric surfaces have pole curves in their domain, where the denomi-
nators of the parameter functions vanish, domain base points for which all four numerator and
denominator polynomials vanish simultaneously, and other features that cause naiive polygonal
approximation algorithms to fail. These are ubiquitous problems occurring even among the
natural quadrics. We illustrate the problems in more detail.

1. [Finite Parameter Range] To fully cover the parametric curve or surface, one must allow the
parameters to somehow range over the entire parametric domain, which is infinite. For
example, the unit sphere f(z,y,2) = 22 4+ y? + 2% — 1 = 0 has the standard rational para-
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Figure 10: A Cubic Parametric Surface with Seam Curves Due to Base Points

. . _g2_¢2 . o
metric representation (z = Trz*ri—t;-,y =7 +3’;f’_t2,z = i +22 +§2) In this parameterization

the point (—1,0,0) origin can only be reached by the parameter values s = t = oco.

2. [Complex Parameter Range] It is possible for real points of a curve or surface to be gen-
erated only by complex parameter values. For instance, the rational algebraic curve
f(z,y) = 2° + 2® + y% = 0 has an isolated real point at the origin. A rational parametric
representation of this curve is (z(s),y(s)) = (—(s? + 1), —s(s% + 1)). In this parameteri-
zation the origin can only be reached by the complex parameter value s = /=1 = 3.

3. [Poles] Even when restricting the surface to a bounded real part of the parametric do-
main, the rational functions describing the surface may have poles over that domain. A
hyperboloid of two sheets, with implicit equation 22+ y*xz+z*z—-y? —zxy—22-1 =0,
has the parametric representation

t) _ 4s
2(s,t) = 5t2 + 6st + 552 — 1
(5,0) = 4t
YL T B2 + 65t + 552 — 1
5t 4+ 65t — 2t + 552 — 254+ 1
2(s,t) =

5t2 4 6st + 552 — 1

then problems arise because of the pole curve described by 5t% + 6st + 552 — 1 in the
parameter domain. See Figure 9.

4. [Base Points] The rational parameter functions describing curves and surfaces are gen-
erally assumed to be reduced to lowest common denominators, i.e., the numerator and
denominator of each rational function are relatively prime. Thus for a curve, there is no
parameter value that can cause both numerator and denominator of a rational parameter
function to vanish. For surfaces, the situation is different. A surface is defined by three
bivariate rational functions

z(s,1)
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y(s,t) = —-—2&:3
z(s,t) = —gg‘:—:g

Even if Fy, F, F3, Fy are relatively prime polynomials, it is still possible that there are
a finite number of points (a,b) such that Fy(a,b) = F5(a,b) = F3(a,b) = Fy(a,b) = 0.
Each such point is called a base point of the parametric surface. There may also be base
points at infinity in the parameter domain, and the base points can be complex as well as
real-valued. Information about base points can be found in books on algebraic geometry
such as [49, 52]. Base points are problematic since there is no one surface point for the
corresponding domain point. To each base point there actually corresponds a curve on the
surface [49], and since there is no parameter value for surface points on such a curve, the
entire curve will be missing from the parametric surface. Such a curve is called a seam
curve. See the right side of Figure 10 which corresponds the cubic parametric surface
T = ts—tg-{r33-32+l y = M=o t428742 . ost=s® Thus for g truly accurate display of
S+1 BFs3+1 ) BHs3+1

a parametric surface, one should also display the seam curves, alongside the parametric
surface. See the left side of Figure 10 whee the seam curves are bridged.

In [13] we give solutions to the above problems for the C° meshing of rational paramet-
ric curves, surfaces and hypersurfaces of any dimension. The technique is based on homo-
geneous linear (projective) reparameterizations and yields a complete and accurate C° pla-
nar mesh of free-form, discontinuous rational parametric domains. For the Cartan surface
(z = s,y = %;,z = t), a single reparameterization (z = st,y = s%,z = t) removes the pole
t = 0 of the original parameterization. For the Steiner surface (¢ = 724,y = 5 .z =

424 (52 +6s5+4)t—4s-8 _ 4124 (—52—65—20)t+252+85+16 _ __
: 2—atts2+4s+8 I = 200 —4i+52 14548 z
(25+6)t%+(~4s~12)t—s>—4s

T e ), four different projective reparameterizations yield a complete covering
of the rational parametric surface. See figures 11 and 12. In [13] for surfaces, four reparameter-
izations always suffice. In general 2¢ projective reparameterizations suffice for a d dimensional
parametric hypersurface, see [12]. The algorithms which computes these reparameterizations as
well as generates the C° planar meshes have been implemented in C in our GANITH toolkit[11].
The pictures have been generated using this toolkit.

Fs%tTi’f)’ and the cubic elbow surface (z =

7 The SHASTRA Geometric Toolkits

We have built a geometric software environment called SHASTRA!, allowing manipulations of
algebraic curves and surfaces, and using both the implicit and parametric representations(7].
Our selection of geometric algorithms and data structures is based on the paradigm of abstract
data types, i.e. the representation implicit or parametric chosen is the one which optimizes
the operation or application on hand. The algorithms of the previous sections have all been
implemented in this environment. SHASTRA is a good supplement to geometric algorithm
research as it provides us with a testbed for new approaches to solving complicated geometric

!SHASTRA is the Sanskrit word for Science



THE SHASTRA GEOMETRIC TOOLKITS

Figure 12: Complete Display of a Cubic Parametric Surface
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Figure 13: Surface - Surface Intersections in Ganith

Figure 14: Implicit Surface Patches in Bezier Basis

problems. In this section we give a quick overview of SHASTRA and its individual geometric
toolkits.

SHASTRA is a highly extensible, distributed and collaborative geometric software envi-
ronment consisting of a growing set of individually powerful and interoperable (client-server)
toolkits which support collaborative design sessions. In the SHASTRA environment multiple
users (say, a collaborative engineering design team) interactively create, share, manipulate,
simulate and visualize complex geometric designs over a heterogeneous network of workstations
and supercomputers.

1. The GANITH algebraic surface modeling toolkit[11] provides symbolic and numeric com-
putations on algebraic varieties. Example applications of this are curve and surface piece-
wise linear approximations for display, curve-curve intersections, surface-surface intersec-
tions, global and local parameterizations, implicitizations, inversions, curve and surface
interpolation, approximation, etc. See figures 13 and 14.
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Figure 15: Interactively Designed Models with Piecewise Algebraic Surfaces in SHILP

2. The SHILP solid modeling and display toolkit[6] manipulates curved solid objects with
piecewise algebraic surfaces. It can be used for the interactive design (creation, editing,
etc.) and display of solid models with algebraic surface boundaries. See figure 15.

3. The VAIDAK medical imaging and model reconstruction toolkit[8] manipulates medical
image volume data. It can be used to construct accurate surface and solid models of
skeletal and soft tissue structures from CT (Computed tomography), MRI (Magnetic
Resonance Imaging) or LSI(Laser Surface Imaging) data. See figure 16.

4. The BHAUTIK physical analysis toolkit[10] provides a graphical interface and function-
ality to set up and perform scientific and engineering simulations on geometric models.
Its capabilities include finite element mesh generation, a graphical editor for setting up
a physical problem domain and boundary conditions, a database of material proper-
ties and a growing database of physical (PDE) models for heat transfer and structural
(stress/strain). See figure 17.

GANITH provides the surface modeling infrastructure for SHILP and VAIDAK. Further, SHILP
provides all the solid model manipulation and display functionality to skeletal structures re-
constructed from CT/MRI image data in VAIDAK. GANITH, SHILP and VAIDAK provide
BHAUTIK with a varied source of geometric domains. Collectively these toolkits provide a vast
infrastructure of numeric and symbolic algorithms manipulating complex geometric ob jects.
In the SHASTRA environment the above toolkits run as independent processes on separate
workstations having separate user interfaces (using X-11 and Motif )- The application toolkits
make use of a custom designed network library to communicate data structures conveniently
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Figure 16: Femur Model Reconstruction from CT data in VAIDAK

with each other and manage multiple connections across a network. The network library is
designed around the highly extensible client-server paradigm and utilizes TCP /IP. Each ap-
plication runs as a server for the functionality it offers, and as a client capable of requesting
functionality from other sibling systems. Applications maintain multiple concurrent connec-
tions to other applications on multiple hosts. This is effected using the multiplexing facility
accorded by the "select” system call. The application dynamically opens connections to differ-
ent systems and registers handlers with the multiplexing layer or closes such connections. In
server mode, the application sets up shop at a well known port, and awaits requests for connec-
tions from other systems. In client mode, the application attempts to connect to a well known
port for a specific service. Both of these actions can be performed identically in all systems.
The data communication aspect is also standardizable. For example, in the SHASTRA envi-
ronment the applications need to be able to exchange parts of three dimensional solid models
(curve segments, surface patches, solids, etc.) to perform various operations. This motivated
the development of a modular data communication library where data objects can be exchanged
between systems.

One current industrial application of the SHASTRA environment is the interactive design
and physical prototyping of artificial implants. Figure 17 shows a model of a 3D reconstructed
model] of a human femur and an artificial hip implant built using the interactive tools in SHAS-
TRA. The implant design task is accomplished via SHILP in conjunction with remote calls to
GANITH for surface fitting operations. VAIDAK is used to recomstruct accurate models of
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Figure 17: Finite Element Stress Transfer Modeling from Prosthesis to Femur in BHAUTIK

the appropriate part of the human anatomy, and BHAUTIK is used to conduct stress-strain
analyses of the bone model for varying loads on the designed implant. The collaborative layer
in SHASTRA allows multi-user creation, manipulation and visualization of geometric models.

8 Conclusion

We have presented several tradeoffs between implicit and parametric representation for a range
of problems stemming from geometric modelling, scattered data fitting, computer graphic and
mesh generation. The parametric representations possesses good properties which include:
easier to order, easily gemerate points on, simpler patches, compact storage, irreducibility,
etc. The implicit representations on the other hand are easier for halfspace queries, easier for
representing complete surfaces, and generally yields lower degree surface interpolatory solutions.
Hence in geometric design on needs to follow the abstract data type paradigm as discussed in
this paper and implemented in the software system SHASTRA. The geometric data structures
for curves and surfaces in the GANITH toolkit of SHASTRA unifies the implicit and the
parametric forms by representing and manipulating them as algebraic varieties. In SHASTRA
the user thus has complete freedom in select the more appropriate representation (implicit,
parametric or both) for the desired operation on hand.
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