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Abstract

We present a method for generating low degree C*-continuous piecewise approximations
of arbitrary algebraic surfaces of revolution. The approximating pieces are implicitly or
parametrically defined algebraic surface patches. We show that degree d surface patches
can be used for approximations with interpatch G* continuity as high as & = [Lﬁg:_ij
for even d, and &k = LM%EJ for odd d. The method is based on a new technique to
construct C*-continuous implicit algebraic spline approximations of algebraic curves with
the same degree and continuity tradeofl.
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1 Introduction

Algebraic curves and surfaces can be represented in an implicit form, and sometimes also in a
parametric form. The implicit form of a real algebraic surface in IR® is

f(z,9,2)=0 (1)

where f is a polynomial with coefficients in IR. The parametric forin, when it exists, for a real
algebraic surface in IR is

fl(s’t’)
f4(3,i)

_ fzfs,i)
O
f3(3!t)
f‘i(svt)

where the f; are again polynomials with coefficients in IR. The algebraic degree of an alge-
braic curve or surface (in implicit or parametric form) is the mazimum degree of any defining
polynomial.

This paper presents two main ideas to be used in fitting low degree, piecewise algebraic
surfaces (in the implicit or parametric form) to data sampled from arbitrary boundary surfaces
of solids of revolution. One is the use of degree restricted bases for the piecewise approxi-
mation of the generating curve of revolution surfaces to yield approximating surfaces of the
same algebraic degree as the degree of the piecewise curves. The other new idea arises in the
development and use of C* implicit algebraic splines for degree restricted interpolation and
approximation of generating curves. The paper [8] studies a special family of implicit cubic
curves which yields only tangent continuous cubic splines. While traditional fitting schemes
are predominantly based on piecewise parametric representations[4, 7, 5, 9], we show here that
implicit representations are also quite appropriate and in fact better equipped for restrictions
on the bases and the degrees of the involved polynomials.

From Bezout’s theorem[l], we realize that the intersection of two implicil surfaces of alge-
braic degree d can be a curve of geometric degree O(d?). Furthermore the same theorem implies
that the intersection of two parametric surfaces of algebraic degree d can be a curve of degree
O(d"). Hence, while the potential singularities of the space curve defined by the intersection of
two implicit surfaces defined by polynomials of degree d can be as many as O(d?), the potential
singularities of the space curve defined by the intersection of two parametric surfaces defined
by polynomials of degree d can be as many as O(d®)[2]. Hence keeping the degree of fitting
surfaces as low as possible benefits both the efficiency and the robustness of post processing for
modeling and display.

The rest of this paper is as follows. Section 2 characterizes the appropriate degree restricted
bases for implicit and parametric algebraic curves which would yield revolution surfaces of
the same algebraic degree as the degree of the curves. Section 3 characterizes C* continuous
piccewise surfaces of revolution and their construction from sampled data points. Section 4
describes the development and details for constructing cubic implicit algebraic €' and C?
splines for approximating generating curves of surfaces of revolution.

(2)




E :an ellipse

C > an algebraic curve

Figure 1: Revolution of an Algebraic Curve along an Ellipse

2 Surfaces of Revolution

2.1 Algebraic Surfaces of Revolution

Consider an algebraic surface which is obtained by revolving an algebraic curve f(z,y) =0 (on
the zy plane) around the ¥ axis. {See Figure 1.) Rather than restricting ourselves to a circular
rotation, we consxder a more general elliptic revolution where the rotation path is described by
an ellipse £ : 2% + —1- = {r(y)}? with « > 0. Here, r(y) is the z coordinate of the point (z,y)
on the curve C : f(n: y)=0.

Now, the surface that results from revolving C along E is specified as “z? + "'2' = {r(y)}®
subject to f(r(y),y} = 0.” The equation F(z,y,z) = 0 of the surface 5, hence, becomes
Flz,y,2) = f(y /22 + 5, y) = 0 where F(z,y, z) is not necessarily algebraic due to introduction
of the square root. By allowing only even-powered z's (z°, z%, %, ---) in f(z,y), we can force
F(z,y,z) to be algebraic. Geometrically, this restriction, imposed on the revalved curve, that
maintains aigebraicily, means that the curve f(z,y) = 0 is symmetric to the y axis.

For quadric curves f(z,y) = 0, z? is the only possible factor of terms in f. Hence, f
includes a 4-dimensional vector space V_’} of polynomials over real numbers that is spanned by
the basis {z2,y?,y, 1} In case of cubic curves f(z,y) = 0, the vector space VJ? is spanned
by the basis {z’y,z2 4% v%, 7, 1} with dimension 6. Quartic curves f{z,y) =0 ca.n be chosen
from a more abundant vector space V“ of dimension 9, generated by the basis {z*, z2y?, 2%y, 2,
¥y 9% 4%, 5,1}, The bases of vector spaces Vfd for higher degree curves are formulated in the
same fashion.

Ilach algebraic curve of degree d in Vfd, revolved around an ellipse, results in an algebraic
surface of the same degree. Then we naturally come to the following quesl.ion : “Is a surlace,
generated by revolving around an ellipse an algebraic curve that is not in V . algebraic at all?”
In fact, the surface is algebraic, though the curve’s degree gets doubled. Tlus doubling of the
degree arises from the single squaring required to remove the square root from odd-powered z
factors. For example, consider a circle f(z,y) = (z—5)2+(y—5)°—1 = z*—10z+y*—10y+49 = 0




of radius 1, centered at (5,5). This conic curve is not in V7 because of the term 10z. However,
by moving 10z to the right hand side, and then squaring both sides, we can obtain a quartic
eurve in V! which generates a torus (of degree 4) by rotation. Intuitively, the squaring operation
has an effect of putting another circle of the same shape to the other side of the ¥ axis in order
to artificially make the curve symmetric to the y axis. Any algebraic curve of degree d which
is not in 'I/".‘.i can be made to be in Vf" by moving all terms with odd-powered z factors to one
side, and squaring both sides.

REMARK 2.1. Let C : f(z,y) = 0 be an algebraic curve of degree d, and E : 22 4 ;—Z = {r(y)}?
be an ellipse of a rotation path. Then, the algebraic surface § : F(z,y,2z) = 0, resulting from
revolving C' around E, has degree d if C is symmetric around the y azis, or 2d otherwise.

A geometric interpretation to Remark 2.1 is as follows : Consider a line on the zy plane
parallel to the z axis. This line intersects with C at most d times. Now, imagine the intersection
between the line and 5. When C is symmetric, the number of intersection remains the same.
However, if C is not symmetric, the number of intersection is doubled up because C, rotated
by 180 degrees, creates the same number of line-curve intersections.

It is important to understand that, the degrees of freedom, in choosing a curve fz,y)=00f
degree d from V7, is dim(V{) — 1 where dim(+) is the dimension of a vector space. Since all the
polynomials on a line in Vf that passes through f and 0 describe the same curve, we have one

less than dim(Vf) degrees of freedom. It is not hard to come up with the expression for dim( Vf) :

(d+2)* i d
. 4 if d is even
dim(Vy) = { @ENEY i 4 is odd
q

In many situations as will be shown later, the curve f(z,y) = 0 is to be designed such that
it satisfies given geometric requirements. We are interested in designing piecewise curves from
given digitized data, and revolving them in a complicated manner to model some class of objects
with low degree algebraic surfaces. It will be explained below how the degrees of freedom in
piecewise algebraic curves of a given degree limit the geometric continuity between them.

ExamPLE 2.1. Iigure 2 (a) and (b) displays two quartic algebraic curves (z%+y2)?+322y—y° =
0 and z* + z%y? — 222y — zy? + y? = 0, respectively [12]. In Figure 3(a) and (b}, shown are two
surfaces revolved around z? 4 22 = #(y). Their degrees are 4 and 8, respectively.

2.2 Parametric Surfaces of Revolution

Now, we get to a question : “Is it also possible to find a restricted bases of rational paramelric
curves that result in rational parametric surfaces of the same geometric degree after revolntion
around an axis?” Consider a rational parametric curve of degree d

()
C(t) = ( ‘}"E((:)) ) = ( ':(: )




(a)

Figure 2: Two Quartic Algebraic Curves

(a)
Figure 3: A Degree 4 and a Degree 8 Algebraic Surface

(b)

(b)




where the degrees of the polynomials z(¢)}, y(2), and z(1) are at most d. The surface obtained

by revolving C(i) around y-axis along an ellipse £ : z° + a'r:—; = {r(y)}? with @ > 0 can be
represented as F(s,t) = (X(s,t),Y(s,t), Z(s,1)), where

_ 25 z(t)
X0 = e
Y(s,t) = 1—1:}-%—))

a1l - s%) z(i)
280 = T ey

First, this representation answers that the revolved surface is always rational parametric.
Then, the second question on the degree of F(s,t) must be answered. We are interested in
lowering both the algebraic degree in the polynomials in F(s,1) and the geometric degree of
F(s,t) (the maximum possible intersection of F(s,t) with a line). In construction of rational
parametric revolved surfaces, we {ollow the same path we did in the previous subsection. From
Remark 2.1, we know that an algebraic curve of degree d generates an algebraic surface of the
same degree only when it is symmetric around an axis. Since every rational parametric curve
of degree d is an algebraic curve of degree d, we are led to the fact that F(s,t) is of degree d if
C(t) is symmetric around the y-axis.

A rational parametric curve is symmetric if there is a parametrization C{¢) = (X (¢}, Y(2)) =
(ﬂil L'—“’-) such that X (1) = —X(-1) and Y(¢) = Y(—1). That is,

w(t)? wil)

z(t) _ _z(=t)

W) - wi=t) (3)
y(t) _ y(=1)

w(t) — w(-t) (4)

The above conditions are met if either z(¢) is an odd function (all the terms with nonzero
coefficients are odd-powered), and y(1), w(¢) are even Tunctions (all the terms with nonzero
coefficients are even-powered), or z() is an even function, and y(t), w(t) are odd functions. It
is not difficult to see that the polynomials in the second case can be converted into the first
case polynomials by multiplying ¢ to both numerator and denominator, and vice versa. In fact,
any polynomials that satisfies the conditions {3) and (4) fall in the above two categories.

Lemma 2.1. Let z(t), y(t), and w(2) be polynomials in 1 such that =(t) and w(t) are relatively

prime, and y(t} and w(t) are relatively prime. Then, z(i} is an odd function, and y(t), w(t)
. . \ oox{l) 0 z{=t w(t) _ v(=t}

are even funclions if and only if o) = _‘J((?g))' and ;((—% = %({Tt'j

ProOOF : (=) Trivial.

(<=) Let z(2) = z(t) + z,(1) and w(l) = w.(f) + wo(t), where z.(t), and w,(t) are even

functions, and z,(t), and w,(t) are odd functions. From the first condition,

o(tyw(—1) + wt)z(~1) = )we(~t) + wol~1)) + (welt) + wo())a(~1)
= 2(t)(we(t) — wolt)) + (we(t) + wo(1))z(—1)




we(£)(2(2) + 2(-1)) + wo(t)(~2(t) + =(—¢))
= Awe(t)zc(t) — wo(t)z,(1))
= 0

Hence, we(t)ze(t) — wo(t)z,(t) = 0. Now, look closely at w,.(t) and z.(2). First, both constant
terms of w.(2) and z.(t) can not be nonzero at the same time. Or, the fact that w.(t)z.(£)
contains a nonzero term and w,(t)z,(t) does not, leads to the contradiction because their
difference can not be zero, as required by the above equations. Secondly, note that X(0) = 0.
This requires that the constant term of w,(t) is nonzero, or w(t) and z(t) would have a common
factor. Hence, w,(t) has a nonzero constant term and z.(t) does not.

Suppose that w,(t) is not a zero polynomial. Then, z,(tf) = E_ZE%%(”’ and z(1) =
Te(t) + To(t) = wo(1)2ellbeel) _ w(t)ZU. So, we are led to z(1)w(t) = z.(t)w(t). Exis-
tence of nonzero z.(2) and w,(t) contradicts to the fact that z(¢) and w(¢) are relatively prime
because w(l} # wo(t). Hence, w,(t), and z.(} are zero, implying that w(t) is an even func-
tion, and z(1} is an odd function. Now, from the second condition, y(t)w(—1) — w(t)y(—1) =
we(£)(9(t) — y(—1)) = 0. Since w.(t) # 0, ¥(t) — y(—t) = 0, hence y(?) is an even function. O

From now on, we assume that z(t) is an odd function, and y(t) and w(t) are even func-
tions without loss of generality. Since a degree d curve C(t) = (X(2),Y(2)) = (%(%,ﬁ-%l) is
symmetric around y-axis, the surface made by revolving it around y-axis is a surface ol] ge-
ometric degree d. The surface equation F(s,t) given above is represented by degree d + 2
polynomials. In the below, we show it is possible to reduce the algebraic degree in the sur-
face equation to d by applying a transformation to F(s,f). Consider a new parametrization
Fu,v) = (X(u,v), Y(x,9), Z(u,v)) = (%,%,%) Omne transformation we use is
t = Vu? + y%. Geometrically, this transformation implies that only one half of a syminetric
curve C(t) is revolved. This removes the duplication caused by revolving the whole curve by
360 degrees, and possibly results in reduction of the algebraic degree in the surface equation.
Note that Z(u,v), §(u,v), Z(u, v), and @(w,v) are all target polynomial in %, v we do not know
yet. First, we require that @(u,v) = w(t) = w(v/u? + v%) which is algebraic because w(t) is an
even function. Secondly, we force that

a(l — s?) z(t) _ Z(u,v)

Z(u,v) = L+s2 w(t)  o(u,v)
a::!t!—:':!u.v[

. - 2 z_
Solving it for s2, 5% = an(O 5 (uw) "

quate polynomial for Z(u, v). The minimum requirement for z(u,v) is that X(u,v) = ﬁz-%f%(i_]}
is rational. Let z(2) = Y.!_| 2;41£2%1 where 2/ + 1 < d. Now,

Z(u, v) is still undetermined, and we have to choose an ade-

25 a(t) _ Ea(VaT 0P - 3(u,v) o(VaT T 50

1+ s2w(t) az(vVu? + v?) w(u,v)
\/:c(\/u2 + 2)? — Z(u,v)?

aw(u, v}




For the above expression to be rational, the expression inside the square root must be a perfect
square. Since z(v'tﬁ + v%)2 — 3(u, 0)2 = (u? + vz)(zl_u Toip1{1? + v1))? — z(u,v)?, choos-
ing #(x,v) = o(Ti_g eaip1(u? + v2)) (F(u,v) = (g zoip1(u? + v2)) is another possible
symmetric choice.) results in a perfect square u""(ZLﬂ Toi11{u? + v2)))2. Under this choice.

“(Zi::o zzip1(u? + v2)7)

X = aw(u,v)
Y(u,v) = %«T;‘"’)
Z(w,v) = o(Xizo 3131(11(13 +v9))

Also,

2 az(Vu? + v2) — o(Thoo Taiga (o + v2)7)
az(vVu? + v2) + o(Tip Tais1 (22 + v2)F)
oV + 0% — o) (T zaiga(u? + 0?))
a(Vu? + 97 + ) Tizg w2is1 (u? + 7))
VETA

REMARK 2.2. Let C: C{t) = (%({%,%%) be a ralional parametric curve of degree d where z(2)

is an odd funclion, and y(t), w(t) are even functions, and E : =% + 5- = {r(y))}? be an ellipse of
a roiation path. Then, the algebraic surface §: F(s,t) = (X(s,1),Y(s,t), Z(s,1)) in the rational
parameiric form, resulling from revolving C around E, has the geomeiric degree d, and can be
paramelerized in the way thal X (s,1), Y(s,t), and Z(s,t) are degree d rational polynomials.

The class of the above rational parametric curves contains syminetric parametric curves
that intersect with y-axis. The set of all such curves is only a proper subset of all symmetric
parametric curves. Another interesting class of symmetric rational parametric curves is defined

l i l‘- 1
as C(1) = (X(1), Y(1)) = (22, 28y such that X(t) = —X(=1) and Y(2) = Y(=1)L. It stil
remains open how to specify all t e bases of symmetric rational parametric curves of a given

degree.

ExaMpLE 2.2, Recall the “three-leaf clover” in Example 2.1. Its parametric form is C'(¢) =

3_ 4 12 . . . . -
(I.ﬁm.i.‘j_l, :4=+2:321+1)' After circular revolution and the above reparametrization, the quartic
. _ u(u?+4v?-3) {22} ~3(u2 422} v(u?4+0? 1)
surface is F(u,v) = ((u2+u2)2+2(u2+u2)+1 VWP (W) 1) (u=+u2]=+2{u2+u2)+1)

3 Construction of Piecewise C* Continuous Revolved Objects

So far we have discussed aboutl revolution of a single algebraic curve, represented in either the
implicit or the parametric form. A revolved object with a complicated shape, however, can

'For example, a hyperbola is in this class.
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f(z,y) = 0.481693z% + 2.77882 + 0.0882735° + 1.39039y2 + 6.07771y + 5.65734 = 0

Figure 4: A Nonparametric Algebraic Cubic Curve in V}

not be modeled by rotating only one curve with a low degree. Instead, it is more appropriate
to approximate a revolved object using surface slices meeting one by one with some order of
geometric continuity. Hence, the revolved object design problem leads to a basic problem :
design of piecewise C* continuous curve segments.

In the below, we focus on design of piecewise C'* continuous implicitly represented algebraic
curve segments.? Why algebraic? It is often stated that the class of rational parametric curves
of a fixed degree is only a proper subset of the class of algebraic curves of the same degree. This
inplies that algebraic curves provide more flexibility in a design process. For example, while
we use cubic curves in Vf for C! objects, we observe that, in many cases, the curves are not
singular, hence, nonparametric. {See Figure 4.} Also, a point can be easily classified as in, out,
or on the boundary of an object that is made of several implicit algebraic curves and surfaces.

3.1 Algebraic Curves and Geometric Continuity

[n this subsection, we describe how to compute two algebraic curves that meet with C'* con-
tinuity at a point. First of all, we assume the geometric information about a point p is ex-
pressed in terms of a (truncated) power series C(1) of degree &, where C(1) = (z(¢t), y(t)) =
P+t +ext? + -+ crt®, and C(0) = p. This truncated power series approximates the local
geometric property (up to order &} of a curve about the point within a radius of convergence.
(We will discuss later how this power series is computed.) Note that given an algebraic curve
f(z,y) = 0and a point p = (pz,p,) on it, there is always a formal power series C(t) = ((t), ¥(¢))
about p such that f(C(¢)) = 0. In [3}, a power series about a nonsingular point of an implic-
itly defined curve is obtained by repeatedly differentiating the implicit curve with its = and
y substituted by a symbolic power series, and computing the power series’ coefficients whose
existence is guaranteed by the implicit function theorem. Newton’s theorem, saying that every
polynomial in y with coefficient polynomials or power series in z can be factored into linear
power series factors in y, as can be seen as a generalization of the implicit function theorem,
tells us how to find power series about both singular and nonsingular points on an algebraic
curve [1].

?From now on, by “algebraic”, we mean “implicit algebraic™.




In our scheme, we go in the reverse direction : “Given 2 (truncated) formal power series
C(2) about a point p, find an algebraic curve f(z,y) = 0 that is faithful to C(t) at p.” If the
highest degree of terms in C(t) is &, f(z,y) = 0 is considered to meet C'(¢) with C* continuity
at p. Let f(z,y) = Ziﬂ'sd aijz'y? = 0 be an algebraic curve of degree d, and

' I(t) Pz + 1t + sz:tz +---4 Ck::tk
Ct)= = 24 ... k
y(t) Py + 1yt + egpl” + + Ckyi

be a given parametric polynomial such that C(0) = (pz,py) = p. The relations on the coeffi-
cients of f(z,y) can be extracted by repeatedly differentiating f(C(t)) up to order k, making
all the derivatives vanish at £ = 0. The first few partial derivatives are :

J(CW) =0 = flp)=0
@ lleo = Je(p)z'(0) + £,(»)¥'(0)
= azfo(p}+ e fy(p) =0
dzf((ﬂc;_(t)) o = Jfex(0)z'(0) +2£007 (0)5'(0) +

fou @' ) + fo(p)z"(0) + folp)y" (0)
= c?zfz-r(i’) + 2erze1y fay(p) +
C?yfyy(P) + c2zfe(p) + €2y fy(p) = 0

For each derivative of f(C(t)), a linear equation in terms of the unknown coefficients a;; of f
is generated, hence, any solution of the homogeneons linear system of & + | equations becomes
coefficients of algebraic curves of degree d meeting C(¢) with C* continuity. Since an algebraic
curve segment needs to satisfy the C* conditions at both end points, 2k 4+ 2 linear constraints
must be satisfied. I{ence, in order for an algebraic curve of degree d to exist, d must be chosen
such that (djf) — 1 > 2k 42, that is, the number of the degrees of freedom in coeflicients of the
curve is greater than or equal to the constraints for C* continuity. Garrity and Warren [6] also
discussed that the curve f(z,y) = 0 and C(t} meet with C* continuity if and only if f(C(t))
and all of its derivatives up to order k vanish at ¢ = 0.

3.2 Computation of a Truncated Power Series

A truncated power series plays an essential role in computing piecewise C* continuous algebraic
curves. Hence, the question on how to get a truncated power series, in fact, a parametric curve
of degree k, about a point, must be answered. One possible method is to generate a parametric
curve interactively. For instance, a good user interface can be constructed where, say, a parabola
for C'* continuity is designed interactively and intuitively by using a mouse or typing in explicit
values of the tangent and the curvature.

The finite difference method, as used when we make up our examples, is well suited when a
curve to be rotated is given with regard to a sequence of digitized points. The digitized points
near a point are a good source from which geometric nature can be extracted. There are various
forms of divided-difference methods that extract geometric natures around a point from a given

10




list of points [4]. In our case, we choose a parabola to locally approximate the points about a
point, and take out tangential information from the parabola. Consider a sequence of points

* 4 Pi=2, Pi—1> Pir Pi41, Pi+2, - - - and an imaginary power series C'(1) from which, we assume, the
digitized points near p; come, and whose parameter value is ¢ = 0 for p;. Then, the tangent
vector of C(¢t) at ¢ = 0 can be approximated by the approximation :

oy 1l -0

C'(0) = m(%ﬂ pi)+

Tl ) P

— dlSt{P-—l.P-]
dls{(PnPn+l]+d'5t(P| llpl} .
Repeatedly applying this approximation formula, we introduce a divided-difference :

where o; = and dist(#,*} is the distance between two points.

' ifj=0
Ajpl = { l—a
(a|5t[PhPl+1 (p!"l'l p") + ISt{PI 1 pl (pf pl‘ 1)) 1[_7 > 0

Using this divide-difference operator, a truncated power series is represented as Ci(t) = A%p; +
Alpit 4+ A?p;2? +-- -+ AFp;th. Note that the geometric nature, stored in the coeflicients of the
power series is extracted from a sequence of 2k 4 1 neighboring points, centered at the junction
point. This locality in the construction of a power series enables an interactive local modeling
operation.

ExaMrLE 3.1. In Figure 5, two sets of digitized points are illustrated. (a) shows three lists of
points that model engine parts®, and (b) is 2 sequence of points that models a goblet. Each
point sequence is displayed with truncated power series of order two at junction points.

3.3 Families of Algebraic Curves f(z,y)

In order to compute each curve segment f;(z,y) = 0 that interplates two truncated power
series C(t) and Cig(f) at two end points p; and piyg, respectively, we construct a linear
system Myx = 0 where the unknowns are coefficients of fi{z,y) = 0. The linear system is
made of 2(k + 1) equations that are generated for both truncated power series. Note that the
rank of My must be less than the number of unknowns for a nontrivial solution to exist. Any
nontrivial solution represents an algebraic curve that meets C;(t) and Ciz1(t) at p; and pyqq,
respectively, with C* continuity.

In case all possible terms of degree d are used as a basis of f;(z,y) = 0, then there are (‘“‘2)
unknowns, and hence (d'{?) 1 degrees of freedom. For example, a cubic algebraic curve has
ten unknown coefficients, hence, nine degrees of freedom. Since 8(= 2(3 + 1)) linear equations
(some of them might be dependent on each other) needs to be satisfied for C3 continuity, cubic
piecewise algebraic curves can approximate a sequence of digitized points with C* continuity (at
least, algebraically). However, il we choose a curve {rom Vf, we have fewer degrees of freedom
due to restriction in the basis. There are only dim(Vf) ~ | degrees of freedom for degree d, and
this number must not be less than 2(k + 2), the maximum possible rank for a homogencous
linear system that needs to be satisfied for order &4 continuity. For instance, for C'! continuity,
at least, cubic curves are necessary, while order 2 continuity requires quartic curves.

%This data is originated from the 3D scanned engine data from NASA.
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(a) (b)

Figure 5: Digitized Engine and Goblet with Truncated Power Series

Figure 6 (2) displays piecewise C'! approximation with cubic algebraic curves in the restricted
basis VJ?. Note that 2 symmetric cubic curve in V3 can have a tangent line paralle] to z-axis only
at the points on y-axis. Hence, the order of geometric continuity at the two junction points
on the cowls around which the curve segments make vertical turnabouts. With symmetric
quartic algebraic curves in VJ}’, it is possible to approximate the point data with C? continuity
everywhere. {See Figure 6 (b).) For the goblet data, cubic curves in V3, again, successfully
model the data with C continuity in Figure 7 (a). Figure 7 (b) shows a C'? approximation of
the same data with cubic curves in the general basis, which, hence, might not be symmetric
around y-axis,

Now, when there are more degrees of {reedom than the number of linear constraints, al]
the solutions in the null space of Mj algebraically interpolate two truncated power series with
C* continuity. However, it must be noted that every algebraic curve in the null space is not
useful in the point of geometric modeling. A curve may not connect two end points, or could
have a self-intersection along the segment. A heuristics to pick a nice curve segment is to
generate a sequence of points between the end points that approximate a curve segment, and
then, apply the least-squares approximation method to the points. In case of cubic algebraic
curves, it is possible to state a condition on coefficients of cubic curves, in either the general
or the restricted basis, that guarantees a smooth single curve segment inside a given control
triangle as will be discussed in Section 4. In the example in Figure 7, control triangles are drawn
together with curve segments where each curve segment was generated such that it subdivides
its corresponding control triangle into a positive and a negative subspaces, and there exists only
one smooth curve segment inside the control triangle. With help of the ability of subdivision
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(a) (b)
Figure 8: C! Cubic and C? Quartic Algebraic Surface Models

of control triangles, the point classification operation for objects bounded by algebraic curves,
and also, their rotated objects, is facilitated.

3.4 Piecewise C* Continuous Revolved Objects

Once algebraic curve segments are computed, their revolved objects are easily obtained. C!
approximation (except the two turnabout curves on the cowls) with cubic algebraic surfaces
is shown in Figure 8 (a}. Quartic algebraic surfaces approximate the same object well with
C? continuity in Figure 8 (b). C! cubic algebraic goblet is illustrated in Figure 9(a). The C?
goblet in Figure 9(b) is obtained by revolving the cubic curves in Figure 7 (b), and is made of
degree 6 algebraic surfaces.

4 Cubic Algebraic Splines

In this section, we focus on implicitly defined cubic algebraic curves, and give conditions on
the coefficients of cubic algebraic curves that guarantee nice properties inside regions bounded
by triangles. These conditions are bases upon which robust C'! cubic algebraic curves in the
restricted basis and C? cubic algebraic curves in the general basis are constructed.

It must be noted that an algebraic spline that satisfies the algebraic constraints, as specified
in Subsection 3.1, not necessarily possesses geometrically nice properties. It may be possible for
an algebraic spline to have singular points between the end points or the spline may not connect
the end points. Hence, extra efforts should be made to get an algebraic spine that is effective
in the geometric modeling scnse as well as to enforce continuity conditions. There are only a
few works on cubic algebraic splines. Paluszny and Patterson [8] considered a special lamily of
implicit cubic curves which yields only tangent continuous cubic splines. Our method differs
in that tangents and curvatures are specified and controlled explicitly and algebraic splines are
not limited to be convex inside bounding triangles.
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(a) (b)
Figure 9: C! Cubic and €? Sextic Algebraic Surface Models

4.1 Algebraic Splines in Bernstein Basis

Barycentric coordinates in the plane are defined with respect to a nondegenerate triangle 7°
having three vertices Pog, Pno, Pon. Any point P in the plane is uniquely expressed by the
relation P = uFyg 4 vFPon + (1 — u ~ v) Pop, where (u,v) is called the barycentric coordinate of
P. The triangle vertices Poo, Pro, and Py, have barycentric coordinates (0, 0), (1,0), and {0, 1),
respectively. For more introduction to barycentric coordinates, see [5]. Given a triangle 7', a bi-
variate polynomial can be expressed using the Bernstein basis : B%(x,v) = Piried w.-J-B,-"J-(u, v),
where Bf;(u,v) = (1'11) (1 — u — p)d-id,

Sederberg [10] proposed to view an algebraic curve as the intersection of the explicit surface
w = BY(u,v) with the plane w = 0, hoping to associate geometric meanings to the coeffi-
cients of the polynomial. Especially, the coefficients in the polynomial are considered as the
w coordinates of the control net of a triangular Bernstein-Bézier surface patch, where the co-
efficient wi; corresponds to the control point b;; = (£,4) in the Bernstein basis. There is an
one-to-one affine map between points in the power basis and in the Bernstein basis. Given the

three vertices Pop = | 0= , Poa = Proz cand Py, = | FOm= , the map is described
Pooy Pnoy Pony

by ( T ) - M ( : ) + ( Pooz ), where M = ( Pnoz — Poox  POnz — POz . It can be easily

Yy Pooy Prnoy — Pooy  Pony — Pooy
shown that there is also a linear mapping between the coefficients of the two equivalent bivariate
polynomials, one in the power basis, and the other in the Bernstein basis.
As discussed before, C'* continuity of fz,y) =0 at a point p is achieved by making all the
derivatives of f(C()) up to order & are zero at ¢ = 0. Since the affine mapping between the
Euclidean coordinates and the barycentric coordinates is diffeomorphic, C* continuity can be
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obtained by assuring that all the derivatives of BY(Cpg(¢)) up to order vanish at ¢ = 0 where
B%(u,v) = 0 and Cg(t) are algebraic and parametric curves in the Bernstein basis corresponding
to f(z,y) = 0 and C(1), respectively. From now on, we assumne algebraic curves are described
in the Bernstein basis.

4.2 Interpolation with Cubic Algebraic Curves

A general * cubic algebraic curve in the Bernstein basis is defined as A3(u, v) =
Yiyi<a w,-,-B;f’j(u, v) = 0. The coeflicients w;; is with respect to selection of a control trian-
gle 7 = (Pon, Pa0, Fo3) in the power basis. There are ten coefficients, and since dividing the
equation out by a nonzero number would not change the algebraic curve, we see that there are
nine degrees of {reedom. While a restricted cubic algebraic curve in the Bernstein basis has
the same form, there are extra linear dependency between wy;’s where there are five degrees
of freedom left. Hence, three degrees of freedom are left alter C'? interpolation with general
cubic algebraic curves, and one for C' interpolation with restricted cubics.® In this section, we
describe our idea with regard to C? continuous general algebraic cubics. Computation of C!
continuous restricted algebraic cubic curves can be done along the same line.

Let Cp,(t) and C, () be two truncated power series of degree two that describe geometric
properties at two points 7o and m, respectively. One of the most important goals we try to
reach is to find a triangle within which a single connected smooth piece of a cubic algebraic
curve is confined such that the curve piece subdivides the triangle into a positive and a negative
space. (See Figure 4.2.} For the sake of preciseness, we give the following definition :

DEFINITION 4.1. Let 7 be a triangle made of three vertices Pyg, Pro, Pon. Consider 2 smooth
curve segment on B"(z,v) = 0 whose two end points are on the two sides PggPng and FogFPon-
The curve segment is called an effective algebraic spline associated with the bounding triangle

7 if the curve segment intersects exactly once a line segment connecting FPyg and any point on
the side PHDPDn-

The restriction imposed in the definition of an effective spline lets broken curve segments,
loops, unwanted extra pieces and extraneous wiggles removed from our consideration, and also
forces a spline curve segment subdivide a bounding triangle into a positive and a negative space.
The ability of finding an effective spline with a proper bounding triangle is essential in that
it allows easy implementations of many geometric operations possible. A point can be easily
classified as in, out, or on the boundary of an object that is made of several algebraic splines.
This point-classification operation is a primitive operation to high level geometric operations.
Also, an effective spline curve can be graphed more efficiently.

Now, we attempt to confine a spline curve segment that connects 7o and 7 within the
triangle 7. C? interpolation of the power series with a cubic polynomial generates six con-
strains, leaving three degrees of freedom. After solving the homogeneous linear system with
ten unknowns, and six linearly independent constraints, the ten coefficients can be expressed in
terms of linear functions in four free parameters Ag, A;, Az, and A3. We have to decide if some

*We use the adjectives general and restricted to distinguish cubic algebraic curves in the general and the
restricted bases, respectively.

3Counting shows C* interpolation is possible with general cubics. However, we limit ourselves to €2 to be
able to choose C? algebraic curves [rom abundant families of cubics.
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appropriate values of A; can be found such that the intersection of the triangular Bernstein-
Bézier patch defined by the computed coefficients with the w = 0 plane results in a single piece
within 7. This is true if we are able to find some values for Ag, A1, A2, and Az such that the
portion of the triangular patch corresponding to 7 cut through 7 ezactly once. Definition 4.1
is translated into the [ollowing lemma :

LEMMA 4.1. Let ten coefficients wi; of B3(u,v) be ezpressed linearly in terms of A;, i = 0,1,2,3
after C? interpolation of CB,(t) and Cp,(t) at mg and my, respectively, with respect to a control

triangle T. Then, there erists an effective cubic algebraic spline associated with T if and

only if there exists some A;, i = 0,1,2,3 such that the univariate cubic polynomial G(z) def

B¥(1 - a)z, az) = ga(a)2® + ga(@)z® + g1{a)z + go{c) has one and only one root in 0 < z < 1
for all « € [0, 1].

Proof : Define Lo(z) = ((1 —a)z,a2),0 <z < 1 for some 0 < & < 1. L, is the line segment
connecting two points (0,0} and (1 —a, @). Now, the intersection of L{z) with a curve segment
on B3(u,v) = 0 can be found by solving the cubic equation B3({1 — &)z, az) =0 in 2. Hence,
the curve segment intersects L,(z) exactly once if and only if B3*((1 — a)z,az) = 0 has one
and only one root in 0 < z < 1. This proves the lemma. O

4.3 Negativity and Nonpositivity Conditions of a Polynomial

We brielly discuss mathematics on the negativity and nonpositivity conditions on the coefficients
of a univariate polynomial in the closed interval [0,1]. This classical theorem [11] plays an
important role in the proof of the forthcoming lemmas :

TuEOREM 4.1. (DESCARTES’ RULE OF SIGNS) The number of positive real roots (multiplicities
counted} of a polynomial with real coefficients, f(z) = apz"+ap—1z" '+ -+ a1z +ayp, is never
grealer than the number of sign changes in the sequence of its coefficienis a,, @n_1," -, a1, o,
and, if less, then always by an even number.

Descartes’ rule of signs indicates an upper limit to the number of positive real roots while the
number of sign variations is the exact number of positive real roots in case it is zero or one.
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Note that an upper bound to the number of negative real roots of f(z) can be obtained by
replacing f(z) by f(—=z), and zero is a real root just when ag = 0.

Now, we enumerate the lemmas on the negativity and nonpositivity of a univariate poly-
nomial in the unit interval. These lemmas are used in computing all the values, if any, of \;,
t=0,1,2,3, that gives effective splines with respect to 7. Their proofs are given in the full
paper.

LEMMA 4.2, A linear polynomial f(z) = a1z + ag is negative for all = in the closed interval
[0,1] if and only if (@ < 0) and (ag+ a; < 0).

LEMMA 4.3. A quadratic polynomial f(z) = as2* + ayx + ag is negalive for all x in the closed
interval [0, 1] if and only if either of the followings is true :

e (bo<0)and (b) <0)and (B, < 0)
e (bo < 0}and (b; >0)and (by < 0) and {4bgh, — 62 > 0)

where by = ag, by = 2ap + a1, and by = ag + 2y + a.

LEMMA 4.4. A cubic polynomial f(z) = azz® + ayz® + a1z + ag s negative for all = in the
closed interval [0, 1] if and only if either of the followings is true :

* (bg<0)and (b, <0)and (b2 <0} and (b3 < 0)
® (bg <0)and (b; <0)and (by > 0) and (b3 < 0) and (b3 — 3535, < 0)

o (bg < 0)and (b3 < 0} and (by > 0 or by > 0) and (3; > 0 or b3 — 3b30; > 0) and

where b3 = ag, ba = 3ap + a1, b1 = 3ap + 2a1 + az, and by = ap + &1 + s + aa.

Lemma 4.2, 4.3, and 4.4 for the negativity has the following companion lemmas for the
nonpositivity whose proofs are omitted :

LEMMA 4.5. A linear polynomial f(z) = a1z + ag is nonposilive for all = in the closed interval
[0,1] if and only if (ag < 0} and (g + a1 < 0).

LEMMA 4.6. A quadratic polynomial f(z) = azz? + a1z + ag is nonpositive for all z in the
closed interval [0, 1] if and only if either of the followings is true :

» {(bp<0)and (b; <0)and (b <0)
s (bg<0)and (b; >0} and (b < 0) and (4bgh, - b7 > 0)
o (bg<0)and (b, >0)and (b =0) and (b +bp < 0)
where by = ag, by = 2ap + a1, and by = ag + a1 + as.
LEMMA 4.7. A cubic polynomial f(z) = a32> + a2z + a1z + ag is nonpositive for all z in the

closed interval [0, 1] if and only if either of the followings is true :
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(bp <0)and (b, <0G} and (b, <0)and (b3 <0}
fbp < 0)and (by < 0)and (b2 > 0) and (b3 < 0) and (b2 — 3b3b; < 0)

(bo < 0)and (b3 < 0) and (by > O or by > 0) and (b; > 0 or b2 — 3bsb; > 0) and
(—27505% + 9b1bobs — ng > 0) and (275353 — 18bgbybabs + 45?53 + 4b0bg - b%b% > 0)

(bo < 0} and (by >0} and (b; < 0) and (b3 = 0) and (4boby — b3 > 0)

where by = ag, by = 3ag + a1, by = 3ag + 2a1 + a2, and bg = ag + a7 + a3 + aa.

Note that by flipping the signs of coefficients of a polynomial, its positivity and nonnegativity
conditions are easily derived from Lemma 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7.

4.4 Computation of Effective Cubic Algebraic Spline Curves

Back to Lemma 4.1, consider the univariate polynomial G(z) = gs(a)z® + go(a)z? + g1(a)z +
go(a). Substitution shows that g;(e) is a polynomial of degree i in & involving the coefficients
wi;. Especially, go(a) is woo which must not be zero or the line Lo(t) in the proof of Lemma 4.1
would have two intersections with the Bernstein-Bézier patch. Hence, we can divide B3(u,v)
by wgp without loss of generality. Geometrically, this means that we assign one to the weight,
corresponding to Foo, of a control net of a Bernstein-Bézier patch, and algebraically, this means
that we remove the redundancy among the ten coefficients of B3(u,v) = 0.

The ten coefficients of B3(u,v) can be expressed linearly in terms of Ag, A1, A2, and Az by
computing the four dimensional nullspace of a homogeneous linear system for C? interpolation.
By transforming a basis of the nullspace, it is possible to have wgp = Ag. Replacing A by one
results in the coefficients w;;, linearly expressed in A7, Az, and A3 only. Now,

H{z}) = ha(@)z® + ha(a)z? + {a)z + ho(a)
E (@ +106( )

= go(a)z® + (3go(a@) + ;i(@))z? + (3g0(e) + 29, (a) + g2(@))x
+go{@) + g1{a} + ga(a) + ga(a)

where hi(a) = wop = 1, hz{a) = (3wg — 3wio)a + 3wie, My{a) = (Bwyp — 6wy + 3wez)a? +
(6w — ﬁ'HJm)a + 3wgg, and hg(ﬂ:] = (—w30 + 3wy — 3wqe + w.g3)03 + (3’0}30 - Gway + 31.012)(12 +
(311.’21 - 31.030)0: + w4qg.

First of all, G(0) = go(a} = ha(ar) = | > 0. Secondly, G(1) = go(a)+gq1(a)+g2(a) +g3(a) =
ho( ) must be negative in order for G(z) to have exactly one root between zero and one. Third,
the positive real roots of H(z) are the real roots of G(z) between zero and one. Hence, G(z)
has one and only one root in [0, 1] if and only if there exists exactly one positive real root of
f(z).

Consider the discriminant of the first derivative H(z) = 3h3(a)z? + 2ha(a)z + ().
Since ha(a) > 0, H(z) has only one positive real root if it is nonpositive : 4hy(a)® —
12h3(a)l(a} < 0. In case 4hy{a)? — 12h3(a)hi{a) > 0, H(z) has the maximum value at

- - 2
Trar = hafe) ‘/"L;El:gﬂ}m‘“{“”“(“). It is not hard to see that z,. is positive when and only

when A;(a) < 0 and Ay(a) > 0. Hence, when k3(a) > 0 or hy(a) < 0, H(z) has one positive
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real root. {This case is when there is one sign change in the sequence of H{z)'s coefficients.
By the Descartes’ rule of sign, there exist exactly one positive real root.}) When %2{a) < 0 and
hy(a) > 0, we require that #(Zmez) < 0. (This case is when there are three sign changes in the
sequence of H{z)’s coefficients. By the Descartes’ rule of sign, one or three roots are possible,
and we make sure that there exists only one positive real root by this requirement.) Now,

2Thoh2 + 2(h2 — 3h1ha)y/h2 — 3hihs — Yhihahs + 23
H(-Tmu::) = SThE <0,
3

hence, 2(h3 — 3h1h3)\/hE — 3hihg < —2Thoh} + Qhihohs — 2h3. First of all, the right-hand side
must be positive : —27hoh3 + 9h1hohs — 243 > 0. Since both sides are positive, they can be
squared, and we get 27R3(27h3h2 — 18hoh haha + 4h3Rs + 4hohd — h3R3) > 0.

So, there are three cases :

o [CASE 1]  fa(a) =1 > 0 and hy(a)® — 3ha(a)hi(a) < 0 and ho(a) < O
o [CASE 21  ha(a}=1> 0 and (ha{a) > 0 or hy{a) < 0) and ky(a) < 0

o [CASE 31 1N3(a)=1>0and Ay(a) < 0 and ky(a) > 0 and hg{a) < 0 and
ho(e)? — 3ha(a)ha(a) > 0 and
(—2Tho(a)ha(a)? + 9k (a)ha(a)ha(a) — 2h2(a)®) > 0 and
(27ho(a)?ha(a)? — 18ho(a)1(@)ha(a)ha(e) + 4h1 ()3 ha(c)
+ 4h0(0)h2(0)3 - h](ﬂ)zhg(ﬂc)z) >0

Now, we are led to the following theorem :

THEOREM 4.2. Let ten coefficients w;; of B*(u,v) be expressed linearly in terms of A;, ¢ = 1,2,3
with woo = 1 efter C? interpolation of Cp,(t) and Cg, (t) at mo and 7y, respectively, with respect
to e control triangle T. Then, there ezists an effective cubic algebratc spline associated with
T if and only if there ecists some A;, i = 1,2,3 such that, for all a € [0, 1], either [CASE 1],
[CASE 2], or [CASE 3] is salisfied.

Note that Theorem 4.2 requires that either [CASE 11, [CASE2], or [CASE 3] is satisfied
for each o in the interval [0,1]. For the sake of simple implementation, we use a bit stronger
condition that either [CASE 1] is satisfied for all & € [0,1] or [CASE 2] is satisfied for all
a € [0,1]. hi(a) is a polynomial in a of degree 3 —i whose coefficients are linear functions of A,
A2, Az, and applying the lemmas in the previous subsection to [CASE 1] and [CASE 2] generates
inequality constraints whose expressions are linear, quadratic, cubic, and quartic in Ay, A2, As.
Hence, all the feasible solutions (A;, Az, Az) of those constraints, if they exist at all, comprise
a union of subspaces (could be null) in the three dimensional AyA;A3-space whose boundaries
are linear, quadratic, cubic, or quartic algebraic surfaces. Choosing an effective cubic algebraic
spline associated with a bounding triangle becomes equivalent to finding a feasible solution of
the inequality constraints. Although this new condition find some subset of the whole subspace
implied by the above corollary, our experiment lets us feel that the stronger condition is good
enough to find effective algebraic splines.

IExamPLE 4.1. In Figure 1l(a), three instance cubic algebraic curves that C? interpolate
two truncated power series Co(t) = (1 + t,2%) and Cy{t) = (t,1 — 2£?) with respect to
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Figure 11: C? Continuous Cubic Algebraic Spline Curves

T =((0.0,-1.0),(1.5,0.5),(0.0,1.5)). The three curves chosen from the four dimensional space

are fo(z,y) = 0.757333z> — 1.1993322y — 0.768667z2 + 0.534667zy2 + 0.2zy — 0.734667z +
0.004y> — 0.246y> — 0.504y + 0.746, fi(z,y) = 4.082% — 7.372z%y — 5.99z2 + 0.067y% + 0.2zy —
0.26z — 1.423° - 1.67y* +0.92y +2.17, and fo(z,y) = 0.4213332 — 0.57533322y — 0.240667z2 +
0.582667zy*+0.2zy — 0.782667z +0.148y° — 0.102y% — 0.648y + 0.602. As C? continuity implies,
Hi(C;() =0(%),i=10,1,2,j = 0,1. Figure 11(b) illustrates how a cubic Bernstein surface
patch is intersected with a bounding triangles to produce an effective cubic algebraic spline.

5 Conclusion

We have presented a comprehensive characterization of the appropriate degree restricted bases
for implicit and parametric generating curves which would yield revolution surfaces of the
same algebraic degree as the degree of the curves. Parametric spline curves with restricted
bases can be constructed by adopting the well known techniques {4]. We presented details for
constructing cubic implicit algebraic C'! and C? spline curves. We are currently pursuing a
natural generalization to higher degree implicit algebraic spline curves to achieve higher orders
of continuity.
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