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Abstract

This paper uses some well known theorems of algebraic geometry to characterize
polynomial Hermite interpolation in any dimension. Efficient numerical algorithms are
presented for interpolatory curve fits through points in the plane, surface fits through
points and curves in space, and in general, hypersuface fits through points, curves,
surfaces, and sub-varieties in n dimensional space. These interpolatory fits may also be
made to match derivative information at the data points.
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1 Introduction

Interpolation provides a direct way to fit analytic functions to sampled data. Motivated
by computational efficiency, this paper deals with only polynomials as opposed to arbitrary
analytic forms. One distinquishes between multivariate polynomial functions ¥ : z,, =
fi(z1,...,Tn-1), multivariate rational functions Rz, = Z and polynomial
algebraic functions or implicitly defined hypersurfaces H : fi(z1,...,2a) = 0, where all f;
are multivariate polynomials with coefficients in IR. While prior work on interpolation has
dealt with multivariate polynomial functions F and rational functions 72, see for e.g. [1, 8,
10, 9], little work has been reported on interpolation with implicitly defined hypersurfaces
H. See [4] which summarizes prior work on implicit surface interpolation in three dimensions
and provides several additional references.

This short paper presents a form of multivariate Hermite interpolation which general-
izes the usual curve fits through points in the plane and surface fits through both points
and curves in space to general hypersurface fits through points, curves, surfaces, and any
sub-varieties upto dimension » — 2 in n dimensional space together with the matching
of specified derivative information along the sub-varieties. We show that even implicitly
defined hypersurfaces # lend themselves quite naturally to Hermite interpolation in any
dimension.

2 Preliminaries

In this section we review some bastc definitions and theorems from algebraic geometry that
we shall be using in subsequent sections. These and additional facts can be found for
example in [12, 13].

The set of real and complex solutions (or zero set Z(5)) of a collection § of polynomial
equations

Hi A(Z1y.020) =0

Hm :fm(zll“'l:i‘l) =0 (1)

with coefficients in IR is referred to as an algebraic set. The algebraic set defined by a
single equation (m = 1) is also known as a hypersurface. A algebraic set that cannot be
represented as the union of two other distinct algebraic sets, neither containing the other,
is said to be irreducible. An irreducible algebraic set is also known as an algebraic variety
V.

A hypersurface in R,,, an n dimensional space, is of dimension n — 1. The dimension of
an algebraic variety V is k if its points can be putin (1, 1) rational correspondence with the
points of an irreducible hypersurface in % + 1 dimensional space. An algebraic set Z(S) on
the other hand may have irreducible components or sub-varieties of different dimension. An
algebraic set is called unmized if all of its sub-varieties are of the same dimension, and mized
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otherwise. The dimension of the algebraic set Z(S5) is considered the maximum dimension
of any of its sub-varieties. An algebraic variety of dimension 1 is also called an algebraic
space curve and of dimension 2 is also called an algebraic surface. The following two lemmas
summarize the resulting dimension of intersections of varieties and sub-spaces of different
dimensions.

Lemma 2.1 In R,, an n dimensional space, a variely V1 of dimension k intersects a
general sub-space R,_jip, with k > h, in a variety V, of dimension h.

Lemma 2.2 In R,, a variety V; of dimension k intersects a a variety Vs of dimension h,
with h > n— k, in an algebraic set Z(5) of dimension at least h + k — n.

[n the above lemma, the resulting intersection is termed proper if all subvarieties of Z(5)
are of the same minimum dimension % + & — n. Otherwise the intersection is termed ezcess
or improper.,

The degree of an algebraic hypersurface is the maximum number of intersections be-
tween the hypersurface and a line, counting both real and complex intersections and at
infinity. This degree is also the same as the degree of the defining polynomial. A degree
1 hypersurface is also called a hyperplane. The degree of an algebraic space curve is the
maximum number of intersections between the curve and a hyperplane, counting both real
and complex intersections and at infinity The degree of a variety V of dimension & in R,
is the maximum number of intersections between V and a sub-space R,_;, counting both
real and complex intersections and at infinity. The degree of an unmized algebraic set is the
sum of the degrees of all its sub-varieties.

The following theorem, perhaps the oldest in algebraic geometry, summarize the result-
ing degree of intersections of varieties of different degrees.

Theorem 2.1 (Bezout) A variety of degree d which properly intersecis a # variety of
degree e does so either in an algebraic set of degree at most d * e or infinitely often.

The normal or gradient of a hypersurface M : f(21,4 2} = 0 is the vector Vf =
(fe1y fras-- fen)- A point P = (@g,a1,...a,) on a hypersurface is a regular point if the
gradient at p is not null; otherwise the point is singular. A singular point q is of multiplicity
e for a hypersurface H of degree d if any line through q meets 7 in at most d — e additional
points. Similarly a singular point q is of multiplicity e for a variety V in R, of dimension
k and degree ¢ if any sub-space R, through q meets V in at most ¢ — e additional
points. It is important to note that even if two varieties intersect in a proper manner, their
intersection in general may consist of sub-varieties of various multiplicites. The total degree
of the intersection, however is bounded by the above Bezout’s theorem.

Finally, one notes that a hypersurface f(=1,..,2n) = 0 of degree d has (“:d) coefficients
and one less than that number of independent coefficients.
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3 Interpolation
Our first problem deals with constructing C° interpolatory hypersurfaces.

Problem 3.1 Construct a single real algebraic hypersurface H in IR™ whick C° interpolates
a collection of I points p;, and I sub-varieties Vi, of dimensionk —1, k=2...2—1 and
degree efk];, .

Since a point is a variety of dimension 0 and hypersurfaces in IR™ are of dimension n— 1,
we note from Lemma 2.2 that a hypersurface in general will not intersect a given point.
However, the hypersurface H : f(Z1y.,Za) = 0 of degree d, can be made to contain i.e.
CY%interpolate the point p; if the coefficients of f satisfy the linear equation f(p;) = 0.

Again from Lemma 2.2 we note that a hypersurface in IR™ will always intersect all sub-
varieties of dimension 4, for h = 1...7n ~ 2 in algebraic sets of dimension at least £ — 1. To
increase the dimension of the intersection or more precisely, to ensure that the hypersurface
H: f(z1,...,2a) = 0 of degree d completely contain i.e. C%interpolates a sub-variety V of
dimension A and degree e[k] we do the following:

L. Select any set Ly of d * e[h] + 1 points on C, Ly = {p; = (zil#], ...zl =
l,...,d x e[k} + 1}. The set Ly may be computed by a straightforward general-
ization of computing points on algebraic curves and surfaces. See [3] for reference to
such techniques.

2. Next, set up d  e[h] + 1 homogeneous linear equations f(p;) = 0, for p;eLy. Any
nontrivial solution of this linear system will represent an H which interpolates the
entire subvariety V.,

The proof of correctness of the above algorithm follows from Bezout’s theorem 2.1. By
making # contain ¢ * e[h] + 1 points of V, ensures that H must intersect V infinitely often
and since V is irreducible, 7{ must contain the entire sub-variety.

The irreducibility of the sub-variety is not a restriction, since an algebraic set can be
handled by treating each irreducible component separately. The situation is more compli-
cated in the real setting, if we wish to achieve separate containment of one of possibly several
connected real components of a single sub-variety. There is first of course the nontrivial
problem of specifying a single isolated real component of the sub-variety. See [2] where a
solution is derived in terms of a decomposition of space into cylindrical cells which separate
out the various components of any real algebraic or semi-algebraic set.

For the collection of !; points p, and I, sub-varieties V;, of dimension k—1,k=2...n—1
and degree e[k];, the above C? interpolation with a degree d hypersurface H, yields a system
Mof Y0210 + Y Z;’;=| d * e[k];, linear equations. Remember ¥ : f(zi, ey Zg) =0
of degree d has K = (“:d) — 1 independent coefficient unknowns. CC-interpolation of the
entire collection of sub-varieties is achieved by selecting an algebraic hypersurface of the
smallest degree n such that K > », where r (< k) is the rank of the system M of linear
equations.
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4 Hermite Interpolation

An algebraic hypersurface H : f(z1,...,22) = 0 is said to Hermite interpolate or Cl-
interpolate a sub-variety V with associated derivative or “normal” information n(p} =
(72,(p), ... 7z, (p), defined for points p=(z1,...z5)on Vif:

L. (containment condition) f(p) = 0 for all points p = (z1,...25) of V.

2. (tangency condition} V f(p) is not identically zero and V f(p) = an(p), for some a # 0
and for all points p = (z1,...2,) of V.

Our second problem then deals with constructing C! interpolatory hypersurfaces.

Problem 4.1 Construct a single real algebraic hypersurface H in IR™ which C" interpolates
a collection of I points p; with associated “normal” unit vectors n;(p;), end Iy sub-varieties
Vie of dimension k — 1 with k= 2...n — 1 and degree e[k);, together with associated “nor-
mal” unit vectors n[k|;, for all points on each sub-variety of the given collection.

In the previous section we have already shown that the containment condition reduces
to solving a system of linear equations. We now prove that meeting the tangency condition
for C1-interpolation reduces to solving an additional set of linear equations.

A hypersurface H : f(z, s Zn) = 0 of degree d, satisfies the tangency condition at the
point p; if the coefficients of f satisfy, without loss of generality, the » — 1 homogeneous
linear equations

Tz, - S (Pi) — Nz, - fz;(Pi) =0 i=2...n

For the above equations we assumed, without loss of generality, that n;, # 0 as the given
normal n is not identically zero at any point. To verify that the above equations correctly
satisfy the tangency condition, it suffices to choose & = ::—’:"- for then each of the f,; = an,..
Also note that for the choice of 7, # 0, it must occur that fz:(Pi) # 0, and hence & # 0,
for otherwise the entire V f(p) is identically zero.

To ensure that a hypersurface H : f(z1,..,2p) = 0 of degree d meets the tangency
condition for C"-interpolation of a sub-variety V of dimension h and degree €[h] we do the
following:

1. Select a set of Ly of (d — 1) * e[k] + 1 point-normal pairs [pj,n[R];] on V where
picLy, with point set Ly on V computed to meet the containment condition.

2. Substitute each point-normal pair in Lyy into the n — A — 1 equations

gy - fzi(P) — Pz - fo,(P) =0 i=2...(n— h) (2)

to yleld additionally (n — &~ 1} * ((d — 1) + ¢[2]+ 1) linear equations in the coefficients
of the f(z,y,z2).
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The proof of correctness of the above algorithm follows from the following. We first note
that even though each of the equations 2 above is evaluated at only (d — 1) * e[h] + 1 points
of V it holds for all points on V. Each%quation (2) defines an algebraic hypersurface T' of
degree (d — 1) which intersects V of degree e[h] at, at most, (d — 1)e[h] points. Invoking
Bezout's theorem, and from the irreducibility of V, it follows that V must lie entirely on
the hypersurface . Hence each equation (2) is satisfied along the entire sub-variety V.

We now show that then —h—1 equations 2 satisfies the tangency condition as specified
earlier. Again we assume, without loss of generality, that n;, # 0 as the given normal
1 is not identically zero at along V;. Note that the containment ie. CY interpolation of
the dimension A variety ¥ by the hypersurface H already guarantees that the % tangent
directions on V}, at each point p of Vi are identical to h tangent directions of H at p
on H. Hence h components of the given normal vector n(p) (orthogonal to the tangent
directions of V) are already matched with & components of the gradient vector V f(p)
(orthogonal to the tangent directions of H). Assume, without loss of generality, that these
vector components are fr, = an,,i=(n—h+1)...7, for any non-zero &. The remaining
7 — h components of Vf(p) of H are then matched up with the » — 4 — 1 equations 2 as
foliows. Let o = ?a_?{ Then from the » — A — 1 equations 2 we note that each ofthen—h—-1

fz; = ang;, i = 2., (n ~ h) as required. Hence the entire vector V f(p) = an(p). Also
note that for the choice of n., 3 0, it must occur that Sz (Pi) # 0, and hence o 3 0, for
otherwise the entire V f(p) is identically zero.

For the collection of {; points p, and /i sub-varieties Vi, of dimension k — 1, & =
2...n—1 and degree e[k];, to achieve the tangency condition with a degree d hypersurface
H, requires satisfying an additionaly system of (r-1)+h+372, Z:;-‘;zl(n—k =1} ({d— 1)+
e[k];. + 1) linear equations. For (! interpolation we obtain a single homogeneous system
M of linear equations consisting of the linear equations for C? interpolation of section 3
together with the above linear quatins. Any non-trivial solution of this linear system M,
for which additionally Vf is not identically zero for all points of the collection, (that is,
the hypersurface  is not singular at all points or along any of the subvarieties Vi), will
represent a2 hypersurface which Hermite interpolates the collection.

5 Algorithmic Details

In this section, we discuss some computational aspects of Hermite interpolation, and give
several examples of algebraic surface design with Hermite interpolation in three dimensional
space. The basic method followed is:

I. properties of a surface to be designed are described in terms of a combination of
points, curves, and possibly associated “normal” directions,

2. these properties are translated into a homogeneous linear system of equations with
extra surface constraints, and then

3. nontrivial solutions of the above system are cormnputed.
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5.1 Computing Nontrivial Interpolation Solutions

As explained in the previous sections, Hermite interpolation algorithm converts geometric
properties of a surface into a homogeneous linear system :

Mx =0 (M € R?*7 x € R?),
where p is the total number of equations generated, g is the number of unknown coefficients
of a hypersurface of degree d in = dimensional space (hence, g = (“j“)), M is a matrix for
linear equations, and x is a vector whose elements are unknown coeficients.

In order to solve the linear system in a computationally stable manner, we compute the
singular value decomposition (SVD) of M [11). Hence, M is decomposed as M = USVT
where U € RP*? and V € R%*9 are orthonormal matrices, and & = diag(o1,03,---,0,) €
R7%9 is a diagonal matrix with diagonal elements oy > g2 > --- > o, > 0 (r = min{p,q}).
It can be proved that the rank s of M is the number of the positive diagonal elements of
%, and that the last ¢ — s columns of V span the null space of M. Hence, the nontrivial
solutions of the homogeneous linear system are compactly expressed as :

{x(#0) eR|x=I=0r; - vy, wherer; € R, and v; is the jth column of V}.

Example 5.1 Computing a Quadric Surface Interpolant

Let C : (Ti—“,-, }—;—:;-,0), and n(?) = (735, %‘T":f—, 0), which is from an intersection of a sphere

z? +y* + 22 = 1 = 0 with the plane z = 0. To find a surface of degree 2 which Hermite
interpolates ', welet f(z,y,2) = ClIz+Czy2+6322+Cq$y+C5'y'Z+CsZ$+C7$+C3y+092+610.
From the containment condition, we get 5 equations, cj9 — cg + ¢; = 0, 2¢7 — 2¢4 = 0,
2e10 —2c2+ 461 = 0,2c7+2c4 =0, crio+cag + ¢z = 0, and from the tangency condition,
we also get 5 equations, —2¢9 + 2¢c5 = 0, —4dcg = 0, —de5 = 0, 4deg = 0, 2¢9g + 2¢5 =
0. The ¥ in the SVD of M is diag(5.65685, 4.89898,4.89898, 2.82843, 2.82843, 2.82843, 2.0,
1.41421,0.0,0.0)." Hence, we see that the rank of M is 8, and the null space of M is
X = 71 Vg + 72 - vip. The nontrivial solutions are obtained by making sure that the
free parameters, r; and 7y, do not vanish simultaneously. Hence, the Hermite interpolating
surface is f(z,y,z) = 0.577351‘2.@:2+0.57735r2y2+r122—0.577351‘2 = 0 which has one degree
of freedom in controlling its coefficients. f(z,y, z} = 0 can be made to contain a point, say,
(1,0,1). That is, f(1,0,1) = 0.57735r; + r; — 0.57735r; = r; = 0. So, the circular cylinder
f(z,9,2) = 0.5773575(2® + y2 ~ 1) = 0 is an appropriate Hermite interpolating surface. O

5.2 Geometric Design Examples

These geometric design examples were generated using the special case of Hermite inter-
polation in three dimensional space. Further details of the implementations and additional
examples are given in [5, 6].

Example 5.2 A Quartic Surface for Blending Two Orthogonal Cylindrical Surfaces

'The subroutine dsvde of Linpack was used to compute the SVD of a matrix.
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Figure 1: A C! Blend of Cylinders with 2 Quartic Surface

Here Hermite interpolation yields a quartic surface which smoothly blends two perpen-
dicular cylinders. Input to Hermite interpolation is defined by CYLy : 22 +¢4* -1 =10
forz > 1,CYLy:22+y? —1=0forz < —1,CYLz :y*+22~1=0forz > 1, and
CYLs:y*+22—1=0forz < —1.

Hermite interpolation produces 64 linear equations from the input, and the rank of
My € R¥*% is 33. Hence, we find a 2-perameter (one degree of freedom) family of
algebraic surfaces which is f(z,y,2) = ri2* + (=72 ~ 2r1)y222 4 (—ro — 27)2%22 + 7922 +
(=72 = 3r)y* + (—72 ~ 2r)2%9% + (2 + 4r1)y® + r1z? + 7922 — 75. An instance of this
family (r; = 10, r3 = 1) is shown in Figure 1.

Example 5.3 A Quartic Interpolating Surface for a C! Join of Four Parallel Cylindrical
Surfaces

In this example, the lowest degree surface is constructed, which smoothly joins four
truncated parallel circular cylinders defined by CY L, : ¥+22-1=0forz > 2, CYLy:
y¥?+22-1=0forz < =2, CYL, : (y—4)P2+22-1=0forz > 2, and CY L, :
(¥~4)2+22-1=0forz < -2.

The C interpolation technique shows that the minimum degree for such joining sur-
face is 4, and finds a 2-parameter (one independent parameter) family of algebraic surfaces
which is f(z,y,2) = 1(-0.316340556y° — 0316340556y 2% —0.27175379622 40.553595973y +
0.553595973z2+0.3153405563;-0.049630952+0.033969224z4+0.039542570y4+0.079085139y222+
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Figure 2: A C! Join of Cylinders with a Quartic Surface

0.0395425702") + r5(—0.025042574y3 — 0.025042574dy22 + 0.426400457z2 + 0.043824505y2 +

0.04382450522+0.025042574y—0.899755?41—0.053300057$4+0.0031303223;"+0.006260644y232+

0.0031303222%)

An instance of this family (ry = 1, r, = 1.5) is shown in Figure 3 and its use shown in
Figure 2.

It should be noted that every instance is not always appropriate. The quartic surface
in Figure 3 is the one used in Figure 2. One the other hand, the surface in Figure 4, which
is not useful in light of geometric modeling, is also in the same family with r; = 1 and
re = —1.

Example 5.4 Locally supported trianguler C! tnterpolants for smoothing polyhedra

The input is a convex polyhedron. First unique normals are chosen at the vertex end-
points, a necessary condition for obtaining a globally €' smooth polyhedra. Next a wire-
{rame of conics are constructed where Ea.ch conic replaces an edge and C? interpolates the
corresponding vertices of the edge. Furtermore, normals are constructed for each curvilinear
conic edge of the wireframe and varying quadratically along the conics. See Figure 5. Since
the normals are quadratic functions and take on the value of the given normals at the vertex
corners, specifying an additional normal vector at an interior point of each edge suffices.

The Hermite interpolation algorithm then constructs triangular C? interpolants - a
4 parameter family of quintic surfaces, one family per triangular facet of the wireframe.
Instances of quintic surface patches generated for this example are displayed in Figure 6.
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Figure 3: The C! Join Quartic Surface

Figure 4: A Degenerate C! Join Quartic Surface

10
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Figure 5: An input convex polyhedron with a C! conic wireframe

Figure 6: A smooth polyhedra with locally supported triangular C? interpolants
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6 Conclusion

There are numerous open problems in the theory and application of multivariate interpo-
lation. The primary problem amongst these stems from the nor-uniqueness of interpolants
in two and higher dimensions. There is an acute need for techniques of selecting a suit-
able candidate solution for the given input data, from the X — r parameter family of '
interpolating hypersurfaces of degree d in n dimensional space. Here I{ = (“:d) —1landr
is the rank of the system M of linear equations. One difficulty of the selection problem is
exhibited in Figure 4 of example 5.3 of the previous section, where a certain choice of the
free parameters of the interpolating surface family yields a degenerate Jjoining solution in
real space. Other difficulties arise from ensuring that the selected solution is also smooth
(non-singular) in the domain of the input data.

One possible selection technique is the use of weighted least squares approximation on
additional constructed data coupled with the interpolation of the given input data set {6, 7).
These and related problems are what we are currently pursuing in the study of multivariate
Hermite interpolation.

Acknowledgement I thank Insung Thm “ﬁ his help in making the pictures.
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