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ABSTRACT In this short arlicle we summarize a number ol recent appli-
cations of conslructive real algebraic geometry to geometric modelling and
robotlics, Lhat we have been involved with under the tutelage of Abhyankar.

1 Introduction

Macaulay, Tarski and Seidenberg [16, 17, 18] set the tone for current
day researchers of constructive methods in algebraic geometry over real
closed fields. Constructive methods are clearly at the heart (and soul)
of Abhyankar’s papers in algebraic geometry and amply evident in his
teaching[l]. In this short article we summarize a number of recent appli-
cations of constructive real algebraic geometry to geometric modeling and
robotics, that we have been involved with under the tutelage of Abhyankar.
IMirst is parameterizations, useful for computing intersections, sweeps, off-
sels etc., required in robotic software simulation systems. Here we consider
constructive methods for both local and global real parameterizations of
curves and surfaces. Next we look at intersections between curves and sur-
faces which are fundamental for solid modeling systems based on Boolean
set operations. Finally we look at surface fitting with algebraic surface
patches, a technique used for both complicated interactive geometric de-
sign as well as scattered data fitling.

2 Global Parameterization

Certain classes of algebraic curves and surfaces admit both parametric and
implicit representations. Algebraic curves and surfaces are the most com-
mon representations for curved objects in geometric modeling. Algebraics
satisfy polyromial equations, usually with rational coefficients. A rationel
algebraic curve or surface is one whose points can be represented as ra-
tional functions in some parameters. Lach form has certain benefits and
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FIGURE 1. Global Parameterization of Quadrics using Finite Precision Arith-
metic

drawbacks. The parametric form is better for rapid display and interac-
tive control; the imphcit form defines a half-space naturally and is suited
for modeling. The class of all algebraics is also much larger than the class
of rational algebraics. Having dual forms are highly useful in geometric
modeling since they combine the strengths of the two representations(7].

In [13] we consider the problem of computing the rational parameteri-
zation of an implicit curve or surface in a finite precision domain. Known
algorithms for this problem are based on classical algebraic geometry, and
assume exact arithmetic involving algebraic numbers[2, 3, 4, 5, 6]. In this
work, we investigate the behaviour of parametrization algorithms in a finite
precision domain and derive succinct algebraic and geometric error char-
acterizations. We then indicate numerically robust methods lor parameter-
izing curves and surfaces which yield no error in extended finite precision
arithmetic and alternatively, minimize the output error under fixed finite
precision calculations

For example, one can obtain succinct bounds on the geometric error
incurred in parameterizing quadratic surfaces {quadries) by mapping (in
fixed precision arithmetic) either the constant coefficient or one the squared
term coefficients to infinity. The sign of the discriminant, among other
guantities, distinguishes amongst the various quadric surfaces. Issentially,
perturbing the constant coefficient preserves the center and orientation,
although the quadric could degenerate from a hyperboloid of one sheet
to a cone to a double-sheeted hyperboloid. Perturbing the highest order
coefficients could cause an ellipsoid to change to a cylinder to a one-sheeted
hyperboloid, for example, in addition to ¢hanging its orientation and center
(I"igure 1). Since the geometric errors find their extrema along the axes
when the center and orientation are fixed, we can bound the errors easily
in this case. We simply state the results, for brevity.

Let two quadrics that differ only in their constant coefficient be given and
let d:,dy,d; be the distances from the origin to the unperturbed quadric
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(some may not be finite}. Given a number ¢ > 0 that also satisfies ¢ <
min(d;,dy,d.), and a difference in the constant coefficients of a quantity
d., if the geometric perturbations p,, py, p. are to satisfy

max(lp,], |py|: ,p-‘-l) < €
then it suffices to choose d, such that
|de| < € - min{dy - |A1], dy - |A2], d: - |As])

where expressions for A; are the roots of a cubic polynomial ¢(A) whose
coefficients are expressions in the coefficients of the quadrics. The quadric
can be put in standard form in terms of the roots of ¢(A), allowing the the
quantities d,, dy, d: to be efficiently calculated.

WIth the parameterization of singular cubic curves, algebratc number
computation is unnecessary for exact rational parameterization. Every ra-
tional cubic with rational coefficients has a rational singular point. Such
a cubic can be parameterized by a pencil of lines through the singularity,
which then intersect the cubic at exactly one other point. The coordinates
of the latter point parameterized by the slope of the line give parameier
functions for the cubic curve. The parameter functions are given as closed
form formulas in the parameter {, the coefficients of the curve, and the
coordinates (b, ¢) of the singularity, as shown below:

X(t) = ﬂgubts - (33306 =+ ago)tz—

(20216 + a=b+ ﬂu)i - (2(103b +al2c+ ﬂgg)
Y() =—((2az0c+ a2id+a20)i®+

(@216 4 2a12b + 611)¢% + (3a03b + ape)t — aosc)
W(t) = azol® +ant® + a1at + aos

Thereflore, if extended precision rational arithmetic is allowed, onc can
parameterize an irreducible rational cubie curve without error and without
algebraic number computation, by computing the singular point exactly,
and substituting the coordinates in the above formula.

3 Local Parameterization

In [14, 15] we use a combination of both algebraic and numerical Lechniques
to construct C'-continuous, piecewise (m,n) rational e-approximation of
real algebraic curves of degree d. For example, FFigure 3, shows a C! con-
tinuous (3, 3)-rational approximation of the curve (z° + y*)? — 4z%* = 0
for values of ¢ = 0.1,0.05,0.025. At singular points we use the classical
Weierstrass Preparation Theorem and Newton power series factorizations,
based on the technique of Hensel lifting[1]. These, together with modified
rational Padé approximations, are used to efficiently construct locally ap-
proximate, rational parametric representations for all real branches of an
algebraic curve.
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FIGURE 2. Resolution of Singularities: Newton and Weierstrass Factorizations
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FIGURE 3. Piecewise Rational Approximations of Real Algebraic Plane Curves

A Weierstrass power series factorization is of the form f(z,y) = g(z,y)
(¥° + aea(z)y*™! + --- + aa{z)) where g(z,y) is a unit power series,

LN

A(xy)

i.e., g(0,0) # 0 while h(z,y) is 2 “distinguished” polynomial in y with co-
efficients ¢;(z), i = 0...e — 1 being non-unit power series, i.e., a;{0) = 0.
In Figure 2 the lower right picture shows the two Weierstrass power series
factors (truncated to degree 14 in z) of the plane curve f(z,y) = (2% +
¥?)?2 + 322y — 3 = 0: the unit g(z,y) = y + 121632404z 4 + 525474622 +
23752620 + 1147728 4+ 6182° + 11z 4+ 522 — 1 = 0 which represents the
part of the curve away from the origin, and the “distinguished” pelynomial
iny Az, y) = ¥° +(—121632404z'4 — 52547462'2 — 2875262'0 - 1147728 —
6182 — 4121 — 522)3® — (3542224024 — 155644822 — 72080210 — 361628 —
208z°—16z*—3z%)y--4981622'4—230382'2—1153z10— 6628 -5z —z1 = 0
which represents the part of the curve at the origin.

The “distinguished” factor A(z, ¥} is again shown in the upper left picture
of Figure 2 where it is split via Newton factorization into real linear factors
of the type h(z,y) = LOf., (¥ — #7i((?))) with ™ = z and m a positive
integer and 7;((t)) a real power series or real meromorphic series.

Besides singular points we obtain an adaptive selection of simple points
about which the curve approximations yield a small number of pieces yet
achieve C! continuity between pieces.

The rational approximation algorithms have been implemented in its en-
tirety as part of GANITH, an X-11 based interactive algebraic geometry
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FIGURE 4. Piecewise Rational Approximalion of Real Algebraic Space Curves

toolkit, using Common Lisp for the symbolic computation and C for all nu-
meric and graphical computation. The Hensel power series computations
as well as its use in Weterstrass and Newton factorizations are based on
a robust implementation of the fast euclidean HGCD algorithm. Rational
Padé approximants are also computed based on the same HGCD algorithm.
Power Series are stored as truncated sparse polynomials, as are the poly-
nomials representing the original algebraic curves, in recursive canonical

form. In this form, a polynomial in the variables z,, ..., z, Is represented
either as a constant, or as a polynomial in z,, whose coefficients are (recur-
sively) polynomials in the remaining variables z;,...,z,_]- A strength of

this form (for purposes of implementation) is that multivariates “look like”
univariates, making it easy to modify algorithms for univariate polynomials
to handle multivariates.

Floating point coefficients are allowed in the input curve representations,
which are then converted to rational numbers for the GCD and power se-
ries computations. In Newton faclorizations, user options are provided to
compute only real branch factorizations. This is achieved by not allow-
ing complex conjugate roots of the appropriate univariate polynomial, to
split in the base case of the Henselian computation. Singularity computa-
tions and intersection with the bounding box are done in GANITH using
multivariate resultants and based on the method of birational maps [8].
Details of this are given in the next section. Examples from the software
implementation, ate shown in Figures 3 and 4.
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FIGURE 5. Computation of Curve-Curve Inierseciions

4 Intersection

The set of solutions (or zere set Z(S)) of a collection S of polynomial
equations

S Az, 20) =0

Sm t fm(z1, -, z0) =0 (1.1)

is referred to as an algebraic sei. Algebraic curves and surfaces are alge-
braic sets of dimension 1 and 2 respectively. Problems dealing with zero
sets Z(S), such as the intersection of curves and surfaces, or the decision
whether a surface contains a set of curves, are often first versed in an ideal-
theoretic form and then solved using Grobner basis manipulations. In [8]
we present an alternative technique based on constructing bi-rational map-
pings between algebraic varieties and hypersurfaces. questions of intersec-
tion and parameterization of algebraic varieties. The bi-rational mapping
technique deals directly with the zere sets of polynomial equations (rather
than just the combinatorial structure of the polynomials), and provides
simpler solutions to questions of intersection and parameterization of alge-
braic varieties.

Given m independent equations in n variables (1.1), let S be the al-
gebraic variety of dimension n — m defined by these equations. Then the

v m———— e
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bi-rational map construction of [§] produces a new “triangulated” polyno-
mial system of equations

f(Il, ey In_m+1) =0

. .= Ram-a{21, ..., Zn—m+1)
nemd h?m—-S(:lj . -:zn—m+l)
o = ha(zy,...,Zn-2)
nl = hS(:b N .,27,1_2)
ho(z1,-. - 2p0-1)
| CIVESSL Y 1.2
hl(zls-'wzn—l) ( )

This bi-rational map construction is based on the multi-polynomial resultant[16]
and multi-polynomial remainder sequences.

Cases of intersection computation of interest in geometric and solid mod-
eling are those of plane curve-curve intersections, surface-surface intersec-
tions and three algebraic surface intersections [7]. All these are special
cases of the bi-rational map construction. The two prevalent representa-
tions of algebraic curves in geometric modeling are the implicit and the
rational parametric. Both implicitly and parametrically defined algebraic
plane curve-curve intersections reduce to the special case of (1.1) forn = 2
and m = 2. The common intersection points (z,, z2) of the two curves are
then obtained from the special case “triangulated” system (1.2) by first
computing the zeros of the univariate polynomial f(z;) = 0 and then
substituting these into 3 = %‘:—%}% Examples from the software implemen-
tation in GANITH, are shown in Figure 5.

Implicitly defined algebraic surface-surface intersections reduce to the
special case of (1.1) for n = 3 and m = 2. Points (z), ©2, ©3) on the common
intersection space curve of the two surfaces are then obtained from the
special case “triangulated” system (1.2) by first computing points on the
plane curve f(z;,22) = 0 and then substituting these into z3 = :’f;—gﬂ:—:}
Parametrically defined algebraic surface-surface intersections reduce to the
special case of (1.1) for n = 4 and m = 3. Points (z,, 2, T3, z4) on the
commeon intersection space curve of the two surfaces are then obtained from
the special case “triangulated” system (1.2) by first computing points
on the plane curve f(z),z2) = 0 and then substituting these into z3 =
%%%:-ﬁ% and z4 = ﬁ—:E:—:::—:} An exarnple from the software implementation
in GANITH, involving a sphere and a quartic algebraic surface is shown in
Figure 6.

Implicitly defined three algebraic surfaces intersection reduces to the
special case of (1.1) for n = 3 and m = 3. Common intersection points
(z1,z2, z3) of the three surfaces are then obtained from the special case
“triangulated” system (1.2) by first computing the zeros of the univariate
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FIGURE 6. Computation of Surface-Surface Interseclions

FIGURE 7. Computlalion of Intersections of Three Surfaces
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FIGURE 8. ¢! Join of Cylinders with a Quartic Surface
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polynomial f(::l) = 0 and then substituting these inte zz =

I3 = 2—:%%:—} Parametrically defined three algebraic surfaces intersection
reduces to the special case of (1.1) for n = 6 and m = 6. Common inter-
section points (z1, Za, T3, 4, T5,26) of the two surfaces are then obtained
from the special case “triangulated” system (1.2) by first computing the

zeros of the univariate polynomial f(z,,z2) = 0 and then substituting these

hal{z,) _ A=) _ he(z)) and zg = ha(z1}

: — ho(zy —

mte Tz = FEy T8 = By(m) 4 T he(za)? T5 = Be(z) ha(z1)”
Examples from the software implementation in GANITH, are shown in
Iigure 7. The three surlace intersection points are shown as the common

intersections of the space curves for each pair of surfaces.

5 Interpolation and Approximation

The generation of a mesh of smooth real algebraic surlace patches or splines
that interpolate or approximate {riangulaied space data is one of the central
topics of geometric design. Prior work on splines have traditionally worked
with a given planar triangulation using a piecewise polynomial function
basis or over triangulations in three dimensions using parametric surface
patches. Little work has been done on spline basis for implicitly defined
real algebraic surfaces.

I report briefly on some ongoing work in this extremely interesting and

R




Some Applications of Consiructive Real Algebraic Geometlry 11

FIGURE 9. Smoothing of a Polyhedron with Triangular Inierpolatory Splines

fundamental area of research for geometric design {9, 10]. In [11] we show
how low degree blending and joining algebraic surfaces can be computed
via C! interpolation and least-squares approximation. The algebraic surface
fitting scheme reduces to the solution of a finite system of linear equations,
based on a proper normalization of the cocfficients of the surface. Both
the finiteness bound and the linear equations are derived {rom various in-
vocations of Bezout’s theorem. In the example shown in Figure 8 and
implemented in GANITH, the joining surface of the four cylindrical sus-
faces is computed by a C! interpolation of the four circular cross-sections
of the cylinders and the gradient vectors along these cross-sections. Least-
squares approximation from a variable radius sphere centered at the mid
point of ithe junction helps select the desired bulge of the joining surface.
In [12] we consider an arbilrary spatial triangulation 7 consisting of
vertices (z;,#;,%) in IR? (or more generally a simplicial polyhedron P
when the triangulation is closed), with possibly “normal” vectors at the
vertex points. An algorithm is given to construct a C! continuous mesh of
low degree real algebraic surface patches 5; , which respects the topology
of the triangulation 7 or simplicial polyhedron P, and C! interpolates all
the vertices (z;,y;,2;) in R®. The technique uses a single implicit surface
patch for each triangular face of 7 of P, i.e. no local splitting of triangular
faces. Each triangular surface patch has local degrees of freedom which are
used to provide local shape control. This is achieved by use of weighted least
squares approximation from points (2, yx, zx) generated locally for each
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triangular patch from the original patch data points and normal directions
on them. Examples of this smeothing process are shown in Figure 9 and
implemented in GANITH.
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