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The importance of implicit surface representation in modeling geometric objects or reconstructing
the image to scattered data have been described in various papers (see for e.g. [Baj93, DTS93,
Guo9la, Lod92, Sed85]). The main advantages of implicit surface over its parametric counterpart
are: (1) the set of algebraic surfaces are closed under basic modeling operations such as offset and
intersection, often required in a solid modeling system. For example, the offset of a parametric
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surface may not be parametric but is always algebraic and has an implicit representation. (2) For
the same polynomial of degree n, implicit algebraic surfaces have more degrees of freedom ( =
3 n+2 — 1) of the same degree.
Hence implicit algebraic surfaces are more flexible to approximate a complicated surface with fewer
number of pieces or to achieve higher order of smoothness. However, the main shortcoming held
against the popular use of implicit surfaces is that the representation being multivalued may cause
the real zero contour surface to have multiple sheets, self-intersections and several other undesirable
singularities.

In section 3 of this paper, we present a sufficient criterion for the Bernstein-Bezier (BB) form
of a trivariate polynomial within a tetrahedron such that the real zero-contour of the polynomial
is smooth (non-singular) and a single sheeted algebraic surface. We call this an A-patch. In
section 4, we describe how to build a simplicial hull consisting of tetrahedra surrounding a surface
triangulation 7" of the set of scattered data points in 3D. We then show in section 5 how a mesh of
cubic A-patches can be used to construct a C'! interpolatory surface, respecting the topology of the
surface triangulation 7. In section 6, we show how to adjust the free parameters of the A-patches
to achieve both local and global shape control. This C! cubic A-patch fitting algorithm is quite
appropriate for free form design. In analogy to the final smoothing of an artist’s rough sketches,
complicated smooth models can be directly formed by first creating a rough polyhedral model of
the desired object and then using the fitting algorithms to produce a C!' smooth solid with extra
local and global parameters for fine shape control. Proofs of all theorems and lemmas are given in
the Appendix.

( nEs 1) compared with rational parametric surface(< 4 (

Related Prior Work:

The work of characterizing the BB form of polynomials within a tetrahedron such that the zero
contour of the polynomial is a single sheeted surface within the tetrahedron, has been attempted
in the past. In [Sed85], Sederberg showed that if the coefficients of the BB form of the trivariate
polynomial on the lines that parallel one edge, say L, of the tetrahedron, all increase (or decrease)
monotonically in the same direction, then any line parallel to L will intersect the zero contour
algebraic surface patch at most once. In [Guo9la], Guo treats the same problem by enforcing
monotonicity conditions on a cubic polynomial along the direction from one vertex to a point
of the opposite face of the vertex. From this he derives a condition ay_c 4., — ay > 0 for all
A = (A1, Az, As, /\4)T with Ay > 1, where a) are the coefficients of the cubic in BB form and e; is
the i-th unit vector. This condition is difficult to satisfy in general, and even if this condition is
satisfied, one still cannot avoid singularities on the zero contour. Qur condition of a smooth, single
sheeted zero contour in Theorem 3.2 of §3 generalizes Sederberg’s condition and provides us with
an efficient way of generating A-patches.

The second problem we consider is how to join a collection of A-patches to form a C'! smooth
surface interpolating scattered data points and respecting the topology of a given surface trian-
gulation 7" of the points. For this problem, prior approaches have been given by [Dah89] using
quadric patches, [DTS93, Guo91la, Guo91b] using cubic patches and [BI92] using quintic for convex
triangulations and degree seven patches for arbitrary surface triangulations 7. All these papers
provide heuristics to overcome the multiple sheeted and singularity problems of implicit patches.
In this paper our cubic A-patches are guaranteed to be nonsingular and single sheeted within each
tetrahedron.



While the details of the methods of [DTS93] and [Guo91b] differ somewhat, they both use the
scheme of [Dah89] of building a surrounding simplicial hull (consisting of a series of tetrahedra) of
the given triangulation 7. Such a simplicial hull is nontrivial to construct for triangulations and
neither of the papers [Dah89, DTS93, Guo91la, Guo91b] enumerate the different exceptional cases
(possible even for convex triangulations) nor provide solutions to overcoming them. We too use the
simplicial hull approach in this paper but enumerate the exceptional situations and provide some
heuristic strategies for rectifying them.

In [Guo91b], Guo uses a Clough-Tocher split{fCT65] and subdivides each face tetrahedron of
the simplicial hull, hence utilizing three patches per face of T. In this paper, we consider the
computed “normals” at the given data points, and distinguish between “convex” and “non-convex”
faces and edges of the triangulation. These concepts are formally defined in section 4. We use a
single cubic A-patch per face of T except for the following two special cases. For a non-convex
face, if additionally the three inner products of the face normal and its three adjacent face normals
have different signs, then in this case one needs to subdivide the face using a single Clough-Tocher
split, yielding C' continuity with the help of three cubic A-patches for that face. Furthermore for
coplanar adjacent faces of T, we show that the C'! conditions cannot be met using a single cubic
A-patch for each face. Hence for this case we again use Clough-Tocher splits for the pair of coplanar
faces yielding C'! continuity with the help of three cubic A-patches per face. See also the examples
and figures in section 7 where the savings in patches becomes evident.

Related papers which approximate scattered data using implicit algebraic patches are [Baj92,
Lod92, MW91] and a classification of data fitting using parametric surface patches is given in
[Pet90].

2 Notation and Preliminary Details

Problem. Given a list of data points P = {py,...px} € IR3 and a surface triangulation 7 of these
points, construct a mesh of low degree algebraic surfaces such that the composite surface is single
sheeted C'! continuous and has the same topology as 7.

Convex Hull, Affine Hull: Let {p;,...,p;} € ‘HZS with j < 4. Then the convex hull of these
points is defined by [p1ps..pjl ={p € R® : p=371_, aipi,; > 0,57_, a; = 1} and the affine hull
is defined by (p1pa2...p;) = {p € R>: p =37, a;p;,>)_, a; = 1}. The interior of the convex hull

[p1p2...p;] is denoted by (p1pz...pj)={p€ R®:p=>1_, aipi,a; > 0,5 7_, a; = 1}.

Bernstein-Bezier (BB) Form: Let p;, p2, p3, ps € IR® be affine independent. Then the
tetrahedron with vertices py, p2, p3, and py, is V = [p1papsps]. For any p = Z?:l op €V, a =
(a1, aq, a3, a4)7 is the barycentric coordinate of p. Let p = (z,y,2)%, p; = (25,9, 2)". Then the

barycentric coordinates relate to the Cartesian coordinates via the following relation

T ry T2 T3 T4 [0 5]

) _ Y1 Y2 Ys Ya &) (2.1)
z Z1 zy 23 24 Qs )

1 1 1 1 1 Qay

Any polynomial f(p) of degree n can be expressed as Bernstein-Bezier(BB) form over V as f(p) =



z:|)\|=n by BY(a), A€ Zi, where
n ’Il' A A A A\
B/\(a) = m a11a22a33a44

is Bernstein polynomial, |A| = 2%, A; with A = (A1, Az, Az, /\4)T, a = (a1, 0z, a3,a4)T =4 aze;
is barycentric coordinate of p, by = by 0.0, (as a subscript, we simply write A as A;A3A3A4) are
called control points, and Zfll_ stands for the set of all four dimensional vectors with nonnegative
integer components. The following basic facts about the BB form will be used in this paper. The
first is derived from the directional derivative formulas(see [Far90]).

Lemma 2.1. If f(p) = X252, baB%(a), then

1 . .,
b(n—l)eH—eJ = bne¢ + ;(p] - pz)TVf(pZ)v J = 1727374; J 7£ ¢ (22)

where

daf(p) 0f(p) 0f (p)]T_

Vi) =1 oz dy 0z

Formula (2.2) will be used to determine the control points around a vertex from the given
normal at that vertex.

Lemma 2.2 ([Far90]). Let f(p) = Xz, axBY(a) and g(p) = 32|\ =, 0rB} (@) be two polynomials
defined on two tetrahedra [pi1p2pspa] and [pipapspal, respectively. Then
(i) f and g are C° continuous at the common face [papspa] if and only if

ay =by, for any A =0XA3\y, |A|=n (2.3)
(ii) f and g are C' continuous at the common face [papspa] if and only if (2.3) holds and
bixyrans = B1@1x,0a0, T+ 826005052, 40100 F 83607505 7,40010 + B4@0r, 2s 1, +0001 (2.4)

where 3 = (1,82, B3, Ba)T are defined by the relation pi = Bip1 + Baps + Bsps + Baps, |6] = 1.

Relation (2.4) is called coplanar condition.

Degree Elevation. The polynomial f(p) = 3 |\=, bx BY(a) can be written as one of degree n+ 1
(see e.g. [Far90] ): f(p) = 22)\j=np1 (ED)A Bt (@), A€ 2%, where (Eb)) = nlﬁ S Abae

Variation Diminishing Property ([Far90],p.54). Let y(t) = >_I— b;B?(t), then y(t) has no more
intersections(counting the multiplicities) with any line than does the polygon {i/n, b} in [0, 1].

Transformation: Since Y }_; o) = 1, we have from (2.1) that

T Tl — T4 TQ— T4 T3 — T4 (03] T4 [0 5] T4
Y | = Y1—Ys Y2—Ys Y2—Ya ay |+ | va |[=A| a |+ | ya | (25)
z Z1 — Z4 Z9 — Z4 Z9 — Z4 Qa3 Z4 Qa3 Z4

Let f(z,y,2) = g(a1,az,as), then it is easy to check that
Vi(z,y,2)= (A_I)TV!J(aly az, a3) (2.6)

Therefore, the surface f(z,y,2) = 0 is smooth (i.e., Vf(z,y,z) # 0) iff the surface g(ay, az, as)
= 0 is smooth (i.e., Vg(ay, az,as) # 0). This means that the smoothness problem of the surface
f(z,y,2) =0 can be treated directly in its barycentric form.
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Figure 3.1: Three-sided (a, b, ¢ and d) and four-sided patches (e and f). Some of them are
disconnected. The filled vertices mark the boundaries of the patches

3 Sufficient Conditions of an A-Patch

Let F(a) = 3752, baBY(a) be a given polynomial of degree n on the simplex(tetrahedron) § =
{(a1,a, as, a4)T € R*: ! a; =1, a; > 0}. The surface patch within the simplex is defined
by Sr C 5 : F(ai,as,as,a4) = 0. The following two conditions on the trivariate BB-form will be
used in this paper.

Smooth vertices condition. For each i(1 < ¢ < 4), there is at least one non-zero by, x,x,2, for
A >n— 1.

Smooth edges condition. For each pair (¢,7)(1 < ¢,7 < 4,7 # j), there is either at least one

n0on-zer0 by 4 (nom)e, for m =0,1,---,n, or the polynomials Z%_:lo brmeit(nm1-m)e; +ex Bm=1(¢) and
S Dmeit(n—1-m)e, +e; B7=1(¢) have no common zero in [0, 1], for distinct 1, 5, &, [.

If the surface Sp contains a vertex/edge, then by the formulas of directional derivatives(see
[Far90], p. 312), it is easy to show that the surface is smooth there if the smooth vertex/edge
conditions above are satisfied.

Definition 3.1. Three-sided patch.

Let the surface patch Sy be smooth on the boundary of the tetrahedron 5. If any open line
segment (e;,0*) with a* € 5; = {(al,ag,ag,a4)T pap =00, >0, 30 = 1} intersects Sg at
most once(counting multiplicities), then we call S a three-sided j-patch (see Figure 3.1).
Definition 3.2. Four-sided patch.

Let the surface patch Sr be smooth on the boundary of the tetrahedron 5. Let (%, j,k, ) be
a permutation of (1, 2, 3, 4). If any open line segment (a*, %) with a* € (e;e;) and 8* € (erer)
intersects S at most once(counting multiplicities), then we call S a four-sided ij-k{-patch (see
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Figure 3.2: (a) A three sided patch tangent at py,p2, ps. (b) A degenerate four sided patch tangent
to face [p1p2pa] at py and [p1psps] at ps.

Figure 3.1).
It is easy to see that if Sy is a four-sided ij-kf-patch, it is then also a ji-€k-patch, a £k-ji-patch,
and so on. The Appendix contains proofs of the lemmas and theorems:

Lemma 3.1. The three-sided j-patch and the four-sided ij-k{-patch are smooth (non-singular).

Theorem 3.2. Let F(a) = 37|\, baBY () satisfy the smooth vertex and smooth edge conditions
and j(1 < j < 4) be a given integer. If there exists an integer k(0 < k < n) such that

bA1)\2A3A4 Z 07 A] = 07 17 .t ‘7k - 17 (31)

bA1A2A3A4 S 07 A] = k —I_ 17 . '7n (32)

and Y jy=n by >0 if k>0, 3" y= by < 0 for at least one m(k < m < n), then Sg is a three-sided
A;=0 Aj=m

j-patch.

Theorem 3.3. Let F(a) = 37|\, B} () satisfy the smooth vertex and smooth edge conditions
and (1, j,k, L) be a permutation of (1, 2, 3, 4). If there exists an integer k(0 < k < n) such that

b)\1A2)\3A4 Z 07 A’t —I_ A] = 07 17 .t ‘7k - 17 (33)

b0, < 0; A+ A =k4+1,...,n (3.4)
and 3" p=n by > 0k >0, 2 p=n by < 0 for at least one m(k < m < n), then Sg is
Ai+A;=0 Ai+Aj=m
four-sided vj-k{-patch.
Note. The conditions on the coeflicients by in Theorems 3.2 and 3.3 are sufficient but not necessary.
For example if we want some B; < 0, it is not necessary to let every by < 0, for |A| = n, Ay = L.

Some properties of A-patches.

a. For a three-sided j-patch, if by =0 for A = (n—l)e,, + lej, £ = 0,1,....k(m # j,k < n),
and by # 0 for A = (n — 1)e,, + €5, s # j,m, then the edge [e;er,] is tangent with Sg at e, with
maultiplicities k. See also Figure 3.2 (a).
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Figure 3.3: (a) A three sided patch interpolating edge [pz2ps]. (b) A three sided patch interpolating
edges [p2ps] and [p1ps].

b. For a four-sided ij-kl-patch, if by = 0 for A = (n—q1 —q2)ex+qrei+q2e;, ¢i+q2=0,1,...,s;
and by # 0 for X = (n — 1)ei + €4, then Sg is tangent s times with face [e;e;er] at ey.

Note that a four sided patch may degenerate into a two sided patch. See Figure 3.2 (b).
However, we do not need to treat the degenerate patches any different, but consider it to be a
special four sided patch.

c. For a three-sided j-patch, if by = 0 for A = (n — m)e; + meg, m = 0,1,...,n, then Sp
contains the edge [e;, ex]. If further, by =0, for A= (n—m —1)e; + mex +e;, m=0,1,...,n—1,
then the Sy is langent with the face [e;e;e]. See also Figure 3.3 (a), (b).

d. For a three-sided j-patch, any point P € Sg can be mapped to a triple (o, ag, op), o; + ap +
ay =1, a;,ap,ap > 0 or a point a* € 5; = {(a1, a9, a3, a4)" : a; = 0}, Furthermore, there erists
a one to one mapping between Sp and §; = {a* : @ € §;, F(e;) - F(ax) < 0}.

e. For a four-sided ij-k(-patch, any point P € S can be mapped to a tuple (a;,ar), 0 < a; <1,
0 < ar <1, or two poinls a* € (ee;) = {(al,ag,ag,a4)T cap = oy = 0} and 5% € (erer) =
{(a1, 2, a3,a4)! : a; = aj = 0}. Furthermore, there exists a one to one mapping between Sp and
{(as, )T : F(a*) - F(3*) < 0}. If F(a*) =0, S is degenerated and all the points with the same
ay, collapse into one point.

Hence a three-sided patch can be mapped into a triangular domain while a four-sided patch can
be mapped into a quadrilateral domain. This observation gives rise to the terms three-sided patch
and four-sided patch.

Note that smooth three-sided or smooth four-sided patches are not necessarily connected within
a single tetrahedron. Figure 3.1 shows some examples. Subsequent sections detail how a combina-
tion of smooth A-patches are pieced together to form a C'' smooth global surface.

4 Normals and the Simplicial Hull

For the given point set P = {p1,...,pr} € IR> and their surface triangulation T, we first construct
a normal set N = {ny,...,ng} € IR® for P. That is, for each point p;, we associate a normal n,.



Figure 4.1: The Construction of Double Tetrahedra for Adjacent Non-Convex/Non-Convex Faces
and Convex/Non-Convex Faces

We will force the constructed surface to interpolate points p; and at each point have a normal n;
for i = 1,---,k. These normals therefore also provide a mechanism to control the shape of the C!
interpolating surface. Common approaches to construct these normals at a point p; include (a)
an average of the face normals of the incident faces (b) the gradient of a local spherical fit to the
surface triangulation at each vertex. Computing an optimal normal assignment is yet an unsolved
problem and we are experimenting with different local and global normal selections schemes [Baj92,
Pot92, Mor93]. Of course at times the data set can have pre-specified normals and this too can be
the input of the C'! fitting algorithm.

Without loss of generality we assume that the assigned normals all point to the same side of
T. If T is a closed surface triangulation (a simplicial polyhedron) then we assume the normals all
point to the exterior.

Definition 4.1. Convez edge, non-convex edge.

Let [p;p;] be an edge of T. If (p; — p;)Tn; (pi — p;)¥n; > 0 and at least one of (p; — p;)¥n; and
(pi — p;)n; is positive, then we say the edge [p;p;] is negative conver. If both the numbers are zero
then we say it is zero convex. A positive conver edge is similarly defined. If (p; —pi) ', (pi—pj)Tnj <
0, then we say the edge is non-convez.

Definition 4.2. Convez face, non-convez face.

Let [pipjpr] be a face of T'. If its three edges are nonnegative (positive or zero) convex and at
least one of them is positive convex, then we say the face [p;p;pi] is positive convex. If all the three
edges are zero convex then we label the face as zero convex. A negalive convex face is similarly
defined. All the other cases [p;p;pi] are labeled as non-convez.

Note, that here we are overloading the term convez to characterize the relations between the
normals and edges of faces. We distinguish between convex and non-convex faces in the simplicial
hull below where we build one tetrahedron for convex faces and double tetrahedra for non-convex
faces.

Definition 4.3. Simplicial hull.

A simplicial hull of T', denoted by ., is a collection of non-degenerate tetrahedra which satisfies:
(1) Each tetrahedron in )~ has either a single edge of 7'(then it will be called an edge tetrahedron)
or a single face of T'(then it will be called a face tetrahedron).

(2) For each face of T" there is/are only one/two face tetrahedron/tetrahedra in 3~ if the face is
convex /non-convex.
(3) Two face tetrahedra that share a common edge do not intersect anywhere else. This condition



Figure 4.2: The Construction of Single Tetrahedra for Adjacent Convex/Convex Faces

is referred to in this paper as nonintersection.

(4) For each edge there is/are only one/two pair/pairs of common face sharing edge tetrahedra
in 3" if the edge is convex/non-convex such that the pair/pairs fills the region between the two
adjacent face tetrahedra in the same side of T'.

(5) For each vertex, the tangent plane defined by the vertex normal is contained in all the tetrahedra
containing the vertex. This condition is called tangent plane containment.

It should be noted that, for a given surface triangulation 7" with normal assignment, there
may exist infinitely many simplicial hulls or no simplicial hull may exist. We now describe a
scheme for constructing a simplicial hull for the surface triangulation 7" and prescribed vertex
normal assignment. We also enumerate the exceptional configurations where a simplicial hull of T’
is difficult and then provide a solution for constructing the simplicial hull for a locally modified T'.
1. Build Face Tetrahedra. For each face F' = [pypops] of T, let L be a straight line that is
perpendicular to the face F and passes through the center of the inscribed circle of F. Then choose
points py4 and/or g4 off each side of F' to be the furthermost intersection points between L and the
tangent planes of the vertices of the face. If F' is a non-convex face, two face tetrahedra [p;papsp4)
and [p1p2psqa] are formed (double tetrahedra). If F' is positive convex, then py is chosen on the
same side as the direction of the normals, and a single face tetrahedron [p;popspa] is formed. If F
is negative convex, then ¢4 is chosen on the opposite side as the normals and again a single face
tetrahedron [pypap3qq] is formed. Figure 4.2 shows the case where both faces are convex and Figure
4.1 shows the cases where at least one of the two adjacent faces is non-convex.

A sufficient condition for constructing face tetrahedra with tangent plane containment is that
the angle of the assigned normal n; at each vertex p; with each of the surrounding face’s normals
is less than 7 /2. If this condition is not met then an exception occurs and we term the vertex as
sharp. See Figure 4.3 (a).

A sufficient condition for adjacent face tetrahedra to be non-intersecting is as follows. For two
adjacent faces F' = [p1paps] and F' = [p|paps], the angle between them, denoted as ZFF’, is defined
as the outer dihedral angle if the edge between F and F’ is negative convex and inner dihedral
angle otherwise. For [pops] the common edge between F' and F', let [pipapsps] and [p)papsp)]
be the face tetrahedra respectively. Then the two tetrahedra are non-intersecting if the angles
L[papaps)[pipaps] < SLFF' and L[pypops][pipaps] < £LFF'. If this condition is not met then an
exception may occur and we term the common edge [paps] as sharp. See Figure 4.3 (b).

A heuristic strategy rectifies the sharp edge and sharp vertex configurations is a local retrian-
gulation of the original surface triangulation 7. This strategy has worked well in several of the
smoothing examples we have performed.
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Figure 4.3: (a) No Tangent Plane Containment (b) Self-Intersecting Tetrahedra

(b)

Figure 4.4: Retriangulation of (a) sharp edge and (b) sharp vertex

(i) Sharp edge problem. Let [p1p;] be a sharp edge(see Figure 4.4(a)), and let [p;p;;] (7 =
1,2; j =1,2,---k;) be the remaining surrounding edges of p; in adjacency order. Take two spheres
S(pi,r;) with centers p; and radius r;, where r; are positive numbers that are less than the half of
the surrounding edge’s lengths ||p; — p;;||. The smaller r; is, the sharper the constructed surfaces
around edge [p;pz] are Let ¢;; be the intersection points of S(p;, ;) and [p;p;;]. Then g1, ¢z, ..., Gk,
form two closed polygons, and p;;, pij+1, ¢j+1,¢; forms a four sided closed polygons and finally,
Q115 921, 92k, (1, forms another four sided closed polygon. Triangulate these polygons (the dotted
line in Figure 4.4(a)) by connecting adjacent edges of the polygons in the least inner angle order.

(ii) Sharp vertex problem. Let p; be a sharp vertex(see Figure 4.4(b)), and let [pip;;]
(j = 1,2,---k) be the surrounding edges of p; in adjacency order. Take a sphere S(pq,r) with
center p; and radius r, where r is positive number that is less than the half of the surrounding
edge’s lengths ||p1 — p1;||. The smaller r is, the sharper the constructed surfaces around vertex p;
are. Let ¢y; be the intersection points of S(pq,r) and [p1p1;]. Then ¢i1, ¢12, ..., 1% form a closed
polygon, and pi;,pij+1,¢1;+1,¢1; forms a four sided closed polygon. Triangulate these polygons
(the dotted line in Figure 4.4(b)) by connecting the adjacent edges of the polygon in the least inner
angle.
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2. Build Edge Tetrahedra. Let [pyps] be an edge of 17" and [p1p2ps] and [p)p2ps] be the two

adjacent faces. Let [pi1papsps] and/or [p1papsqs], and [pip2pspl] and/or [pipapsqy] be the face
tetrahedra built for the faces [pipaps] and [p)p2ps], respectively. Then if the edge [paps] is non-
convex, two pairs of tetrahedra need to be constructed. The first pair [p{p2pspa] and [p{p2psp}] are
between [p|papsp}] and [p1p2psps]. The second pair [¢} papsqs] and [¢) p2psq)] are between [p)papsq)]
and [p1p2psqa]. Here pf € (pap))) or is above (pa, ply), say

//_(1_t)

[2
(p2+ p3) + 5(1711 +pa), t21
so that p{ is above plane [p1p2ps] and plane [p|paps]. Similarly, ¢i € (gaq}) or is below (g4, ¢}), say

"no__ (1_t)

t
(p2+p3)+ 5((]4/1 +q4), 121

so that ¢} is below plane [p;pyp3] and plane [p|paps]. If the edge [paps] is positive/negative convex,
only the first/second pair above are needed. If the edge [paps] is zero convex, no tetrahedron is
needed here. It should be noted that ps and pj(¢s and ¢}) are always visible.

5 Construction of a C' Interpolatory Surface using Cubic A-
Patches

Having established a simplicial hull ) for the given surface triangulation 7" and a set of vertex
normals N, we now construct a C' function f on the hull 3 such that

fpi)=0, Vflp)=mn;, t=1,2,...,k (5.1)

and the zero contour of f within 3 forms a C'! continuous single sheeted surface with the same
topology as 7.

5.1 The Construction of a Piecewise C'! Cubic Function

The construction of the function f over two adjacent faces of T is divided into the following three
cases:

(a) Both the faces are non-convex;

(b) Both the faces are convex;

(c) One of them is convex and the other is non-convex.

(a) Both the faces are non-convex

Let F' = [p1paps] and F' = [p|p2ps] be two adjacent non-convex faces. Then we have double
tetrahedra [p1p2pspa] and [p1p2psqa] for F' and double tetrahedra [p)papspl] and [p|p2psq)] for F'(see
Figure 5.1). Let

Vi = [p1papspal, Vo = [Pipapsph), Wi = [pipepspal, Wa = [pip2pspl]
V1/ = [P1P2P3Q4]7 Vz’ = [P/1P2P3q4/1]7 W1/ = [Q{/P2P3Q4]a WQ/ = [‘]1’]72173%]

and the cubic polynomials f; over V;, g; over W;, f! over V/ and g/ over W/ be expressed in

Bernstein-Bezier forms with coefficients ag\, ¥ cf\, and dim 1 = 1,2, respectively. Now we shall
determine these coeflicients.
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positive control points
sign undetermined

zero control point

negative control point

0003 3000 0003

Figure 5.1: Adjacent Double Tetrahedra, Functions and Control Points for two Non-Convex Adja-
cent Faces

C% Continuity: If two tetrahedra share a common face, we equate the control points of the
associated cubic polynomials on the common face(see Lemma 2.2):

i i 1 2
aA1A2A30 C/\J/\g)\g)Ov AOx A0, — bO/\g/\gA47 bAJAQAgo = bA1A2A30
i o5 1 2
COA2A3A4 - d0A2A3A47 dA1A2A30 - dA1A2A30

Interpolation: Since zero contours of f; f! and ¢; and g} pass through ps and ps, a)\ = bA = cA =
d'g\ =0 for ¢ = 1,2 and A = 0300, 0030.

Normal Condition: From (5.1) and (2.2) we have, for j = 2,3

a%ej-{—el = %(pl - J)Tnja a%e]-}—el = %(Pll - Pj)Tnj

Ae;des = %(p‘l - J)Tn17 a26]+64 = %(pﬁi - pj)Tnjv (5 2)
b%e]—kel = %( p])Tn]7 d26]+61 = %(‘]ﬂl - Pj)Tnja '
C%ej—l—m = %(% - Py)Tnya C%e]-l—m = %((Lﬁ - pj)Tnj

C! Conditions: At present, set aéeﬁej, céeﬁ_e], j=1,2,3,4, byyoy, and dbgg, to any value(free
parameters) and determine the other control points

1. Interface of [pap3ps] and [papsp}]. Suppose
pio= ﬁ1p1 + ﬁ2p2 + ﬁgp:} + ﬁ4p47 ﬂ% + ﬁ% + ﬁ% + ﬂi =1

5.3
W= Bt Oiet Bips t Ok, OR 45+ A4 5= 53

Then, the C'! conditions require(see Lemma 2.2)
Dadshs = P1013,050, T 82003050, 10100 T F3%00, 05 04+0010 T B1003, 3524 +0001 (54)

for AgAzAy = 002,101,011,110. Hence b}y, b%1gy, and bl are defined, leaving aj,;, and
ajy0; to be determined. Equation (5.4) for AzAsAs = 110 will be treated later.

12



2. Interface at [papsp]]. Let

P = papa + papy + pap2 + paps, g+ po ps A ops =1 (5.5)

then C'! conditions require

i _ 1 2 i i
b/\l/\2/\30+1000 = Nle1A2A31 + N2b/\1/\2/\31 + NSbA1A2A30+0100 + N4b/\1A2A30+0010 (5-6)

for A;AzA3 = 200,110,101,011. Hence biggg, bbygp, and bhgo. are defined. The equation for
A1A2A3 = 011 will be treated later together with (5.4).

3. Interface between [p2p3qa], [p2ps¢)] and [papsqy]. All control points of ¢! and some of the
control points of f] can be fixed as f; and g;. That is, the relations (5.4)-(5.6) hold when
the quantities a's, b's, B's,u’s are substituted by ¢'s, d's, v's,n’s respectively. The two
untreated equations left are

i i i i i i i i
1110 = Y1%1110 T V2%210 T V3%0120 T Y4Co111 (5.7)

di110 = 7710(1J111 + 77203111 + 134210 + M4@h120 (5-8)

where the coefficients v; and 7; are defined by

¢ = mipi+ et Pt i, M A ttr=1
¢ = vt it vt aid,  aitai4ai=1 (59)
@ = maqa+ gyt nspetmaps,  mAmetntna=1

4. Interface between [p1p2ps] and [p)p2ps]. Let

g1 = oipr+ogpa+odps+ogps,  ojtaj+altay=1 (5.10)
¢y = ofpi+adpr+adps+aip), oft+adt+aital=1
Then we have _ . o o o
Ch111 = @1a7110 T Q5Qh210 + A5aG190 + Gagy1q (5-11)

Now we treat the equations (5.4), (5.6), (5.7), (5.8) and (5.11). It follows from (5.4), (5.6),
(5.7) and (5.8) that

1 2 i i _oai i i g i g i
H1gi11 + 205111 + 1300910 + K420 = B1a1110 T 8280210 + B300120 + B1a6111 (5-12)

L ) . . . o . o

Mco1r1 + M2¢0111 + 7300210 + M4G0120 = 7191110 T V290210 T V3@0120 + V40111 (5.13)
Therefore, (5.11)—(5.13) form a linear system with six equations and six unknowns a},, @i,
¢h11p for @ = 1,2, It is important to point out that this is not an independent system(see

Theorem 5.1 for the solvability of the system). It has 4 independent equations and has
infinitely many solutions. In fact, if we assume py, pa, p3, p| are not coplanar and then denote

pa = Oip1+0ipy+ Oips+ 05, 01 +6;+054+05 =1
A 03p1 4+ 03py + O3ps + 03p), 07 +63+6054+607=1
Ga Dipy 4+ Okpo + Oips + Oiph, Ot 4+ 9L+ 9 4 0i=1
¢4 = Oipi 4+ py+ 9ips+ Pipl, I+ R4+ 94+ 09i=1

(5.14)
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then we can derive from (5.12) and (5.13) that

i i1 i d i i 2
ap111 = 01a1110 + 0300210 + 0500150 + 0307110 (5-15)

i _ogi 1 i i i i .2
co111 = Y1a1110 + ¥5a0210 + V500120 + 507110 5-16)

Actually, this means any group of four weights (e.g. al;1g, @bo10, @b190 and a?;,,) defines
the same 4-D hyper plane in its own barycentric coordinates (e.g. [pip2psp}]). Therefore,
besides 210! and a01201(0r c0210" and ¢g120!, there are only 2 degree of freedom left. We
choose a},,o(or ci ;o) to be the free parameters. They may be determined by approximating
a quadratic (see Section 6 or [DTS93]).

(b) Both faces are convex.

(b1). Both faces are nonnegative (or nonpositive) convex.

Following the discussion of (a), the scheme for determining the control points are as before,
except for the following:

1. Only half the control points are needed. That is, we need af\, bg for functions f; and g; if F
and F” are nonnegative convex, or ¢}, di for functions f/ and g/ if /" and F’ are nonpositive
convex.

2. @by (or ¢iy;o) can be determined freely. One way to choose aino (o1 ¢iy40) is to make the
cubic approximate a quadratic (see Section 6). In particular, aj;;5 = 0 (or ¢}y = 0) if the
face is zero convex.

3. We now need only (5.15) for unknowns aj;,; and a?;; if the edge [paps] is nonnegative convex,
or (5.16) for unknowns ¢};;; and c@y;; if the edge [paps] is nonpositive convex.

(b2). One positive convex face and one negative convex face.
In this case, the common edge must be zero convex. Suppose F is positive convex and F’ is
negative convex. All the control points are determined as before except for the following:

1. We only need to construct f;, g; and f5, that is, ¢}, dg are not needed. The functions ¢g; and
f2 have no contribution to the surface, and are used for smooth transition from f; to f3.

2. aly10 <0 and ¢?;;, > 0 can be determined freely(see §6).

3. we need only have (5.11) for ¢ = 2 and (5.15) for unknowns aly;;, @317, and c21;-

(b3). Both faces are zero convex.

This case in fact is included in case (b1). The surface is defined directly as the planar faces of
the surface triangulation. No function needs to be constructed.
(¢) One convex face and one non-convex face.

Suppose [p1p2ps] is convex, [p]pz2ps] is non-convex. The following are the exceptions:

1. The function f{ and g and their control points c}, diA are not needed if F is nonnegative con-
vex. The function f; and g; and their control points a}, b} are not needed if F is nonpositive
convex.

14



0-th layer 1st | ayer 2nd | ayer

Figure 5.2: The Control Points of 0-th,1st and 2nd Layers

2. aly10 < 0 and a?y;, can be determined freely as in case (b). In particular, ai;;o = 0 if [p1p2p3]
is zero convex.

3. For the treatment of equations (5.11)—(5.13), we need only have (5.11) for ¢ = 2 and (5.15)
for unknowns al;q1, ad;1; and c2yq; if the edge [pyps] is nonnegative convex, or solve (5.11)
for ¢ = 2 and (5.13) for unknowns c¢ly;;, 211, and ady;; if the edge [p2ps] is nonpositive
convex(see Theorem 5.1 (ii) for the solvability of the system).

d. Coplanarity of adjacent faces

In the discussions above, we have assumed that py, p}, p2, p3 are affine independent. If py, p}, p2, p3
are coplanar, then the coefficient matrices of the linear systems (5.12) and (5.13) are singular.
However, the system (5.11)—(5.13) are still solvable(see Theorem 5.1) taking aj,,, or ¢, as free
parameters. The other unknowns are given directly by these equations. Since the parameters
aii10,1 = 1,2 become now dependent, they are overly determined by the systems (5.11)—(5.13)
around the 3 edges (e.g. edge [p1, pa], [p2,ps and [ps, p1] for a;1101), and a solution may be not
possible. In this case we split the involved tetrahedron into sub-tetrahedra by subdividing the
triangles [p1p2ps] and [pip2ps] into three subtriangles at their center points w and w’ (a Clough-
Tocher split). A solution is now possible where the coefficients are specified as before by regarding
w as p; and w' as pj.

We then need to determine the remaining coefficients over the sub-tetrahedra Uy = [papspiw],
Uy = [pipspaw], and Us = [pypapaw] such that the C* condition is satisfied. In fact, since w €
[p1paps], the coefficients on the same layer are C'! related. For the 0-th layer (see Figure 5.2), the
control points labeled e are thus already determined. The control points o are determined by a
coplanar condition with surrounding e. Finally, the point O is determined from the surrounding
three points o by the coplanar condition.

For the 1st layer (see Figure 5.2), the control points labeled o and O are similarly determined
as the 0-th layer. For the 2nd layer (see Figure 5.2), the control points o are arbitrarily chosen and
O is determined by the coplanar condition. Finally, the 3rd layer coeflicient is free.
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5.2 The Solvability of the Related System

Concerning the solvability of the system (5.11)—(5.13) and its sub-system, we have the following
result. The proof is given in the Appendix.

Theorem 5.1 Given two affine independent point sets (pa, ps, Py, pa) and (p2, p3, ¢y, q4) as in Fig-
ure 5.1. (i) The system (5.11)-(5.13) has four independent equations. If (p1,p},p2,ps) is affine
independent, then (5.12) and (5.13) are four independent equations for the unknowns ai;,, and
by fori=1,2.

(ii) Let {r1, -+ v} = {p1, PY, pa, Py @4 @a}, {21, -5 26} = {ad110; @T110, @0111901115 Co1115 €111 -
For any 1 <1 < j <6, if ri,r;,p2,p3 are affine independent, then

TE = lefﬂﬁi + Cbgwj + 055“3)210 + ﬁbiaémm k#1,5 (5.17)
where qbf are defined by r, = cblfri + ¢]§T]’ + ¢’§p2 + ngp:a, (b]f + ¢§ + Cbl:)f + Gb{z =1

5.3 Construction of Single Sheeted A-Patches

Having built C! cubics with some free control points, we now illustrate how to determine these
free control points such that the zero-contours are three-sided or four-sided A-patches (smooth and
single sheeted).

We assume (without loss of generality) that all the normals point to the same side of the surface
triangulation T'. That is the side on which ps and pj lie(see Figure 5.1). Under this assumption, it
follows from Definition 4.1 and equation (5.2) that, the control points on the edge, say a5, @20
on edge [paps](see Figure 5.1), are nonpositive if the edge is nonnegative convex, and nonnegative
if the edge is nonpositive convex. Now we can divide all the control points into 7 groups called
layers. The 0-th layer consists of the control points that are “on” the faces of T'. The 1st layer is
next to the 0-th layer and on the same side as the normal direction, followed by the 2nd and 3rd
layers. Next to the 0-th layer but opposite to the normal, is the —1st layer, then the —2nd and
—3rd layers. Now we show that, we can set all the control points on the 2nd and 3rd layer to be
positive and the control points on the —2nd and —3rd layers to be negative.

For the face-tetrahedra, it is always possible to make the 2nd and 3rd layers control points
positive, because these control points are free under the C¥ condition. For the control points on
the edge-tetrahedra, it follows from (5.4) that the 2nd and 3rd layers control points can be positive
only if the 2nd layer control points on the neighbor face-tetrahedra are large enough. This is
achieved since 3} in (5.4) is positive(see the proof of Proposition 5.3 for details). Similarly, the
control points on the —2nd and —3rd layers can be chosen to be negative. Furthermore, all these
control points can be chosen as large as one needs in absolute value in order to get single sheeted
patches.

Since the control points around the vertices of T' are determined by the normals, the smooth
vertex condition is obviously satisfied. If the surface contains the edge [paps](see Figure 5.1), then
since al;,o(or ai;,,) is freely chosen, the smooth edge condition is easily satisfied(see the proof of
Proposition 5.3). Referring to Figure 5.1, we prove in the following that the patches constructed
over Vi and Wi are single sheeted. The other patches are similar.

Proposition 5.2. If the face [pi1p2ps] is nonnegative convez, then the control points can be deter-
mined so that the surface over Vi is a three-sided 4-patch.
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Proposition 5.3. If the edge [paps] is nonnegative convex, then the control points can be determined
such that the surface over Wy is a four-sided 14-23-palch.

Subdivision. For any face of T' = [py, pa, p3], if it is non-convex and if the three inner products of
the face normal and its three adjacent face normals have different signs, then subdivide the double
face tetrahedra into 6 subtetrahedra by adding a vertex at the center w of the face (a Clough-Tocher
split). The coefficients are specified as before by regarding w as p;(see Figure 5.1).
Proposition 5.4. If the above subdivision procedure is performed, then the control points can be
chosen so that the surface over Vi is a three-sided 4-palch, and the surface over Wy is a four-sided
14-23-patch.

A three-sided(or four-sided) patch, although by itself may be disconnected in the case of a
nonconvex face, it forms a connected piece of surface with the other three-sided(or four-sided)
patch of the double tetrahedra.

Theorem 5.2 The global piecewise surface constructed is smooth, connected and single-sheeted.
With theorem 5.2, we conclude that the surface is topologically equivalent to the input trian-
gulation.

6 Shape Control

From the discussion of §5, there are several parameters that can influence the shape of the con-
structed C'! surface. These parameters include (a) the length of the normal if its orientation is
fixed, (b) ai;1g, and (c) @d;gy > 0, aiggy > 0 @by > 0, adges > 0 and bhyy, > 0 for i = 1,2.

(a). Interactive Shape Control

The influence of the length of a normal at a vertex is as follows: if the normal becomes longer
then the surface becomes flatter at this point. Parameter ai11¢ lifts the surface upwards to the
top vertex of the tetrahedron, while others push the surface downwards toward the bottom of the
tetrahedron. In order to get a desirable surface, one may specify some additional data points in
the tetrahedron considered, then approximate these points in the least square sense.

(b). Default Shape Control

Here we only consider the effect of the free parameters, that is, suppose the normals are fixed.
The aim of the default choice of these parameters is to avoid producing bumpy surfaces. The
commonly used method is to keep the surface patch close to a quadric patch([Baj92, DTS93]).

By least squares approximation of the coefficients of a quadric ([DTS93]), one can derive that

1
a1110 = Z(alzoo + az2100 + @2010 + @1020 + @210 + @0120)

Using the same idea, the other parameters can also be determined. For example, a) for Ay > 1
can be determined by the degree elevation formula

1A
ay) = gzx\ix/\_e” |/\| = 3, /\4 > 1 (6.1)
=1
where z)_., is the solution of the following equations in the least squares sense

1 4
a)\:§ZAix,\_ei, Al=3, \q=0,1

=1
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In the same way, bygo; can be determined. Therefore, under the C'! conditions, we can define
two sets of control points {a5} and {a}} over Vi, where {a3} is yielded from the single sheeted
consideration(see Proposition 5.2-5.6), and {a}} comes from approximating a simple(quadratic)
surface. Note that the surface defined by {a}} above may not be desirable in shape, while the
surface defined by {a%} above may not be single sheeted. In our implementation we take a finite

sequence 0 = {p < t; < --- < t;, = 1 and consider {a(;)} ={1-t)al + tia}}, i=0,1,---,m
selecting the single sheeted surface defined by {a(;)} for smallest index ¢. Experiments show that

this approach works well and a desirable surface is obtained with ¢; < 0.5. Examples are shown in
Figure 7.2.

7 Examples

Examples of the simplicial hull construction and C'! smoothed triangulations using cubic A-patches
are shown in Figures 7.1, 7.2, 7.3 and 7.4. Color pictures of Figures 7.3 and 7.4 are also provided
at the end of the paper. Note in these figures how the “convex” faces are smoothed by a single cubic
A-patch per face, while a Clough-Tocher splitting occurs for co-planar faces and some “non-convex”
faces, as determined by the vertex normals assignment and the adjacent faces.

Acknowledgement: We thank the anonymous referees for their invaluable comments and sugges-
tions which has greatly improved the presentation of this paper.
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8 Appendix

The proof of Lemma 3.1. Let g(aq, az,a3) = Fay,az,a3,1 —a; —az —asz). The smoothness of
the surface patch S requires that Vg(ay, as, as) # 0 for every (a1, az, az,as)! on Sp. We prove
only the smoothness of the three-sided j-patch. The proof of smoothness of the four-sided patch is
similar.

Suppose the three-sided j-patch is not smooth. There will then be a point o* = (af, a3, a3, a})! €
dg IF OF

S in the interior of S such that Vg = 0. Since Jai = Da; — Dag’ v = 1,2,3, we have

% = % =...= %. Using Euler’s formula[Wal78] for homogeneous polynomials } ;_; ai% =
4

4F and Zai = 1, we have % =0, ¢=1,...,4. Let py € §; and t = t* € (0,1) such that
=1

a* =1"e;+(1—1")p1 = a(t*). Thatis F(a(t*)) = 0. And further %L_t* =yt 351, fai = (.

This implies that ¢* is a double zero of F(a(t)), a contradiction to the definition of the three-sided
patch. <

The proof of Theorem 3.2. For the sake of simplicity, we assume j = 4. Let p = (y1, y2, ys, O)T €
S4 (i-e'v Yi > 072?:1 Yi = 1)7

a(t) = tea+(1—=0p=((1-)y1,(1 =)y, (1 =t)ys, )T
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for t € (0,1). Then

g
Q

=
[

A1, A2, A
E|/\|_n T y11y22y33(1 _t)/\1+/\2+A3tA4

A1+ A2+A3)! A1, Aa . As n! A1+Ao+ A3 A
E|/\|_n_ M Daat Y1 Y2 Y3 (A1+/\2+A3)!A4!(1_t) TR

E (ZIM_[b/\B/\l/\Q)\S(ylvy%yS)) B?(t)
Ay=

= Yo Bi(yi,y2,y3)BF(1).

By (3.1)and (3.2), Bp >0ifk >0, B, >0,for{=1,...,k—1, B, <0, for £ =k +1,...,n If
B,=...=By_mt1 =0; By, <0 for some m with 0 < m < n—Fk —1, then F(a(t)) can be
written as

Fla(t)) =1 -1)" E Co(y1,92,y3) B, 7™ (1) (8.2)
£=0

where Cy > 0if k > 0, C,_,, < 0, and the sequence Cy,Cy...C,_,, has at most one sign change.
By the variation diminishing property of the functional BB form, the equation F'(a(t)) has at most
one root in (0,1). Finally, we need to show the surface at the boundary of the tetrahedron is
smooth. In the proof above, if we allow the intersection to occur at the boundary, then there may
be an intersection of higher multiplicity at { = 0 or ¢t = 1.That is, the surface contains vertices
or edges of the tetrahedron. Here the smooth vertex and smooth edge conditions in the theorem
guarantee that the surface is also smooth on the boundary of 5. <&

The proof of Theorem 3.3. Without loss of generality, we assume (¢, j,k,¢) = (1,2,3,4). Then
the edge [e1e2] and [esey4] can be expressed as

[erea] = {p:p=wuer + (1 — u)ez, u € [0,1]}

[eseq) = {p:p=ves+ (1 —v)eq, v e[0,1]}

and the line segment passing through the two edges is
a(t) = tleres] + (1 — t)[eseq] = (ut, (1 — u)t,v(1 — 1), (1 —v)(1—1))T
for t € (0,1). Hence

Fla(t)) = E|)\|—n A5 'u,\1(1 — u)/\zqﬂz(l — ’U)/\‘lt/\l-l-/\z(l _ t)/\g-I-M

_ baQHA2) s+ Ae)! ) Az o) A L ¢
= Yi=o (EA hn o Allujz)xgziu LM (1 - u)avs(1 - v) 4) meprt (1=0)"
1 2=

= Y=o Bi(u,v)B}(1).

It follows from (3.3) and (3.4) that #'(«()) has at most one zero in (0,1). Again, the smooth vertex
and smooth edge conditions in the theorem guarantee that the surface is smooth on the boundary

of 5. <
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The proofs of the properties of A-patches. Property (a) can be verified by re-considering the
proof of Theorem 3.2. For example, if m =1, 7 =4, (y1,92,y3) = (1,0,0) at e,,,. Hence

Bg(yl,yg,yg) = b(n—f)61+f64 = 0, {= O, 1, .. .,k.

Therefore ¢ = 0 is the root of F(a(t)) with multiplicity £ + 1. On the other hand, e,, is not a
singular point of Sg, since by #Z0 for A= (n — 1)e,, +e5. <

We illustrate Property (b) by showing that any line passing through edge [e;e;] and vertex ey
is tangent to SF with multiplicity s. In fact, if we take v = 1 in the proof of Theorem 3.3, we have

Bﬁ(uv U) = B[(U, 1) = b/\iei—l—/\]ej—l—(n—ﬁ)ek =0.

Hence t = 0 is a root of F(a(t)) with multiplicity s+ 1. Again, ey is not a singular point. <

The proof of Property (c¢) is similar to (a). <

For Property (d), the mappings are given by the definition. A point P € Sg maps to o™ € 5, if
and only if line segment (e;, o) intersects Sp at P. And the mapping is one to one for a* € S; =
{a € 5;,F(e;) - F(a®) > 0}, as (e;,a”) intersects Sg an odd number times iff F(e;) - F(a*) > 0.
<&

The proof of Property (e) is similar to (d) <

The proof of Theorem 5.1. (i). The system (5.11)—(5.13) can be written as X A = —[a}y;0 @b190] B,
where

(a7 0 B 0 7" 0
0 aof 0 Bt 0 ot
A _ a}l 0 ﬂi — M1 — M1 0 0
0 aﬁ ) ﬁz — 2 0 0
-1 0 0 0  7-m —m
L 0 -1 0 0 -1 */Z — 72 |
g | a3 Bo—ps B3—ps - 75—
ay af By—pa B —pa V3—ma V-

It follows from (5.3),(5.5), (5.9) and (5.10) that

PLoPL Pa Py G4 Gy P2 D3 A1y
11 1 1 1 1 1 1
Hence the rank of the matrix B | B at most four, that is, the matrix A is singular. Since

Bt # 0,52 # 0, the first two rows and the last two rows of A are independent. That is, matrix A
has rank four. Hence the system (5.11)—(5.13) has four independent equations. Now we show that
if (p1, P}, p2, ps) is affine independent, then the sub-matrices A; and Ay are nonsingular, where

1 _ _ 1 _ .,
A = By = ; H1 . Ay = 74 J n ; m
—p2 By — 2 —n2 Vi~

are the sub-matrices of A and they are the coefficient matrices of the equations (5.12) and (5.13)
respectively. This implies that (5.12) and (5.13) are four independent equations for unknowns ag;4
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and cyq1,% = 1,2. In fact, the affine independency of (py, p}, p2, p3) is the necessary and sufficient
condition for the nonsingularity of A; and A,. It follows from (5.3),(5.5) that

o 0
Pa Dy _ | p Py P2 ops _ 0 Bt
l ]Al‘ ll Lo 1131’ nCl IRy (83)
By —pa B3~ pa

!
Since ps # ply and B} # 0,8% # 0, matrix Ay is of full rank if the matrix [ ])11 pll pf 1113 ] is

nonsingular. On the other hand, if this matrix is singular, that is py, p}, p2, ps are coplanar, then
the matrix A; is also singular. Otherwise, p4, py will lie on the the plane (p;p|p2ps) by (8.3), which
PPy P2 D3
11 1 1

(ii). (a). If p1,p, p2, ps are affine independent, then by (8.3) we know that abi11,1 = 1,2 can
be expressed as an affine combination of ajy;y and ada10, @d120- By (5.11), ¢y11,1 = 1,2 can also be
expressed as an affine combination of @,y and a}y;0, ad;40-

(b). If we take p4, ply, p2, ps or qa, ¢4, p2, ps to be the affine independent set, then the equations
(5.11)-(5.13) are already in the form (5.17).

(c). Any other cases can be derived from one of the above cases. <&

yields a contradiction. Similarly, A5 is nonsingular iff is nonsingular.

The proof of Proposition 5.2. Since the 0-th layer control points are nonpositive, and the
second and third layers control points can be set as positive, the defined surface is then a three-
sided 4-patch (see Theorem 3.2). <&

The proof of Proposition 5.3. First, the 0-th layer control points are nonpositive, Now we show
that the second and third layer control points can be set as positive. Since p” is above the planes
(p1p2ps) and (pipaps) (i.e., it is at the same side as py of the planes), then 3% > 0. Hence from
(5.4) and (5.5), b1101 and byp11 can be set as positive if agig2 and aggi2 are chosen large enough.
Similarly, by (5.3), bigoz > 0 if aggos is chosen large enough. Also bago; can be set as positive since
it is free. Now it follows from (5.8)—(5.10) and gy > 0, pz > 0 that bajgo, b2010 and bsggp can be
set as positive. Therefore the surface defined in this way is a four-sided 14-23-patch over Wy if
[p2ps] is positive convex. If [pops] is zero convex, that is aia10 :@6120 = 0, then by (5.12) we can
make aj;;; > 0 and bj;;5 > 0 by choosing the free parameter af;;y,? = 1,2. Hence the 1st layer
control points are nonnegative. Hence here the patch over Wy degenerates to the edge [paps] and
the smooth edges condition is satisfied. However, if the parameter a},;, are over determined, then
a subdivision as in the coplanar case is needed. <

The proof of Proposition 5.4. (i). [p}p2ps] is non-convex face(see Figure 5.1). We show that all
the 1st layer’s control points over V; and W;, ¢ = 1,2 can be set as nonpositive, and the -1st layer’s
control points over V/ i = 1,2 and W/, i = 1,2 can be set as nonpositive. If py, p}, p2, p3 are affine
independent, then we use the equalities (5.15) and (5.16). Since both ps and p} are at the same
side of the surface triangulation 7T, 0{03 > 0 for 2 = 1,2. Assume, without loss of generality, that
61 > 0,65 > 0 and 67 > 0,65 > 0 and then 9] < 0,9} < 0 and ¥ < 0,95 < 0. Then by (5.15) and
(5.16), we can take ai,, large enough such that aj;,; > 0 and ¢}y;; < 0, and furthermore, their
absolute value can be larger than any specified value. Since the 1st and -1st layer’s control points
that are determined by the normals are nonnegative and nonpositive, respectively, all the the 1st
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and -1st layer’s control points can be set as nonnegative and nonpositive respectively. Therefore, the
surfaces over V; and V/ are three-sided 4-patches, and the surfaces over W; and W] are four-sided
14-23-patches(see Theorem 3.2 and 3.3). If py, p}, p2, ps are coplanar(not affine independent ), then
by Theorem 5.1, all the unknowns can be expressed linearly by ajy;q,7 = 1,2(or ¢}yqq,7 = 1,2). It
is easy to see that, we can take ai;,; > 0(or ¢j;,; < 0) large (or small) enough so that ¢4;,; < 0(or
agyyq > 0).

(ii). If [pip2ps] is convex, then the edge [paps] is convex also. Then Proposition 5.2 and 5.3 can
be used for this face and edge. As for the face [pyp2ps], the discussion above can be used.

Finally, we point out why the splitting is necessary. Consider the face [p;paps] as an example(see
Figure 5.1). In order to have a};q1,al1q;, alg; greater than zero, al;, has to be determined three
times by the three C! constraints if no splitting is performed. Therefore, in general a solution is
impossible without splitting. Also note that, if the three inner products between the face normal and
its neighbor’s face normals have the same sign(positive or negative), then al;;; can be determined
so that alyy1,ali01, @lg1; are greater than zero. Hence here we do not need to split the face. <

The proof of Theorem 5.2.

We consider as the general case double face tetrahedra and double edge tetrahedra.

(Smoothness) The whole surface is smooth as each single piece is smooth.

(Connectedness and Single-sheetedness) Let S = [p1p2psps] and S’ = [p1papsqa] be two face
tetrahedra sharing face S4, Sp and 5%, be the two three-sided 4-patches over them. From the
single sheeted construction, F(es) < 0 and F'(eq) > 0 and from the Cy conditions, for o* € 9y,
F(a*) = F'(a*). From the A-patch Property (d) in section 3, a polyline psa*qy intersects the
“double” patch D = S A Sy exactly once. Hence D is single-sheeted over the double tetrahedra.
In particular, psa*qy intersects Sy, when F(a*) > 0, Sg when F(a*) < 0, and both S and 5}, at
a* when F(a*) = 0 where S and S, meet. Regard the “double” surface D as a function of a*
denoted as D(a*). From the fact that the two patches are smooth and at least C° to each other,

9*—%310654 D(o7) = Die”)
Hence D is connected over the double tetrahedra S A 5.

Similarly, let S = [pipapsps] and S’ = [¢ip2p3qs] be two edge tetrahedra sharing edge [p2ps],
and Sg, ST, be the two four sided 14-23-patches over them. From the single sheeted construction,
F(3*) < 0 for 3* € [p\p4] and F'(v*) > 0 for v* € [¢]qa]. From the C° conditions, F(a*) = F'(a*),
for a* € [pyps]. Again from Property (e), polyline 5*a*~* intersects the double patch D = Sy A S,
exactly once. Hence D is single-sheeted over the double tetrahedra. In particular, 3*a*y* intersects
S% when F(a*) > 0, Sg when F(a*) < 0, and both Sr and 7%, at a when F(a*) = 0 where Sy and
S meet. Regard D as a function of (a, ), denoted as D(«, §), where (a,1 — a) is the barycentric
coordinate of a* and (§,1 — () is the barycentric coordinate of 5* or v*. From the facts the two
patches are smooth and at least C¥ to each other, we have,

lim_D(8,6) = Dia, 5)

Hence D is connected over the double tetrahedra S A S/. <
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