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Abstract

We present e�cient algorithms to model a collection of scattered function data de�ned
on a given smooth domain surface D in three dimensional real space (IR3), by a C1 cubic or
a C2 quintic piecewise trivariate polynomial approximation F (a mapping fromD into IR4).
The smooth polynomial pieces or �nite elements of F are de�ned on a three dimensional
triangulation called the simplicial hull and de�ned over the domain surface D. Our smooth
polynomial approximations allows one to additionally control the local geometry of the
modeled function F . We also present two di�erent techniques for visualizing the graph of
the function F .

1 Introduction

In this paper, we consider the following problem: Given an arbitrary collection of points
P = f(xi; yi; zi; Fi)�IR

4gMi=1 with (xi; yi; zi)�IR
3 on a given smooth surface D, called the do-
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main surface, construct a C1=C2( \/" stands for \or") piecewise smooth function F , known as
the function-on-surface, such that F (xi; yi; zi) = Fi; i = 1; � � � ;M: Also visualize the graph of
the function-on-surface F .

The problem of modeling and visualizing functions sampled on physical objects arises in sev-
eral application areas: characterizing the rain fall on the earth, the pressure on the wing of an
airplane and the temperature on a human body. A number of methods have been developed for
dealing with this problem (for surveys see [3], [7]). Currently known approaches for approximat-
ing function-on-surface data however possess restrictions either on the domain surfaces or the
function-on-surfaces. The domain surfaces are usually assumed to be spherical, convex or genus
zero. The function-on-surface are not always polynomial [4], [8] or rather higher order polyno-
mial [9] or a large number of pieces [1] compared to the approach of this paper. The method
of [1] is a C1 Clough-Tocher scheme that splits a tetrahedron into 4 subtetrahedra, uses degree
5 polynomials and requires C2 data on the vertices of each subtetrahedron. Another Clough-
Tocher scheme[10] requires only C1 data at the vertices, for again constructing a C1 function
which is a cubic polynomial over each subtetrahedron, however splits the original tetrahedron
into 12 pieces. A C1 scheme [9] that does not split each tetrahedron uses degree 9 polynomials
and requires C4 data at the vertices. In extending the method of [9] to a C2 scheme, requires
degree 17 polynomials and C8 data at the vertices of each tetrahedron. Compared to these
approaches, our C1=C2 construction has no splitting and uses much lower degree polynomials
(cubic/quintic) requiring only C1=C2 data respectively, at the vertices of each tetrahedron.

Our solution to the modeling problem involves the following steps: (a). Construct a planar
triangular approximation T of the domain surface D in the region of the points (xi; yi; zi) on D.
(b). Generate C1/C2 data at the vertices of the triangulation T for a desired C1/C2 smooth
approximation, respectively. (c). Construct a simplicial hull (de�ned below)

P
surrounding the

triangulation T . (d). Build the C1/C2 function-on-surface F over
P

by locally interpolating
the C1/C2 data, respectively. (e). Visualize the graph of the function-on-surface F . We shall
not address the �rst two steps (a) and (b) in this paper. A algorithm for the construction of
the triangulation T of the given surface is given in [5]. See also Figure 1.1. However, we require
our triangulation to satisfy certain conditions which will be discussed in x3. The problem of
estimating the C1/C2 data at the vertices of T is studied in a separate paper[2]. In this paper, we
detail the steps (c), (d) and (e) in x3, x4, and x5 respectively, after the notation and preliminary
section x2.

2 Notation and Preliminary Details

Bernstein-Bezier (BB) Form: Let p1; p2; p3; p4 2 IR3 be a�ne independent. Then the
tetrahedron with vertices p1; p2; p3, and p4 is the convex hull de�ned by [p1p2p3p4] = fp 2 IR3 :
p =

P4
i=1 �ipi; �i � 0;

P4
i=1 �i = 1g. For any p =

P4
i=1 �ipi 2 [p1p2p3p4], � = (�1; �2; �3; �4)T

denotes the barycentric coordinates of p. Any polynomial f(p) of degree n can be expressed as
Bernstein-Bezier(BB) form over [p1p2p3p4] as f(p) =

P
j�j=n b� B

n
�(�); � 2 Z4

+, where B
n
�(�) =

n!
�1!�2!�3!�4!

��11 �
�2
2 �

�3
3 �

�4
4 is Bernstein polynomial, j�j =

P4
i=1 �i with � = (�1; �2; �3; �4)T =
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Figure 1.1: A piecewise smooth domain surface D1 and a triangulation on it.

P4
i=1 �iei, b� = b�1�2�3�4(as a subscript, we simply write � as �1�2�3�4) are called control points

or weights, and Z4
+ stands for the set of all four dimensional vectors with nonnegative integer

components. The following basic facts about the BB form will be used in this paper.

Lemma 2.1. Let f(p) = F (�) =
P

j�j=n b�B
n
�(�) where � denotes the barycentric coordinates

of p. Then for any pair of points p(1) and p(2), with �(1) and �(2) as their barycentric coordinates,
we have

rf(p)T (p(1) � p(2)) = n
X

j�j=n�1

b1�(�
(1) � �(2))Bn�1

� (�)

(p(1) � p(2))Tr2f(p)(p(1) � p(2)) = n(n� 1)
X

j�j=n�2

b2�(�
(1) � �(2))Bn�2

� (�)

where rf(p) = [@f(p)
@x

@f(p)
@y

@f(p)
@z

]T ; r2f(p) = [r@f(p)
@x

; r@f(p)
@y

r@f(p)
@z

] and br�(�
(1) � �(2))=P

jjj=r b�+j B
r
j (�

(1) � �(2))
See [6] for the two dimensional case of the above lemma. From this lemma we have

Corollary 2.2. Let f(p) =
P

j�j=n b�B
n
�(�) be de�ned on the tetrahedron [p1p2p3p4], then

b(n�1)ei+ej = bnei +
1

n
(pj � pi)

Trf(pi); j 6= i (2:1)

b(n�2)ei+ej+ek = �bnei + b(n�1)ei+ej + b(n�1)ei+ek

+ 1
n(n�1)

(pj � pi)Tr2f(pi)(pk � pi); j 6= i; k 6= i
(2:2)

3



p

p

p

pp’

2

3

4

1
1

p

p

p

pp’

2

3

4

1
1

(a)                                                                     (b)

Figure 2.1: The related control points of C1 (a) and C2 (b) conditions

The corollary tell us that the weights around a vertex can be computed from the given C2

data.

Lemma 2.3 ([6]). Let f(p) =
P

j�j=n a�B
n
�(�) and g(p) =

P
j�j=n b�B

n
�(�) be two polynomials

de�ned on two tetrahedra [p1p2p3p4] and [p01p2p3p4], respectively. Then
(i) f and g are C0 continuous at the common face [p2p3p4] if and only if

a� = b�; for any � = 0�2�3�4; j�j = n (2:3)

(ii) f and g are C1 continuous at the common face [p2p3p4] if and only if (2.3) holds and

b1�2�3�4 = �1a1�2�3�4 + �2a0�2�3�4+0100 + �3a0�2�3�4+0010 + �4a0�2�3�4+0001 (2:4)

(iii) f and g are C2 continuous at the common face [p2p3p4] if and only if (2.3)-(2.4) holds and

b2�2�3�4 = �2
1a2�2�3�4 + 2�1�2a0�2�3�4+1100 + 2�1�3a0�2�3�4+1010 + 2�1�4a0�2�3�4+1001

+ �2
2a0�2�3�4+0200 + 2�2�3a0�2�3�4+0110 + 2�2�4a0�2�3�4+0101

+ �2
3a0�2�3�4+0020 + 2�3�4a0�2�3�4+0011 + �2

4a0�2�3�4+0002

(2:5)

where � = (�1; �2; �3; �4)T are de�ned by the relation p01 = �1p1 + �2p2 + �3p3 + �4p4; j�j = 1.
In Lemma 2.3, if we divide (2.4) and (2.5) by �2

4, then the C1 and C2 conditions become

a0�2�3�4+0001 = �1a1�2�3�4 + �2b1�2�3�4 + �3a0�2�3�4+0100 + �4a0�2�3�4+0010 (2.6)

�1(�1a2�2�3�4 + �3a0�2�3�4+1100 + �4a0�2�3�4+1010 � a0�2�3�4+1001)

= �2(�2b2�2�3�4 + �3b0�2�3�4+1100 + �4b0�2�3�4+1010 � b0�2�3�4+1001) (2.7)

respectively, where �1 = ��1
�4
; �2 =

1
�4
, �3 = ��2

�4
; �4 = ��3

�4
, that is p4 = �1p1+�2p01+�3p2+�4p3.

It is not di�cult to show the following from Corollary 2.2 :

Lemma 2.4. Let f(p) and g(p) be de�ned as Lemma 2.3. If the coe�cients of f and g around
the vertices are determined by (2.1){(2.2), then the C1 and C2 conditions (2.4){(2.5) related
only to these coe�cients are satis�ed.
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Degree Elevation. The polynomial f(p) =
P

j�j=n b� B
n
�(�) can be written as one of degree

n+ 1 (see e.g. [6] ). f(p) =
P

j�j=n+1 (Eb)� B
n+1
� (�); � 2 Z4

+ where (Eb)� =
1

n+1

P4
i=1 �ib��ei.

We shall use these formulas in approximating lower degree polynomials, in x4.

3 Simplicial Hull

Given a planar triangular approximation T of D containing (and not necessarily as vertices)
the points (xi; yi; zi) on D, a simplicial hull of D and T , denoted by

P
, is a collection of non-

degenerate tetrahedra which satis�es the following:
(1) Each tetrahedron in

P
has either a single edge of T (then it will be called an edge

tetrahedron) or a single face of T (then it will be called a face tetrahedron).
(2) For each face f of T there are at most two face tetrahedra (above and below f) in

P
that share the face f .

(3) Two face tetrahedra that share a common edge do not intersect in any other region.
This condition is referred to in this paper as non-self-intersection.

(4) For each edge there are two pairs of common face sharing edge tetrahedra in
P
, such

that each pair blends the two adjacent face tetrahedra on the same side.
(5) The surface D is contained in

P
. This condition is referred to in this paper as the surface

containment condition.
Therefore, a simplicial hull of D and T is in a neighborhood surrounding D. It should be

noted that, for the given triangulation T of D, there may exist in�nitly many simplicial hulls
or perhaps no simplicial hull may exist. However under the following conditions on T , we can
always construct a simplicial hull.
Condition 1. The triangulation T is locally even. That is for every face of T , say [p1p2p3], the
angle between the surface normal ni at the vertex pi and the normal of the face [p1p2p3] is less
than

tan�1(
2s tan(12 minf�1; �2; �3g)

k kpj � pik(pk � pi) + kpk � pik(pj � pi) k
)

for i = 1; 2; 3 and distinct 1 � i; j; k � 3. Here s is the area of the face [p1p2p3], and �1; �2; �3

are the dihedral angles of the three edges of the face [p1p2p3].
Condition 2. The surface D is single sheeted on T . That is, for every face of T , say [p1p2p3]
let L be a straight line that is perpendicular to the face f and passes through the center c of
the inscribed circle of f . Let p4 and q4 be the center's nearest points on L o� each side of f
such that kp4 � ck = kq4� ck and the three tangent planes at the three vertices are contained in
[p4p1p2p3q4]. Then for any p 2 f the broken line [p4pq4] intersects the surface D only once.
Condition 3. Any two adjacent faces are not coplanar.

Since the given surface is curved and smooth, by adding additional points on D, we can
modify the algorithm of [5] to achieve a T satisfying the above conditions.

For such a T we now show how to construct a simplicial hull
P

in two easy steps.
1. Build Face Tetrahedra. For each face f = [p1p2p3] of T , let L be a straight line that is
perpendicular to the face f and passes through the center c of the inscribed circle of f . Let p4

5



and q4 be the center's nearest points on L o� each side of f such that kp4 � ck = kq4 � ck and
the three tangent planes at the three vertices are contained in [p4p1p2p3q4], then construct two
face tetrahedra [p1p2p3p4] and [p1p2p3q4].
2. Build Edge Tetrahedra. Let [p2p3] be an edge of T and [p1p2p3] and [p01p2p3] be the
two adjacent faces. Let [p1p2p3p4] and [p1p2p3q4], and [p01p2p3p

0
4] and [p01p2p3q

0
4] be the face

tetrahedra built for the faces [p1p2p3] and [p01p2p3], respectively. Now two pairs of tetrahedra
are constructed. The �rst pair [p001p2p3p4] and [p001p2p3p

0
4] is between [p01p2p3p

0
4] and [p1p2p3p4].

The second pair [q001p2p3q4] and [q001p2p3q
0
4] is between [p01p2p3q

0
4] and [p1p2p3q4]. Here p001 2 (p4p04)

or above (p4; p04), say p001 = (1�t)
2

(p2 + p3) +
t
2
(p04 + p4); t � 1, so that p001 is above [p2; p3]

and the surface containment condition is satis�ed. Similarly, q001 2 (q4q04) or below (q4; q04), say

q001 =
(1�t)
2

(p2 + p3) +
t
2
(q04 + q4); t � 1, so that q001 is below [p2; p3] and the surface containment

condition is satis�ed.
The locally even condition guarantees that the face tetrahedron constructed has height(the

distance between the top vertex p4 or q4 to the face) at most r tan(1
2
minf�0; �1; �2g), where r

is the radius of the inscribed circle. Hence the dihedral angles at the bottom edges of the tetra-
hedron are less than 1

2 minf�0; �1; �2g. Therefore, there is no additional intersection between
two adjacent face tetrahedra.

4 C1=C2 Interpolation by Cubic/Quintic

Suppose we have established a simplicial hull
P

for the given triangulation T of D. Now we
construct a C1=C2 function f over

P
such that f has the given C1=C2 data, respectively at

each vertex. Let V1 = [p1p2p3p4]; V2 = [p01p2p3p
0
4]; W1 = [p001p2p3p4], W2 = [p001p2p3p

0
4]; V 0

1 =
[p1p2p3q4]; V 0

2 = [p01p2p3q
0
4], W 0

1 = [q001p2p3q4]; W 0
2 = [q001p2p3q

0
4] and the cubic/quintic polyno-

mials fi over Vi, gi over Wi, f 0i over V
0
i and g0i over W

0
i be expressed in Bernstein-Bezier form

with coe�cients a
(i)
� ; b

(i)
� , c

(i)
� and d

(i)
� , respectively. Now we shall determine these coe�cients

step by step. Denote

p001 = �
(1)
1 p1 + �

(1)
2 p2 + �

(1)
3 p3 + �

(1)
4 p4; �

(1)
1 + �

(1)
2 + �

(1)
3 + �

(1)
4 = 1

p001 = �
(2)
1 p01 + �

(2)
2 p2 + �

(2)
3 p3 + �

(2)
4 p04; �

(2)
1 + �

(2)
2 + �

(2)
3 + �

(2)
4 = 1

p001 = �1p4 + �2p
0
4 + �3p2 + �4p3; �1 + �2 + �3 + �4 = 1

(4:1)

C1 Cubic Scheme
(1) The number 0 weights(see Figure 4.1) are given by the function values at the vertices.
(2) The number 1 weights are determined by formula (2.1) from C1 data.

(3) The number 2 weights, that is a(i)1110, are free.
(4) The number 3 weights are determined by C1 conditions (2.4) and (2.6). More precisely,

a
(i)
0111 = �

(i)
1 a

(1)
1110+ �

(i)
2 a

(i)
0210+ �

(i)
3 a

(i)
0120 + �

(i)
4 a

(2)
1110; i = 1; 2

where
p4 = �

(1)
1 p1 + �

(1)
2 p2 + �

(1)
3 p3 + �

(1)
4 p01; �

(1)
1 + �

(1)
2 + �

(1)
3 + �

(1)
4 = 1

p04 = �
(2)
1 p1 + �

(2)
2 p2 + �

(2)
3 p3 + �

(2)
4 p01; �

(2)
1 + �

(2)
2 + �

(2)
3 + �

(2)
4 = 1
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Figure 4.1: Adjacent Tetrahedra, Control Points of Cubic Functions
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(5) The number 4 weights are free.
(6) The number 5 weights are determined by C1 conditions (2.4).
(7) The number 6 weights are free.
(8) The number 7 weights are determined by C1 conditions (2.6).
The remaining weights with index �1�2�3�4 are determined by C1 condition (2.4) for �4 � 1

and freely chosen for �4 > 1.

C2 Quintic Scheme
(1) The number 0 weights(see Figure 4.2) are given by the function values at the vertices.

For examples, a(1)5ei = f(pi); i = 1; 2; 3.
(2) The number 1 weights are determined by formula (2.1).
(3) The number 2 weights are determined by formula (2.2).

(4) The number 3 weights, that is a
(i)
1220; a

(i)
2210 and a

(i)
2120, are free.

(5) The number 4 weights are determined by C1 conditions (2.4), that is

a
(i)
0221 = �

(i)
1 a

(1)
1220 + �

(i)
2 a

(i)
0320+ �

(i)
3 a

(i)
0230+ �

(i)
4 a

(2)
1220

b
(1)
1220 = �1a

(1)
0221 + �2a

(2)
0221+ �3a

(1)
0320+ �4a

(1)
0230

(6) The number 5 and 6 weights have to be determined simultaneously. In determining these
weights, we need to consider all the C1 and C2 conditions related to the tetrahedra surrounding
the vertex p2. Suppose there are k triangles(hence k edges) around p2, then by C1 and C2

conditions, we have 6k equations. That is, crossing each face, we have two equations. The
number of related unknowns is also 6k. That is, k number 5 weights and 5k number 6 weights.
Now we investigate these equations. It follows from (2.4) and (2.5) that

b
(i)
1211 = �

(i)
1 a

(i)
1211+ �

(i)
2 a

(i)
0311+ �

(i)
3 a

(i)
0221+ �

(i)
4 a

(i)
0212 (4:2)

b
(i)
2210 = �

(i)
1 �

(i)
1 a

(i)
2210+ 2�

(i)
1 �

(i)
2 a

(i)
1310+ 2�

(i)
1 �

(i)
3 a

(i)
1220 + 2�

(i)
1 �

(i)
4 a

(i)
1211+ �

(i)
2 �

(i)
2 a

(i)
0410

+ 2�(i)
2 �

(i)
3 a

(i)
0320+ 2�(i)

2 �
(i)
4 a

(i)
0311 + �

(i)
3 �

(i)
3 a

(i)
0230 + 2�(i)

3 �
(i)
4 a

(i)
0221+ �

(i)
4 �

(i)
4 a

(i)
0212

(4:3)

for i = 1; 2. (4.2) and (4.3) can be written brie
y as

b
(i)
1211 = �

(i)
1 a

(i)
1211+ �

(i)
4 a

(i)
0212i+ 


(i)
0 (4:4)

b
(i)
2210 = 2�(i)

1 �
(i)
4 a

(i)
1211+ �

(i)
4 �

(i)
4 a

(i)
0212+ 


(i)
1 (4:5)

where 
(i)0 and 
(i)1 are the known terms in (4.2) and (4.3). Since (see (2.6) and (2.7) )

b
(1)
2210 = �1b

(1)
1211+ �2b

(2)
1211+ 
2 (4:6)

�21b
(1)
0212 � �1b

(1)
1211 = �22b

(2)
0212� �2b

(2)
1211 + 
3 (4:7)
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where 
2 = �3b
(i)
1310 + �4b

(i)
1220 and 
3 = �2(�3b

(2)
0311 + �4b

(2)
0221) ��1(�3b

(1)
0311 + �4b

(1)
0221), then by

substituting (4.4) into (4.6) and (4.7) and then eliminating b
(i)
2210 from (4.5) and (4.6) we get

three equations related to four unknowns which could be written as:

"
�
(1)
4 � �1 ��2
��1 �

(2)
4 � �2

# "
�
(1)
4 0

0 �
(2)
4

# "
a
(1)
0212

a
(2)
0212

#

= �

"
2�

(1)
4 � �1 ��2
��1 2�(2)

4 � �2

# "
�
(1)
1 0

0 �
(2)
1

# "
a
(1)
1211

a
(2)
1211

#
+

"


(1)
4



(2)
4

#
(4.8)

h
��1(�

(1)
4 � �1) �2(�

(2)
4 � �2)

i " a(1)0212

a
(2)
0212

#
�
h
�1�

(1)
1 ;��2�

(2)
1

i " a(1)1211

a
(2)
1211

#
= 
5 (4:9)

where 

(1)
4 = �1


(1)
0 +�2


(2)
0 +
2�


(1)
1 , 


(2)
4 = �1


(1)
0 +�2


(2)
0 +
2�


(2)
1 , and 
5 = 
3+�1


(1)
0 ��2


(2)
0 .

Since the coe�cient matrix of (4.8) is nonsingular, by solving [a
(1)
0212 a

(2)
0212]

T from (4.8) and then

substituting it into (4.9), we get one equation relating to the unknowns a
(1)
1211; a

(2)
1211. Let the

equation be in the form
�ia

(1)
1211+  ia

(2)
1211 = !i (4:10)

Then, these unknowns form a closed chain around the vertex p2. The coe�cient matrix of all
these equations related to the vertex p2 is in the form of

A =

2
66664
�1  1

�2  2

. . .

 k �k

3
77775

The system (4.10) is a solvable in general with one degree of freedom. That is the rank of
matrix A is k � 1. Hence the system can be solved. However, if the surrounding tetrahedra

at the same side at p2 are not closed, the matrix A is in the form of A =

2
664
�1  1

. . . . . .

�k  k

3
775

which can be changed to A =

"
A1 0
0 A2

#
if one of the unknowns, say the l-th is chosen to be a

free parameter. Hence the system of equations can be decomposed into two sub-systems. Each
of the sub-systems can be easily solved.

(7) The number 7 weights are similarly determined as that of number 6.

(8) The number 8 weight a(i)1112 are free.
(9) The number 9 weights are determined by the C1 and C2 conditions. Both the number

of equations and the number of unknowns are 6k. That is for i = 1; 2

b
(i)
1202 = �

(i)
1 a

(i)
1202+ �

(i)
2 a

(i)
0302+ �

(i)
3 a

(i)
0212+ �

(i)
4 a

(i)
0203 (4:11)
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b
(i)
2201 = �

(i)
1 �

(i)
1 a

(i)
2201+ 2�

(i)
1 �

(i)
2 a

(i)
1301+ 2�

(i)
1 �

(i)
3 a

(i)
1211 + 2�

(i)
1 �

(i)
4 a

(i)
1202+ �

(i)
2 �

(i)
2 a

(i)
0401

+ 2�(i)
2 �

(i)
3 a

(i)
0311+ 2�(i)

2 �
(i)
4 a

(i)
0302 + �

(i)
3 �

(i)
3 a

(i)
0221 + 2�(i)

3 �
(i)
4 a

(i)
0212+ �

(i)
4 �

(i)
4 a

(i)
0203

(4:12)

b
(1)
3200 = �1b

(1)
2201+ �2b

(2)
2201+ 
6 (4:13)

�21b
(1)
1202 � �1b

(1)
2201 = �22b

(2)
1202� �2b

(2)
2201 + 
7 (4:14)

where 
6 = �3b
(i)
2300 + �4b

(i)
2210 and 
7 = �2(�3b

(2)
1301 + �4b

(2)
1211) ��1(�3b

(1)
1301 + �4b

(1)
1211). Substitute

(4.11) and (4.12) into (4.14), so that we have

�1�
(1)
4 (�1 � �

(1)
4 )b

(1)
0203� �2�

(2)
4 (�2 � �

(2)
4 )b

(2)
0203 = � � �

This is a system that is in the same form as (4.10). The coe�cient matrix of this system is
nonsingular, in general.

(10) For the number 10 weights, we have six equations parallel to the equations (4.11){(4.14)
with all the indices changed by the rule:

The index of the number 10 weight = The index of the number 9 weight � e2 + e3

and seven independent weights. By chosing one of them, say b
(i)
3110, to be a free parameter, the

system can be solved.
(11) The number 11 weights are determined in the same way as the number 9.
(12) The number 12 and 13 weights are free, while the number 14 are determined by C1

and C2 conditions. That is b
(i)
1103 are de�ned by (2.4). b

(i)
2102 are de�ned by (2.5). For b

(i)
3101, we

have by (2.6) and (2.7) that

�1b
(1)
3101+ �2b

(2)
3101 = b

(1)
4100 + 
8; ��1b

(1)
3101 + �2b

(2)
3101 = �22b

(2)
2102� �21b

(2)
2102+ 
9

where 
8 = ��3b
(i)
3200 � �4b

(i)
3110 and 
9 = �2(�3b

(2)
2201+ �4b

(2)
2111) ��1(�3b

(1)
2201+ �4b

(1)
2111).

b
(1)
3101 =

b
(1)
4100� �22b

(2)
2102+ �21b

(2)
2102 + 
8 � 
9

2�1
; b

(2)
3101 =

b
(1)
4100 + �22b

(2)
2102� �21b

(2)
2102+ 
8 + 
9

2�1

(13) The number 15 weights are similar to that of number 14, the index being changed by
the same rule as above.

(14) The number 16 weights are free, the number 17's are determined by C1 and C2 condi-
tions.

(15) The number 0 to number 8 weights of the lower tetrahedra, below faces of T (see Figure
4.2) are determined by C0, C1 and C2 conditions (2.3), (2.4) and (2.5) from weights in the upper
tetrahedron.

16 The number 9 to 17 weights of the lower tetrahedra are determined in a fashion similar
to the C0, C1 and C2 conditions between the face and edge tetrahedra.

In summary, the construction steps 1{14 and 16 is according to the C0, C1 and C2 conditions
across the common faces between face and edge tetrahedra that are both above or both below
the original triangulation T . Step 15 is according to the C0, C1 and C2 conditions across the
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faces of T and between the upper and lower tetrahedra. Therefore, the composite function is
global C2 continuous in

P
.

The Use of Free Weights
In both of the C1 and C2 schemes described above, there are some free weights which can

be freely determined to control the local geometry of F without a�ecting the continuity. We
suggest three approaches or their combinations to achieve this local control. The �rst is to
modify the shape of F by interactively adjusting the free weights. The second is to locally
interpolate some of the function-on-surface data earlier approximated by the polynomial in each
tetrahedron. The third approach is to least-square approximate some additional lower degree
polynomial (acting as a controlling function) by use of the degree elevation formula of x2. For
example, in the C1 scheme, the number 2 weights can be determined by

a
(i)
1110 =

1

4
(a(i)1200+ a

(i)
2100+ a

(i)
2010 + a

(i)
1020+ a

(i)
0210+ a

(i)
0120)�

1

6
(a(i)3000+ a

(i)
0300+ a

(i)
0030)

and the number 4 weights are determined by

a
(i)
0003 =

1

3
[2(q

(i)
0101+ q

(i)
1001+ q

(i)
0011)� (a

(i)
0300 + a

(i)
3000+ a

(i)
0030)]

a
(i)
0102 =

1

3
(2q

(i)
0101+ a

(i)
0003); a

(i)
1002 =

1

3
(2q

(i)
1001 + a

(i)
0003); a

(i)
0012 =

1

3
(2q

(i)
0011+ a

(i)
0003)

where

q
(i)
0101 =

3

4
(a(i)1101� a

(i)
1011+ a

(i)
0111 + a

(i)
0201)�

1

4
(q(i)1100 � q

(i)
1010 + q

(i)
0110+ a

(i)
0300)

q
(i)
1001 =

3

4
(a

(i)
1101+ a

(i)
1011 � a

(i)
0111 + a

(i)
2001)�

1

4
(q

(i)
1100 + q

(i)
1010� q

(i)
0110+ a

(i)
3000)

q
(i)
0011 =

3

4
(�a

(i)
1101+ a

(i)
1011+ a

(i)
0111 + a

(i)
0021)�

1

4
(�q

(i)
1100+ q

(i)
1010 + q

(i)
0110+ a

(i)
0030)

q
(i)
1100 =

1

4
(3a

(i)
1200 + 3a

(i)
2100� a

(i)
0300� a

(i)
3000)

q
(i)
1010 =

1

4
(3a

(i)
2010 + 3a

(i)
1020� a

(i)
0030� a

(i)
3000)

q
(i)
0110 =

1

4
(3a

(i)
0210 + 3a

(i)
0120� a

(i)
0300� a

(i)
0030)

5 Visualization and Examples

We can visualize the graph of the constructed function F on the domain surface D either by
projecting the iso-contours onto the surface D, or by directly dsiplaying iso-contours or the
surface graph of the function F in space.
Displaying Iso-contours of F on D
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Figure 5.1: Iso-contours of a C1 approximated function F shown on a domain torus D

Figure 5.2: Iso-contours of a C2 approximated function F shown on and surrounding a domain
torus D using a normal projection
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We display the iso-contours on the domain surface by showing di�erent colors in the region
between two iso-contours. In our approach, we achieve this by �rst generating a planar triangular
approximation of the domain surface, and then generating the corresponding four dimensional
triangles on F , and �nally intersecting these triangles with the iso-values to get the line segments
of the iso-contours. Let w be a given iso-value, [p1p2p3] be a triangle on D. Without loss of
generality, we may assume F (p1) � F (p2) � F (p3). Then if w < F (p1) or w > F (p3), the
triangle does not intersect the iso-value. If w 2 [F (p1); F (p3)], say w 2 [F (p1); F (p2)], let

t1 =
w�F (p1)

F (p2)�F (p1)
; t2 =

w�F (p1)
F (p3)�F (p1)

, q1 = t1p1 + (1 � t1)p2; q2 = t2p1 + (1 � t2)p3, then [q1q2]

is one segment of the contour F (p) = w. The collection of all of these line segments form a
piecewise approximation to the iso-contours. By increasing the resolution of the triangulation of
the domain surface, we can get better approximations of the iso-contours. Figure 5.1 (left and
right) shows the iso-contours of a C1 approximated function F , on a domain torus D. Figure 5.2
(left and right) shows the iso-contours of a C2 approximated function F , on a domain torus D.
The iso-contours of the C2 approximated function F are also shown surrounding the domain
torus using the normal projection scheme given below.
Displaying Iso-contours and the graph of F in IR3

Since the iso-contours may not clearly indicate the geometric shape of the function-on-
surface, one often plot the function-on-surface in one way or another. One approach is to use
a radial projection from some center of the domain. However, if the domain surface is not
convex or has non-zero genus, this projection scheme has di�culties caused by self-intersection.
Another more natural way is to use the normal projection, that is, project the point p on
the domain surface D to a distance proportional to F (p) in the normal direction of D at p:

G(p) = p + L rf(p)(F (p)�Fmin)
krf(p)k(Fmax�Fmin)

where L is a positive scalar, Fmin and Fmax are minimum and
maximum values of F on D. Here L has to be chosen properly so that the projected surface G
does not self-intersect.

Figures 5.3, 5.4, (left and right) shows the iso-contours of a C2 approximated function F , on
a domain D. The iso-contours of the C2 approximated function F are also shown surrounding
the domain using the normal projection scheme.
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