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Abstract

We present a unified approach for the reconstruction of both a ¢! smooth domain surface
S and a C! smooth function §; (surface-on-surface) on the domain surface Sy [rom an un-
organized collection of weighted points {(zi,y:, zi, wi)}. The set of points P = {(z;, ¥, z)}
are assumed to be sampled from on or near an unknown domain S in IR® while the weighis
w; are assumed sampled from some unknown scalar function F on the domain 5. Examples
include the pressure I on the wing 5 of an airplane or the temperature T on a portion § of
the human body. The simplicity and unified nature of our algorithm arises from several uses
of appropriate sub-structures of the three-dimensional Delaunay Triangulation, and its dual the
three-dimensional Voronoi diagram. The C! smooth surface Sy and the C! smooth function S
are construeted using trivariate cubic Bezier patches. We also present techniques for efficiently
producing different visualizations of the reconstructed surface Sy and the surface-on-surface Sy.

*This work was supported in part by NSF grants CCR 92-22467, DMS 91-01424, AFQSR grants F49620-93-10138,
F49620-94-1-0080, NASA grant NAG-1-1473 and a gift from AT&T.




1 Introduction

We consider the following problem:

Given an unorganized collection of weighted points {(z;, yi, zi, wi)} C R, i = 1...n, where the set
of points P = {(z;,i,2:)} C R? are assumed to be sampled from on or near an unknown domain
S in IR? while the weights {w;} C IR! are assumed sampled from some known or computed scalar
function F on the domain §, construct a C' smooth surface Sy : F(I)(a:, Y¥,z) = 0 and a C! smooth
function (surface-on-surface) Sy : F?)(z,y, z) on some domain that contains P such that

1 F(ll(x,-,y.-,z.-) =0

2. F{z}(:ﬂ,—, Uiy Zi) = w;

Additionally, generate different visualizations of the domain surface 54 and the surface-on-surface
5.

! Reconstructing the domain surface §g from unorganized points in IR? is a fundamental problem
in CAD and computer vision [10, 25, 33]). These papers provide a very nice survey of both the
varied nature of applications and past approaches. The new techniques introduced in [10, 25, 33]
are for piecewise-linear C° reconstructions of the unknown surface S. In this paper we construct
a C1 smooth domain surface Sy using piecewise cubic, triangular implicit Bezier patches (the zero
contour of a C! trivariate piecewise Bezier function). Related prior work [2, 4, 5, 12, 13, 23, 24] of
fitting with smooth implicit surface patches, minimally all require an input surface triangulation
of the data points. The paper of [26] is similars to ours in that it only assumes a sufficiently dense
set of input data points but differs from our approach in the adaptive nature of refinement, in time
efficiency and in the degree of the implicit surface patches used . Paper [26] uses an octree like
static subdivision scheme and then uses tri-quadratic (degree six) tensor product surface patches
to achieve C! continuity. Qur scheme effectively utilizes the incremental Delaunay triangulation
for a more adaptive fit; the dual Voronoi diangram for efficient point location in signed distance
computations and degree three implicit surface patches. Furthermore, in the same time it computes
a C! smooth approximation Sy of the sampled scalar function.

If the surface S4 is given, the problem of constructing the scalar function Sy is known as surface
interpolation on 2 surface, and arises in several application areas. For example, in modeling and
visualizing the rain fall on the earth, the pressure on the wing of an airplane or the temperature on
a human body. Note that the trivariate scalar function Sy is a two dimensional surface in IR? since
its domain is the two dimensional surface §y (and not all of IR?). The problem is relatively recent
and was posed as an open question by Barnhill [6]. A number of methods have been developed since
then for dealing with the problem (for surveys see [7, 22, 28]). Most of the solutions interpolate
scattered data over planar or spherical domain surfaces. In [9] and [21], the domain surface is
generalized to a convex surface and a topological genus zero surface, respectively. Pottmann [30]
presents a method which does not possess similar restrictions on the domain surface but requires
it to be at least C? differentiable. In {8] the C? restriction is dropped, however the interpolation
surface is constructed by transfinite interpolation using non-polynomials. A similar non-polynomial
transfinite interpolant construction is used in [27] while [32] requires at least C* for his interpolation.
A nice survey of existing trivariate interpolation methods is given in [2§].

Our domain surface S4 and surface-on-surface §; reconstruction scheme does not impose any
convexity or differentiability restrictions on the original domain surface S or function F', except that
it assumes that there is 2 sufficient sampling of the input point data to unambiguously reconstruct
the domain surface S4. While it is difficult to precisely bound the required sampling density, we




address this issue in section 4.3 and characterize the required sampling density in terms of an
a-shape (subgraph of a Delaunay triangulation of the points) which matches the topology of the
original (unknown) sampled surface 5. Compared to the above methods our algorithm thus has
the following advantages:

1. it unifies the reconstruction of the domain surface 5 and the scalar function ¥ defined on the
domain surface

2. It is capable of handling an unorganized collection of data points

3. It is adaptive and approximates large dense data sets with a relatively small number of C!
smooth patches

The rest of our paper is as follows. In Section 2 we introduce some notation, facts and lemmas
that are pre-requistes to the reconstruction algorithm. In Section 3, we present an outline of the
reconstruction algorithm, and detail the main steps in section 4 upto the level of an implementation.
Finally, in section 5 we describe techniques for visualizing the reconstructed surfaces and surface-
on-surfaces and present examples of our implementation.

2 Algorithm Pre-requisites

We briefly recall definitions and properties needed for the reconstruction algorithms. The style
of this presentation is informal. The reader can refer to the cited papers for a more detailed
explanation of these concepts.

Delaunay Triangulations: Given a set P of points in 122 one can build a tetrahedralization
of the convex hull of P, that is, a partition of conv(P) into tetrahedra, in such a way that the
circumscribing sphere of each tetrahedron T does not contain any other point of P than the vertices
of T. Such a tetrahedralization is called a (3D) Delaunay triangulation and, under non degeneracy
assumptions (no three points on a line, etc.) it is unique. Many different techniques have been
proposed for the computation of Delaunay triangulations (see [15, 31]). These techniques are
mainly used and analyzed in the plane, but many of them are easily generalized to work in higher
dimensions. For our purposes, an incremental approach is particularly well-suited, as it can be
used in both a preprocessing step and the incremental refining of the adaptive, approximating
triangulation (see section 4.1).

The algorithm we use is the randomized, incremental, flipping-based algorithm proposed in
[18]. This algorithm uses a data structure, called the history DAG, that maintains the collection of
discarded tetrazhedra. At the beginning the triangulation is initialized as a single tetrahedron, with
vertices “at infinity”, that contains all points of P. At each step, the DAG is used to locate the
tetrahedron that the point to be inserted lies in. Then the tetrahedron is split and the Delaunay
property is re-established by flipping tetrahedra. The newly created tetrahedra are added as leaves
to the DAG.

One can build the Delaunay triangulation of a set of = points in R® in O(riogn + n?) expected
time. The second term in this expression is of the same order as the maximum number of possible
simplices. The expectation is taken over all possible sequences of the same n points, and is therefore
independent of the points distribution. The actual expected time, that depends on the particular
distribution the input sequence, can be much less than this.




Voronoi Diagrams: Voronoi diagrams are well known tools in computational geometry (see [3]
for a survey). They provide an efficient solution to the Post Office Problem, that is an answer to the
query: what is the closest point p € P to a given point ¢? Voronoi diagrams are related to Delaunay
triangulations by duality. It is easy to build a Voronoi diagram once one has the corresponding
triangulation, and vice-versa. A Voronoi diagram is a partition of the space in convex cells. There
is a cell for each point of p € P, and the cell of a point p is the set of points that are closer to p
than to any other point of P. So, all one has to do to answer the closest-point query is to locate
the cell the query point lies in. Efficient point-location data structures can be built on top of the
Voronoi diagram with no significant effort. Using the randomized approach described in [11], one
builds the point-location data-structure (called an RPQO-iree, for Randomized Post Office tree) on
top of the Voronoi diagram in O(n2(1+‘)) expected time, for any fixed ¢ > 0, and is then able to
answer the closest-point query in O(logn) expected time. The data structure requires O(n2(1+‘))
space in the worst case. We use the RPO-tree data structure for our point location and signed
distance computations (see section 4.2).

a-Shapes: Given the Delaunay triangulation T of a point set P, regarded as a simplicial complex,
one can assign to each simplex o € T (vertices, edges, triangles and tetrahedra) a size defined as
the square of the radius of the smallest sphere containing o.

The subcomplex ¥, of simplices o with one of the following properties: (a) the size of o is
less than o« or (b) ¢ is a face of 7 and 7 € X, is called the a-shape of P. a-Shapes have been
introduced in the plane by [17] and then extended to any dimensions and to weighted sets of points
(see [16]).

One can intuitively think of an a-shape as the subcomplex of T’ obtained in the following way:
imagine that a ball-shaped eraser, whose radius is /&, is moved in the space, assuming all possible
positions such that no point of P lies in the eraser. The eraser removes all simplices it can pass
through, but not those whose size is smaller than a. The remaining simplices (together with all
their faces) form the a-shape for that value of the parameter @. Notice that there exists only a
finite number of different a-shapes. The collection of all possible a-shapes of P is called the family
of a-shapes of P. We use the a-shape computation for our generating an inital piecewise linear
approximation of the domain surface Sy (see section 4.3).

The following facts and lemmas are used in section 4.4 for constructing the C'! smooth domain
surface 5y and surface-on-surface Sy.

Bernstein—Bezier (BB) Form: Let py, p2, ps, p4a € IR® be affine independent. Then the
4

tetrahedron with vertices p1, p2, pa, and pg, is V = [p1papsps]. For any p = Zce,-p,- eV,a=

i=1
(o1, @2, @3, ¢4)7 is the barycentric coordinate of p. Let p = (z,9,2)7, pi = (=i, i, z:)T. Then the
barycentric coordinates relate to the Cartesian coordinates via the following relation

T T1 T2 T3 T4 )

¥ — h 2 ¥Ya W Q2 (2.1)
z 21 2 Z3 Z4 (4 1 T

1 1 1 1 1 oy




Any polynomial f(p) of degree n can be expressed as Bernstein-Bezier(BB) form over V as

f@)=Y b Bie), rezi (2.2)
|Al=r
where 1
_ - Ar Ao Xa A
Bi(e) = Sy & ez es ey (2.3)
is Bernstein polynomial, |A| = &, A; with A = (A1, A2, Az, A)T, @ = (@, @2, @3, @4)7 is barycen-

tric coordinate of p, by = by,a,a,1,(as a subscript, we simply write A as A;AzA3X4) are called
control points, and Z] stands for the set of all four dimensional vectors with nonnegative integer
components. The following basic facts about the BB form will be used in this paper.

Lemma 2.1 ([23]). If f(p) = Zjaj=a 0rB3(e), then

1 . C g
b("—1)8i+q‘ = bne; -+ ;(P.‘t' - p.‘)TVf(p,‘), i=1,23,4; j#i (2.4)

This lemma is used to determine the Bezier coefficients around the vertex from the gradient at
the vertex.
Lemma 2.2 ([20)). Let f(p) = Y p=n exB3(a) and g(p) = ¥jy=n brB3(a) be two polynomials
defined on two telrahedra [pypapaps} and [pipapapal, respectively. Then
(i) f and g are C9 continuous al the common face [papsp4] if and only if

ay=by, for any A=0XA3dq, |Al=n (2.5)

(ii) f and g are C' continuous at the common face [papap4] if and only if (2.5) holds and

b12z232s = B1813,252, + B2803030,40100 + F3Gor; 25040010 + FaG035252, +0001 (2.6)

where § = (B1, Ba, Ba, B1)T are defined by the following relation

PL = Bip + B2pz + Baps + Bapa, 18] =1
The relation (2.6) will be called coplanar condition.

Lemma 2.3. Let f(p) = Fa) = Xaj=n 02D3(a) with o is the barycentric coordinates of p. Then
for any given p(1) and p(®), let o) and al? be their barycentric coordinates. Then

V)TN -y = VF(a)T (o) - o)

= a Yy bie®-a?)BF(a)
|A|=r-1
where
M) — o?) = > bHJ-BJl.(Q(l} — o'
lil=1
The first equality of the lemma can easily be proved by the transform (2.1). The second

equality can be found in [19]. The lemma is used to ensure that the polynomial F(«) has the
specified directional derivative V f(p)T(p{") — p(3)} at a given point.
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3 Outline of the Algorithm

The algorithm constructs an incremental Delaunay triangulation 7" over which piecewise C! con-
tinuous functions F(!) and F(2) are generated, respectively. The steps described below and in the
next section are with sufficient detail for an implementation.

Algorithm 1 1. Build an initial bounding tetrahedron T = {T}, such that P C T. SetV =
vertices of T.

2. ForeachT € T, f TOP # @ and T does not have an interpolant f} ), build a local interpolant
2
f( ](P) Zl+.'.'+k+f—m :(JI):I‘BUH(Q): such that

By =wi, pePnT

in the least square sense, where o = (a1, @2, @3,0a4)7, p = Yo, cip;. The degree m of f,})
chosen to be linear, quadratic or cubic depending on the the number of points in PN T and

(2)

the error e’ given by

2 = \/Ep.ePnT(fT (pe) — wi)?
T Card(PNT)

FTNP=0,set ) =0.
3. Find a teirahedron T € T, such that
{2) _ {2)
e’ = max{er}

If e-g?] is within the given error limil ¢, that is eg) < €. Then do step 4. Otherwise, find the
center point pr of the circumscribing sphere of I'. Then add pr to the vertez set V and update
the Delaunay triangulation. (Adding the center of the circumscribing sphere of T is ulilizing
the emply sphere property of Delaunay triangulations and in general yields good aspect ralio
tetrahedra in the final triangulation [14]) Then go back to step 2.

4. For each T € T, do the following:

a. if T does nol have a local interpolant fg) on it, then compule the signed distances d;;y
(see section 4.2 for details) for the regular poinis pi;i of T, that is

i i k i ..
Piikl = —p+=p2+—p3st+t—ps, t+ithk+l=n
L n 7 n

where n is the degree of the polynomial o be used, p; € V is the veriez of T. Again, n is
chosen io be linear, quadratic or cubic depending on the the number of poinis in P NT and
ihe error eg}}. Define the degree n polynomial interpolant fé—lj(p) = 2i+j+k+t_n |3k Bl ()
Y

i) = dijia, i+ j+E+1=n

and the error eg«l) by

E(1) _ \/EpePnT f:(r'l)(P)2
T = Card(PNT)
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b. f TN P # B and T does not have an interpolant f}?) on it, build an interpolant fgz) and
compute the error e%?) asinstep 2. If TN P =10, set 55.2) =0.

5. Find a tetrahedron T € T, such thal
— (1, (2
Ly TllfleaxT{ET' + € }

If ex is within the given error limit, that is ey < 2 €. Then go to step 6. Otherwise, find the
center point pr of the circumscribing sphere of T. Add pr lo the verlez set V, update the
Delaunay triangulation and go back to siep 4.

6. Produce C' data D). That is for each verter, if its neighbor tetrahedra have local interpolants
fi(r?), compute function value F?) and gradient VF?) by evaluating the interpolants fg) at
the verlexr, and averaging the values. The averaging may be weighted:

a. the weights can depend on the number of poinis in T

b. can also depend on the error of the approzimation of the interpolants

For the middle point of each edge, if its neighbor leirahedra have interpolants f{f), compute
each of the gradients Vf.}z) there and then do averaging as before.

7. Produce C! cubic interpolants F}Z) from C data D) for T € T using the trivariale Clough-
Tocher scheme (see section {.4 for details). Then F® s defined by

F(2)|T — FI(?)

If the C! data for T is nol complete, that is if some vertices or edge middle points do not
have dala, use zero dala insiead,

8. Produce C' data D). That is for each verter if ils neighbor tetrahedra have local interpolants
frfpl), compute function value F(Y) and gradient VF) and gradient at the middle point of each
edge from f}.l), and similar {o step 6.

9. Produce C! cubic interpolants F}l} for each T, from the C' data D) using the trivariate
Clough-Tocher scheme (see section 4.4 for delails), and similar to step 7. Then F() is defined
by

e = g
r |T =fr

10. For each T € T, display the surface F}l) = 0, surface-on-surface F}-z) over the first surface

and draw iso-curves F»}z) = w on the first surface. (See section 5 for details).

Note: The incremental Delaunay triangulation in step 3 and step 5 also remembers the fact
that several tetrahedron are unchanged during a single point insertion and re-triangulation. This
way one avoids re-computation of the signed distances and the interpolants for the unchanged
tetrahedra.




(b)

Figure 4.1: Sampled Points of a Mechanical Part and its Piecewise Linear Approximation

4 Details of the Algorithm

4.1 Incremental Adaptive Refinement

Steps 3 and 5 of the algorithm require the incremental refinement of the adaptive, approximating
tetrahedral mesh. This is done by adding at each step a new point to split the tetrahedron with
the maximum error, and using the incremental Delaunay triangulation algorithm to update the
triangulation. One additional task is required after each splitting or flipping of tetrahedra takes
place: the subset PN+ of points that lie within each modified simplex = has to be updated. This is
done by considering the points originally within the modified simplex, and reclassifying them with
respect to the splitting/flipping planes.

4.2 Computation of the Signed Distances

Step 4 of the algorithm requires the computation of the signed distance of a query point (one of the
Bezier domain points piji1 of a given tetrahedron treated as a trivariate triangular Bezier patch)
with respect to the data set P. The signed distance problem can be formally stated as follows:

Let a data set P = {(,¥i,2)} and a domain surface Sy that interpolates P be given.
We assume that Sy divides the space into two disconnected regions, so that one can
arbitrarily assign a distinct sign, say + for internal and — for external, to these regions.
For a query point g, return the signed distance d; such that |d;| = min,cp|gp| where
|gp| is the Euclidean distance between g and p, and the sign of 4, is chosen accordingly
to the sign of the space region that g lies in.

Qur approach to the solution of this problem is the use of the Delaunay triangulation for the
Bezier tetrahedra, the Voronoi diagram to do fast point location, and the use of a-shapes as a
means to build a piecewise linear approximation to the surface S to be used in signed distance

8




TN
PLSI7AY

(b)

Figure 4.2: Sampled Points of 2 Human Femur and its Piecewise Linear Approximation

(2) (b)

Figure 4.3: Sampled Points of a Jet Engine Nose and its Piecewise Linear Approximation




(a) (b)

Figure 4.4: Sampled Points of 2 Jet Engine Outer Cowl] and its Piecewise Linear Approximation

queries. Note that all three structures are intimately related. Since the computation of the signed
distance can be requested a considerable number of times, it pays to perform a preprocessing step
to speed up the point location queries.

In step 0 of the algorithm the data set P is preprocessed, and the history DAG and the RPO-
tree data structures are built to represent its Delaunay triangulation T, Voronoi diagram and
family of a-shapes. Tetrahedra in the Delaunay triangulation are classified as either internal or
external (and assigned a corresponding sign) based on a particular a-shape chosen as a “good”
linear approximation to the surface to be reconstructed. The computation of the signed distance
is then reduced to locating the query point ¢ in both the Delaunay triangulation, to decide its sign
s = %1, and in the Voronoi diagram, to find the closest point p € P. The signed distance 8- |pq| is
then returned.

See Figures 4.1, 4.2, 4.3 and 4.4, showing the result of the « shape construction for various
point sets and Figure 4.5 for the correct orientation in the sign distance computation.

4.3 Density of Points and Suitable «

A difficulty in the process outlined above is the choice of a suitable value for «. We assume that the
input data is dense enough so that there exists an o so that the a-shape approximates the object
with the same topology as the orginal unknown surface §. By this we mean that there exists a
value for o such that the corresponding a-shape X, contains only simplices that lie in the interior
or on the boundary of the object, and that the outermost shell of the alpha shape (the subcomplex
of £, formed by vertices, edges and triangles lying on the boundary of the object) has the following
properties:

(a) it does not contain any singular (i.e. isolated) vertex;

(b) there are no “missing” edges, i.e.for any two triangles 7,79 € T that lie on the boundary of
the object (notice that 71,7 may or may not be in X,) their common face (an edge) belongs

10




(2) (b)

Figure 4.5: Orientations showing the Correct Computation of Signed Distances for a Jet Engine
Nose and Quter Cowl

to Xg.

In our current scheme a suitable o is selected interactively. When an a-shape with the above
properties is determined, it is easy to distinguish between interior and exterior tetrahedra in the
underlying triangulation T'. One does a breadth first search on the dual graph of T', starting with
a tetrahedron that is known to be external (e.g. one that has a vertex at infinity) and continuing
with adjacent tetrahedra. These tetrahedra are marked as exterior (sign —) and put in a queue for
further processing. When one hits a tetrahedron 7 belonging to £, 7 is marked as interior and not
enqueued. The same happens when, visiting an adjacent tetrahedron r of a negative tetrahedron
o one finds that the adjacency face belongs to £,. This means that going from ¢ to T one crosses
the boundary, so 7 is marked as interior 2nd not enqueued.

4.4 Trivariate Interpolation Scheme

Steps 7 and 9 of the algorithm require a ¢! cubic local interpolation scheme using C! data at
the vertices of the tetrahedral mesh. Both the domain surface piecewise cubic polynomial Fj(.l)
and the surface-on-surface piecewise cubic polynomial F;LZ} are computed using the same trivariate
interpolation scheme,

We base our trivariate scheme on the n-dimensional Clough-Tocher scheme given by Worsey
and Farin [34]. In this scheme, each tetrahedron is split into twelve subtetrahedra by choosing
a point in the tetrahedron and a point on each face. A cubic trivariate interpolant is bulit on
each subtetrahedron. This splitting step can also be found in [19] however insufficient details are
provided in both [19, 34] for computations of the coefficients of the cubic interpolant. We now
provide details of the steps for determining the coefficients of the split cubic interpolant over a
macrotetrahedron.

11




Figure 4.7: by10; is determined from its known neighbors and directive derivative

Let us call the outer face of the tetrahedror a cubic shell. If we peel off the cubic shell, we are
left with a quadratic shell. If we repeat this peeling what remains is a linear shell and the end a
center point. See Figures 4.6, 4.7 and 4.8. The coefficients of the cubic trivariate interpolant are
determined in the same manner, from the outer to the center.

On the cubic shell. On each face, the coefficients are computed as two dimensional Clough-Tocher
scheme(see Figure 4.6). That is

1. The weights labeled 0 are obtained from the function values at the vertices.

2. The weights labeled 1 are computed from the gradient values at the vertices using Lemma
2.1.

3. The weights Jabeled 2 are computed from the gradient at the mid-edge points. Now we show
the computation of byyg1(see Figure 4.7). Let

R124 = (P4 — P1)@124 + (P4 — P2)b124

with
ar2e = (p1 — 22} (P2 — 24),  Br2a = (P2 — p1)7 (p1 — p4)

12




Figure 4.8; The Bezier ordinates on the quadratic shell, the linear shell and the center point

5.

Then nj24 is the normal of the line {pyp2} in the plane (p;p2ps). Then by Lemma 2.3, the
directional derivative in the non-normalized direction 7134 of the cubic f(p) = F(a) at the
point pyo = Edzigz is

Vi(p12)Tmze = V(p12)T(prz + ni2a — p12)

$((2124 + b124)b0201 — 812451200 — D124b0300]
g[(ﬂlzq + b124)B1101 — 12482100 — b124D1200]
F1(@124 4 b124)2001 — 212453000 — b124b2001]

+ + 1

It follows that

3V £ (p12)Tn124 + @124(b3000 + b2100) + b124(osse + b1200)

b =
1ot 223124 + b124)
+ b2100 4 b1300 — b2001 — bo201

2

All the other number 2 weights are obtained by symmetry.

. 'The weights labeled 3 are computed from their surrounding number 1 and number 2 weights

by Lemma 2.2.

The weights labeled 4 are computed from their surrounding number 3 weights by Lemma 2.2.

On the quadratic shell. These coefficients are determined by the given data and C! condition(see
Figure 4.8). That is

1.
2.

4,

The weights labeled 1 are computed from the gradient at the vertices, using Lemma 2.1.

The weights labeled 5 are computed from their surrounding number 1 and number 2 weights
on the cubic shell by Lemma 2.2.

The weights labeled 6 are computed from their surrounding number 1 and number 5 weights
on the current shell by Lemma 2.2.

The weights labeled 7 are computed from their surrounding number 6 weights by Lemma 2.2,

On the linear shell.
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(a) (b)

Figure 5.1: Iso-Pressure Contours of a Surface-on-Surface Pressure Function displayed on the Sur-
face of the Jet Engine

1. The weights labeled 8 are computed from their surrounding number 1 and number 5 weights
on the quadratic shell by Lemma 2.2.

2. The weights labeled 9 are computed from their surrounding number 8 weights by Lemma 2.2.

On the center point.

1. The weights labeled 10 are computed from their surrounding number 8 weights on the linear
shell by Lemma 2.2.

Another trivariate Clough-Tocher scheme (see [1]) splits each tetrahedron into four subtetra-
hedra. However the interpolants in each subtetrahedra are now of quintic degree and furthermore
require C? data at the vertices of the main tetrahedron. Since our data at the vertices of the
tetrahedral mesh comes from the averaging of locally computed low degree interpolants, the higher
order derivatives tend to be un-reliable in general. We therefore prefer to use the lower degree cubic
scheme that uses only first order derivativaes at the vertices.

5 Visualizing the Surface-on-Surface Function

We now present techniques for different visualizations of the domain surface Sy : F{l)(x,y, z2)=10
and the surface-on-surface S; : F(®}(z,y,z) = W. Remember that Sy is a two dimensional surface
in IR? since its domain is the two dimensional surface S,.

5.1 Iso-Contours on the Surface

One approach is to visualize the curve iso-contours W = consiant of the surface Sy on the domain
surface Sg by showing different colors in the region between two iso-contours. We achieve this

14




by first generating a triangle approximation of the domain surface Sy using adaptive contouring
[29], and correspondingly generate triangles on F(?) in IR* (easy since this is a function). Next
we intersect these triangles on F(?) with iso-values W = constant to get a linear approximation of
the curve iso-contours. For our implementation we do the following. Let w be a given iso-value,
[p1p2p3] be a triangle on §;. Without loss of generality, we may assume F(J(p,) < FiX(py) <
F®)(p3). Then if w < F&(py) or w > F()(py), the triangle does not intersect the iso-value. If
w € [FO(py), FO)(p3)], say w € [FO(py), FO)(py)], let

_ w— FA(p,) . w— F(p,)
FO(p,) - FO(pr)” ™ FO)(ps) - F)(py)
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n=tipr+(1-t)ps, @=bhp+(1~t)ps

then [g4;] is one segment of the curve iso-contour F(*(p) = w. The collection of all of these line
segments form a piecewise linear approximations to the iso-contours. By increasing the resclution
of the triangulation of the domain surface 5y, we can obtain better linear approximations of the
iso-contours for smooth looking displays. See Figure 5.1 where such an approach has beer followed
for the jet engine and pressure scalar function visualizations.

5.2 Surface-on-Surface in 3D

Since the curve iso-contours may not clearly indicate the geometric shape of the surface, one often
likes to display the projection of the surface-on-surface from IR? to IR®. One approach is to use a
radial projection from the center of the domain surface S;. However, if the domain surface Sy is
not convex or has non-zero genus, this method has serious difficulties. Another more natural way
is to use the normal projection, that is, project the point p on the domain surface Sy to a distance
proportional to F(z)(p) in the normal direction of Sy at p:

VFO(p)(F(p) — F®) )
||VF(1)(p)||(F(2)m“ - F{2)min)

Glp)=p+1L

where L is a positive scaler, F(? ;. and F(2),, . are minimum and maximum values of F(2) on
Sq¢. However again, il L Is not given properly, the surface G may self-intersect in case the domain
surface S is not convex.

To avoid self-intersections we take L < 7 = minpes,{Emin(p)}, where Bpin(p) is the minimal
principal curvature radius at p of surface S4. Since Sy is a piecewise C! continuous surface and
each piece is €, hence 4 > 0. The main task here is to compute 4. In general, it is not easy
to compute the exact value of ¢, however an approximate < serves our purpose as well. When we
produce the triangulation of each surface patch on Sy, we also compute Rp,;(p) for vertices p, and

then take ¥ = minyes,{ Rmin(p) : p is a vertex}. For an implicit surface f(z1,z3,23) =0, let f; =

ﬁa‘r_ f — izL
8zt 411 T @xidx;’

az? +bz +¢ = 0, with a = TL, fA(firvi favivr — fhinn) 2 Digpoi gty Sil5(FikFix — fij For),
b= IVAI(ZL, f2(fivriv1 + firoira) —2 Zizi fififij), and ¢ = ||V f||* where the indices are taken
mod 3. Another approach to determine L is to take

— | llg = pIFIVFY )] . ATy (D)
L< 6—;2111‘}’{%111{ 2q - p)TVFO(p) ° [p,g] € Tz and (¢— p) VF(p) > 0

The principal curvature radius are the absolute values of the roots of the equation
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Figure 5.2: Iso-Pressure Contours of a Surface-on-Surface Pressure Function and Visualization of
the Pressure Surface Function Surrounding the Nose and Outer Cowl of the Jet Engine using the
Normal Projection method
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Figure 5.3: The Reconstructed Engine Surface and Visualization of the Pressure Surface Function
Surrounding the Jet Engine using the Normal Projection method

where Ty is the triangulation of Sq used to display S4;, p € Ty means p is a vertex and [p,¢] € Ty
means [p,g] is an edge. It should be noted that if Sy is convex(i.e., (g ~ p)T VF(1)(p) < 0) or
planar(i.e., (¢ — p)T VF()(p) = 0), the & can be chosen arbitrarily. See Figures 5.2 and 5.3 where
the visualizations have been constructed by the normal projection method detailed above.

Acknowledgements: We thank Herbert Edelsbrunner for several enlightening discussions on the
topic of weighted alpha shapes.
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