Sparse Smooth Connection between
Bézier/Bspline Curves

Chandrajit Bajaj and Guoliang Xu
Computer Sciences Department
Purdue University
Woest Lafayette, IN 47907

CSD-TR-94-045
June, 1994

Sparse Smooth Connection between Bézier/Bspline Curves

Chandrajit Bajaj Guoliang Xu
Department of Computer Science Department of Computer Science
Purdue University Purdue University
West Lafayette, IN 47907-1398, USA West Lafayette, IN 47907-1398, USA
bajaj@cs.purdue.edu xuguo@cs.purdue.edu

June 20, 1994

Introduction

Often in interactive font design, free-form sketching and input path specification for graphics animation, one is
faced with the problem of connecting two Bézier or Bspline polynomial curves with a smootl, piecewise transition
polynomial curve achieving prescribed continuily at the two end points. Furthermore one desires the transition
polynomial curve to have the fewest number of picces. In this paper we address this issue by solving the following
two problems:

Smooth Connection problem: Given two polynomials P : [¢,5] — /R and @ : [¢,d] —= R of degree n with
b < c. Find a piecewise polynomial R : [b, ¢] — IR of degree n, such that (1°) R is C"~* continuous in (b, c) for
a given integer p with 1 < p < n. (2°) P and A join at b with C*~#' conlinuity for a given integer g, with
Il < £n. (3°) R and Q joint at ¢ with C™~#2 continuity for a given integer sz with 1 < yi» < n,

Sparse Smooth Connection problem: In addition to the above conditions (1°), (2°) and (3°), we require
that (4°) R has the fewest number of segments.

As an example, the smooth composite funclion (P, R, @) may be a single B-spline. 1t is obvious that there
are possibly infinite ways to join any two pelynomials with prescribed continuity. Our goal here is not only Lo
achieve a smooth join but also to make the join as simple as possible. By simple we mean that the polynomial
[t is to be determined, as far as possible, [rom P and @.

The solution Lo both the above problems are derived by the use of blossoming (see [2, 3]). For a given degree
n polynomial F : & — IR, the blossom of F, denoted as f = B(F), is an n-affine symmetric function satisfying
fu, ..., u) = F(u). A function f : R — IR is called affine if it preserves afline combinations, that is, if f satisfics
F(2; i) = 22 ai f(w;) for all real numbers a1, - -, a, uy,- -, ux € R with 3, a; = 1. A function f : R" — R
is called n-affine if it is an affine function on each individual argument with the others held fixed. Finally, a
function f: " — IR is called symmetric if f keeps its value under any permutation of its arguments,

Solution of the Smooth Connection Problem

Lemma 1. Lel AS, be the sel of all n-affine symmeiric functions, 1) € ... <, <lyg) < ... < lo,. Then the
map M : f € AS, — {f(le, besr, - - .,££+,,_1)}’£‘__'_|'11 € IR"*! s a onc to one map belween AS,, and R*F!

Proof: 1t is obvious that M is a linear map and by M(f) = (0,---,0) we can prove thal f = 0. In lact, by
the progressive de Casteljau algorithm (see [2]), we have f(z;,...,2n) = 0 i, f = 0. Now, the ouly thing left
to be proved is that M is invertible, that is, given (b1, ba,...,bn41) € *H!, there exist a f € AS,, such that

M(fy=(b1,.-.,bns1). This f = f can be constructed by the following progressive de Casteljau algorithm:

0 by, i=1,2,...,n+1

— +1— -
f’r(Il,...,Ir) - t“::_ltl::__]f:— I(Il,...,:l:,._])

+ e oM@,z i= L2,k Loy

forr=1,---,n{see Theorem 7.1 0l [2]). ©

Lemma 2. Smeolh conncctlion problem always has solution,
Proof: We prove this lemma via a constructive approach,

i) W n+4 1 < sty 4 pa, then the piecewise polynomial R to be determined degenerates to a single segment, and
| i3 gle seg
R can be determined by using the Hermite interpolation conditions:

RO = PO®), i
B)e) = QW) {

1,...,n—
L...,n— 2

=0,
iy ()

If n 4+ 1 = p) + po, the solution is unique. If n -+ 1 <) 4 ua, there is no uniqueness. If we let R to be
degree 2n — py — pp + L(< n). Then we have uniqueness.

(i1} If n+ 1 > g1 + pt2, equation (1} bas no solution in general. Here we construct a B-spline F(z) : [a,d] - R
such that

F(:)l[a,b] = P(a:)! F(z)l[c.d] = Q(:) (2)
and R(z) = F(x)|j, satisfies the conditions (1°), (2°) and (3°). Let
T:(tﬂ—_- o= <ipyl = ... =lagyp, <tn+;11+l <...<
bn—pot) <lonopad2 = .o = long) <lognga = ... = langa)

where {;, = @, taq1 =5, ftzp41 = ¢, taap2 = d and bntpy41s - -1 l2n—py41 are chosen such that each of
themn has multiplicity < s in T. Let {N}(z)}2"#! be the normalized B-spline bases over T and let

d{ = fl(l'.,g+1, - .1'.,:_.|.n), £= 0, 1, .

d; = f2(££+1, .. .tf_.].n), f=n+ L...,2n4 |
where f; = B(P), fo = B(Q) are the blossoms of P and @, respectively. Then F(z) = f:;]"' de Nj'(z)
15 the required Bspline (see Theorem 3.4 of [3]). In fact, 7(z) is C"~#* and ™~ continuous at b and ¢
respectively, since b has multiplicity s#; and ¢ has multiplicity s. Furthermore, since {4, 41, .- ., bon — g1
have multiplicity < g, f(z) is C"~# continuous on (b,c). Now we only need to show that condition (2) is
satisficd. From Theorem 3.4 of [3], we have

B(Flla,b])(tl-}-l 1t tf-l-l"l)'.l {= 0: 11 L
B(Flie.a)(legrs - s tegn), €=a+1,...,2n 41

dy
dy

Hence
f1(£f+l:"'1tf-+") = B(Fl[ﬂ.i"])(if+1:'"ltf+ﬂ)l £=0,1,...,n
fg(t,{.l.l,...,lg_;.,,) = B(Fl[c,d])(££+l,---.tt+n), f=n+1,...,2n41

Sinee f1, f2, B(F|a4)) and B(F|, q) are in AS,, it follows from Lemma 1 that f; = B(Flja,p)), fo =
B(Fl[c,d]): and then P = Fl[a.b]: Q= Fl[c,d]-

O
In the above proof we insert n + | — (11 + p2) knots in (b,¢}. Hence R has at most n + 2 — (17 + 2} pieces.
Since the Loy, +1,- .-, f2n—py41 knots can be arbitrarily chosen under the required conditions, R is nol unique.

We therefore have the following corollary

Corollary 3. The Sparse Smooth Connection problem always has a solulion.

The Computation of the Sparse Smooth Connection Polynomial

The proof of Lemma 2 has already provides a way to compute the smooth transition polynomial R. TFurthermmore
this uses only the infermation that comes from P and @ and some inserted knots. However the number of pieces
of R may nol be minimal. In order to get a sparse connection polynomial we intend to inserl the least number
of koots. As in the discussion above, there are two possible cases.

(i) fn+ 1 < g1 + g2, the problem is reduced to Hermite interpolation problem as before. One segment is
cnough to connect the two given polynomtals. Then the number of segments is minimum. Now we give a
B-spline representation of the composite function. Let

T = (lo=...=ln <tny1 = - = tagy, <lppp 4l)

= o = bt < kbt = = banggpatl)

and {NP(z)}; 3" be the normalized B-spline bases over 7. Then F{z} = S50+ o, NP(2) is the
required Tunction, where

de = filtegr, - tegn), €=0,1 .00
d; are [ree, C=n-+1l,... 1 +pn—1 (4)

dr = fallegr,---lan), €=+ pa, o v+ + g

(it) TF n4 1 > sty + 12, then the computation of Lhe inserted knots proceeds as following, with 7 increasing from
Oton+41—{p +pa)

(a) Let
T = (tﬂ =Sy <ap T Ty, <8 S L8 < lngp il (5)
= = o patt < bngpbpa bl T -0 = bangp dpayitl) '
where tn = a, tug1 =8, lngpu4pgti = € tntpg4ug+it1 = ¢ and z),..., x; are the knots to be

determined and satisfying the following conditions:

b<zj<e
z; has multiplicity < g in T;

(6)

(b} For & = i 4+ p| + p2, ..., n, the de Boor poeints (see [3]) d; are determined satisfying conditions from
both P and). These double conditions leads to the lollowing equations for unknowns =;, ..., z;

B(P)Rta1r-- s tnsun Tty - -3 Tis bngpy 4k 1, - - - tegm) =
B(Q)(tt‘l'll' ' '1tﬂ+.l'-‘:l!$lr' "I$i1£’|+ﬂl+|‘+ll' ")if.+:n)

for é=1d4puy + fta,...,n, or

yg(Il, . ..,:Cl') = B(P - Q)(it+l; . --|r'n+_u1|3:l;- . .,a:,-,t,,.,.m.,.,‘.i.l, . --;£C+n) =10

for £ =i+ m + po,...,n. There are n + 1 — (i + u; + pa) equations and ¢ unknowns. The ideal
cases {a unique solution is expecled) are i = n+ | — (i + 11 + p=} or i = obl=(ytuz) Cotnparing
with the proof of Lemma 2, in which we insert 2 4+ | — (g1 + pa) knots, this ideal case will reduce the
number of the inserted knots to hall. For example, il n = 3 (cubic), s1; = p2 = 1{C? continuity}, then
i= 1. If gy = pta = 2(C' continuity), then i = 0. If n = 5, gy = pz = 2(C® continuity), i = 1. If
#1 = gz = [(C? continuity), { = 2.

Let P(z) = 2_"?:0 a2, Q(z) = E?:u b;z7. Then B(P—Q)(uy,---,u,) = Z;;O(a_,-—b_,-)/

where ajn(1,- - -, us) is the j-th n-variable elementary symmetric function[l]. Therefore g;(z, ..., z;)

T

(7 Yo

can be written as g, = E_:-=D ﬂgt}(fj,‘(:l?],...,zi). Let o; = oji(z1,...,2i) be the unknowns, j =

1,2,...,i, ep = 1. We thus have the following system of linear equation

a(:‘+.u1 +pa) a(l’+m+;l:) gt mtaa) (i4+u1+pz)
b 3 e B 7 %o
u{li+m+ﬂ:-+l) ag+‘"’+‘"’+l) . a’(l'ﬂu +patl) o ﬂf]l'ﬂu +ia+l)
_ : =- : (7)
a&n} ﬂgn) . ﬂ?l) i asn}

ol Equation 7) has no SOllltiOll, increase 1 by J., until it has a solution may have many solutions). Let
Y
[O’[-y D'i} be a solution of (f} Form a polynomial equation

h(z) = Z(—z)"""a';,- =0 (8)
k=0

If all the roots z; of A{z} are real, and they satisfy (), then we get the required knots z;. Otherwise,
we increase { until the required knots are obtained. Tf (7) has many solutions, a closed form of the
solution of (8) is helpful to get the required solution. If ¢ < 5, the closed form of the root z; are
available.

The case { = 0 needs separate consideration, since the equation (7) and (8) are degenerate, In this
case g¢ are constants. If they are all zero, then we do not need to insert knots in {b,¢) and the de
Boor points are computed by (4}, but no degree of {reedom is left. If not all y; are zero, we need to
consider the next i.

Since we wish Lo find the solution z;’s that satisfy condition (6), we solve Equation (8) for o that
satisfies the following necessary condition

(;:)b"'<oq,-<(;)c"', k=121 (9)

d} Let £, ;=a;forj=1,-++,1 Lel
+p+s]

dizfl(t£+1!"-££+ﬂ): £=U:1:"':n (10)
dg:fg(tg.i_l,...tg.i_n), f=n4+1,...,n4+pu +pa+1

Then similar to the proof of Lemma 2, we know that the Bspline function F{z) = ZL':;““"‘"H de NP (2)

is what we require, where {N}(z)}; "' 7#*** is the normalized B-spline bases aver T;.

Psuedocode of the Algorithm

e present psuedocode for the above algorithm of computing Sparse Smooth Connection polynomials. Here we
assume we have (by now standard) library procedures for solving a linear equation and for finding the real roots
of a polynomial.

Sparse Smooth Connection Algorithm

P is the inpul coeffictents array of the polynomial P in power bases
Q is the inpul coefficients array of the polynomial @ in power bases
A, B are the input end poinis of interval fo,b]

C, D are the input end poinis of interval fe,d}

N is the degree of the given polynomials

MUI is the inpul conlinutly al b

MU2 is the inpul conlinuily al ¢

MU is the input continuily in (b, c)
D is the outpul eoefficients array of the de Boor points d;
Knots is the outpul inserted knots in (b, c)

| is the oulpul number of inseried knols
I=0
compule the blossoming of P, Q and P — (@
forj} =0 to N step |
ra) =p0/(1) aw=ao() co=r0)-au
next j
formn knots T, see (3)
for j =0 to Z2N+MUI + MU2 41 step 1
ifj < Nthen T(j} =A
else ifj < N4 MU1 then T(j) =B
else ifj < N 4+ MUl 4+ MU2 then T(j) =C
else T(j) =D
end if
next j
fN+1<MUL+ MU2 then
compuie dy, by formulas ({)
for | = 0 to N+MUI + MU2 step 1
forj = 1 to N step |
Point(j) = T(14+j)
next j
if]1 < N then
call EVALUATE(P, N, Point, N, Coeffout)
D(1) = Coellout(0)
else if | > MU1 + MU2 then
call EVALUATE(Q, N, Point, N, Coeffout)
D(l) = Coeffout(0)
else
D(1} are free , set to zero
end 1if
next 1
else
fori=1toeN+1 - (MUl + MU2) step |
forl =i+ MU] 4+ MU2 to N step |
forj=1toN —istepl
Point(j} = T(I+j)
next j
call EVALUATE(C, N, Point, N—i, Coefloul)
fork=1toistepl
Matrix(l — i — MUl — MU2, k — 1) = Coeffout(k)
next k
Lefthand(l — i — MUl — MU2) = — Coeffout(0)
next |
call LINEARSOLVER(Matrix, Lefthand, Solution)
call POLYSOLVER(Solulion, i, I{nots)
if all Knots satisfly the condition (6) then goto L
next i
form knots T;, see (5)
Lil=i
for) = 0 to 2N+MUI + MU2 + i + 1 step [
ifj < N then T(j}=A
else ifj < N + MUl then T(j) =B
else ifj <N 4 MUl +ithen T(j) = Knots(j — N — MUI)
else ifj < N 4+ MUI + MU2 4 i then 8 T{j) =C
else T(3 =D
end if
next j
compute the de Boor poini dy by (10))
far | =N kn N sften |

Procedure o evafuale an n-affine symmetric funclion
procedure EVALUATE(Cocffin, N, Point, M, Coeflout)
Coeflin 1s the inpul coefficienis array
N — 1 ts the number of coefficienls
Point is the inpul cvaluaiing poinis array
M is the number of cvaluating points
Coeflout is the oulput cocfficients array
for j = 0 to N step 1
soeflout(j} = Coeffin(j)
next j
fork=0toM — | step |
forj=1toN — k step |
Coeffout(j—1) = Cocfiout(j—1) + Point{k)*Coefiout(j)
next j
next k
return

References

[1] C. Chrystal. Algebra, Part I, 7th ed. Chelsea Pul. Company, New York, 1964.

[2] L. Ramshaw. Blossoms are Polar Forms. Compuler-Aided Geomelric Design, 6:323-358, 1989.

[3] Seidel, B-P. A New Multiafline Approach to B-splines. Compuler Aided (Geomeiric Design, 6:23-32, 1989.

