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Abstract

We present an e�cient algorithm to construct C2 smooth meshes of quintic A-patches that
interpolate or approximate the vertices of a given triangulated polyhedron P. An A-patch is a
smooth and functional zero-contour patch of a trivariate polynomial in Bernstein-B�ezier (BB)
form de�ned within a tetrahedron.

A simplicial hull � is constructed based on P. A quintic A-patch is then constructed within
each tetrahedron of � so that the piecewise C2 algebraic surface interpolates or approximates
the vertices of P with given C2 data. We guarantee that the algebraic surface is smooth and
functional, namely, fully connected and free of singularity, unwanted branches.

1 Introduction

In this paper, we present an e�cient algorithm to construct a C2 smooth mesh with quintic A-
patches to interpolate or approximate the vertices of a given polyhedron P with given C2 data.
The A-patch is a smooth and functional zero-contour patch of a trivariate polynomial in Bernstein-
B�ezier (BB) form de�ned within a tetrahedron[BCX95a], where \A" stands for algebraic. Solutions
have been given to the problem of constructing a C1 mesh of algebraic patches which interpolate the
vertices of a simplicial polyhedron P , by [Dah89] using quadric patches, [Guo91b, DTS93, Guo93,
BCX95a] using cubic patches and [BI92b] using quintic for convex P(all faces are triangular) and
degree seven patches for arbitrary P . While papers [Dah89, Guo91b, BI92b, DTS93, Guo93] provide
heuristics based on monotonicity and least square approximation to circumvent the multiple sheeted
and singularity problems of implicit patches, [BCX95a] introduces new su�ciency conditions for
the BB form of trivariate polynomials within a tetrahedron, such that the zero contour of the
polynomial is guaranteed functional and non-singular surface within the tetrahedron (the A-patch).
The conditions are no more complicated than linear inequalities. [BX92] can be regarded as the two
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dimensional version of [BCX95a], where Ck continuous piecewise real algebraic curves(A-splines)
are used to achieve local interpolation and approximation. In [BCX94, BCX95b], new schemes are
given to construct an \inner" hull � of a polyhedron P , such that the A-patch surface approximates
P instead of interpolating its vertices.

In this paper, we present a scheme for building a C2 patch complex with quintic surface patches.
Like the C1 scheme [BCX95a], a pair of tetrahedra are built on each side of each face of a triangu-
lated polyhedron P . We call them the face tetrahedra. A pair of tetrahedra are built to �ll in the
gap between each pair of face tetrahedra that share an edge and on the same side of P . A quintic
BB polynomial is de�ned within each tetrahedron so that they are C2 continuous across their share
boundaries. The zero contour of the piecewise C2 polynomial C2 interpolates the vertices of P .
We guarantee that the zero contour surface is non-singular and topologically equivalent to P . If
we use the schemes described in [BCX94, BCX95b] to construct the simplicial hull, then the �nal
C2 spline surface approximates P instead of interpolates it.

Related papers which approximate scattered data using algebraic patches are [Baj92, BBX94,
BI92a, BIW93, MW91, Pra87, Sed90] and a classi�cation of data �tting using parametric surface
patches is given in [Pet90].

The rest of this paper is as follows. Section 2 gives some preliminary facts about Bernstein-
Bezier (BB) representations, A-patches, the geometry of simple polyhedra and a de�nition of a
simplicial hull. Section 3 presents details of the C2 continuity schemes for quintic A-patches.
Section 4 discuss a set of su�cient conditions which guarantee that the zero contour surface is
functional. Section 5 provides some implementation details. And �nally, Section 6 concludes the
paper.

2 Notation and Preliminary Details

2.1 Bernstein-Bezier Representation and A-Patches

Let fp1; : : :pjg 2 IR3. Then the convex hull of these points is de�ned by [p1p2:::pj] = fp 2 IR3 :

p =
Pj

i=1 �ipi; �i � 0;
Pj

i=1 �i = 1g. Let p1; p2; p3; p4 2 IR3 be a�ne independent. Then the
tetrahedron(or three dimensional simplex) with vertices p1; p2; p3, and p4, is V = [p1p2p3p4]. For

any p =
4X

i=1

�ipi 2 V , � = (�1; �2; �3; �4)
T is the barycentric coordinate of p. Let p = (x; y; z)T ,

pi = (xi; yi; zi)
T . Then the barycentric coordinates relate to the Cartesian coordinates via the

following relation 2
6664
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Any polynomial f(p) of degree m can be expressed in Bernstein-Bezier(BB) form over V as
f(p) =

P
j�j=m b� B

m
� (�); � 2 Z4

+ where Bm
� (�) =

m!
�1!�2!�3!�4!

��11 �
�2
2 �

�3
3 �

�4
4 are the trivariate

Bernstein polynomials for j�j = P4
i=1 �i with � = (�1; �2; �3; �4)

T . Also � = (�1; �2; �3; �4)
T is

the barycentric coordinate of p, b� = b�1�2�3�4(as a subscript, we simply write � as �1�2�3�4) are
called control points, and Z4

+ stands for the set of all four dimensional vectors with nonnegative
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Figure 2.1: (a) A three sided cubic patch tangent at p1; p2; p3 (b) A degenerate four sided cubic
patch interpolates p2 and p3
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Figure 2.2: Three-sided and four-sided patches

integer components. Let
F (�) =

X
j�j=m

b�B
m
� (�); j�j = 1; (2:2)

be a given polynomial of degree m on the tetrahedron S = f(�1; �2; �3; �4)T 2 IR4 :
P4

i=1 �i =
1; �i � 0g. The surface patch within the tetrahedron is de�ned by Sf � S : F (�1; �2; �3; �4) = 0.

De�nition 2.1 Three-sided patch.
Let the surface patch SF be smooth on the boundary of the tetrahedron S. If any open line

segment (ej ; ��) with �� 2 Sj = f(�1; �2; �3; �4)T : �j = 0; �i > 0;
P

i 6=j �i = 1g intersects SF at
most once(counting multiplicities), then we call SF a three-sided j-patch (see Figure 2.2).

De�nition 2.2 Four-sided patch.
Let the surface patch SF be smooth on the boundary of the tetrahedron S. Let (i; j; k; `) be a

permutation of (1, 2, 3, 4). If any open line segment (��; ��) with �� 2 (eiej) and �� 2 (eke`)
intersects SF at most once(counting multiplicities), then we call SF a four-sided ij-k`-patch (see
Figure 2.2).

It is easy to see that if SF is a four-sided ij-k`-patch, it is then also a ji-`k-patch, a `k-ji-patch,
and so on. The Appendix contains proofs of the lemmas and theorems below.
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Lemma 2.1 The three-sided j-patch and the four-sided ij-k`-patch are smooth (non-singular).

Proof. See [BCX95a]. 3

Theorem 2.1 Let F (�) =
P

j�j=n b�B
n
�(�) satisfy the smooth vertex and smooth edge conditions

and j(1 � j � 4) be a given integer. If there exists an integer k(0 � k < n) such that

b�1�2�3�4 � 0; �j = 0; 1; : : : ; k� 1; (2:3)

b�1�2�3�4 � 0; �j = k + 1; : : : ; n (2:4)

and
P

j�j=n

�j=0
b� > 0 if k > 0,

P
j�j=n

�j=m
b� < 0 for at least one m(k < m � n), then SF is a three-sided

j-patch.

Theorem 2.2 Let F (�) =
P

j�j=n b�B
n
�(�) satisfy the smooth vertex and smooth edge conditions

and (i; j; k; `) be a permutation of (1, 2, 3, 4). If there exists an integer k(0 � k < n) such that

b�1�2�3�4 � 0; �i + �j = 0; 1; : : : ; k� 1; (2:5)

b�1�2�3�4 � 0; �i + �j = k + 1; : : : ; n (2:6)

and
P

j�j=n

�i+�j=0
b� > 0 if k > 0,

P
j�j=n

�i+�j=m
b� < 0 for at least one m(k < m � n), then SF is

four-sided ij-k`-patch.

Proof. See [BCX95a]. 3

Lemma 2.2 Let f(p) =
P

j�j=n b�B
n
�(�) be de�ned on the tetrahedron [p1p2p3p4], then

b(n�1)ei+ej = bnei +
1

n
(pj � pi)

Trf(pi); j = 1; 2; 3; 4; j 6= i (2:7)

b(n�2)ei+ej+ek = �bnei + b(n�1)ei+ej + b(n�1)ei+ek

+ 1
n(n�1)(pj � pi)

Tr2f(pi)(pk � pi); j 6= i; k 6= i
(2:8)

(2.7) can be found in [Guo91a](p.23). (2.8) is derived from directional derivative formulas
(see [Far90] p.310).

Lemma 2.3 ([Far90] p.318) Let f(p) =
P

j�j=n a�B
n
� (�) and g(p) =

P
j�j=n b�B

n
�(�) be two

polynomials de�ned on two tetrahedra [p1p2p3p4] and [p01p2p3p4], respectively. Then
(i) f and g are C0 continuous at the common face [p2p3p4] if and only if

a� = b�; for any � = 0�2�3�4; j�j = n (2:9)

(ii) f and g are C1 continuous at the common face [p2p3p4] if and only if (2.9) holds and

b1�2�3�4 = �1a1�2�3�4 + �2a0�2�3�4+0100 + �3a0�2�3�4+0010 + �4a0�2�3�4+0001 (2:10)
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(iii) f and g are C2 continuous at the common face [p2p3p4] if and only if (2.9)-(2.10) holds and

b1�2�3�4 = �21a2�2�3�4 + 2�1�2a0�2�3�4+1100 + 2�1�3a0�2�3�4+1010 + 2�1�4a0�2�3�4+1001
+ �22a0�2�3�4+0200 + 2�2�3a0�2�3�4+0110 + 2�2�4a0�2�3�4+0101
+ �23a0�2�3�4+0020 + 2�3�4a0�2�3�4+0011 + �24a0�2�3�4+0002

(2:11)
where � = (�1; �2; �3; �4)

T are de�ned by the following relation

p01 = �1p1 + �2p2 + �3p3 + �4p4; j�j = 1

In Lemma 2.3, if �2 = �3 = 0, that is p01; p4 and p1 are collinear, then (2.10) and (2.11) become

a0�2�3�4+0001 = �1a1�2�3�4 + �2b1�2�3�4 (2:12)

�21a2�2�3�4 � �1a0�2�3�4+1001 = �22b2�2�3�4 � �2b0�2�3�4+1001 (2:13)

respectively, where �1 = ��1
�4
; �2 =

1
�4
, that is p4 = �1p1 + �2p

0
1.

2.2 Simplicial Hull

De�nition 2.3 Edge convexity
Let [pipj ] be an edge of a polyhedron P with endpoint vertex normals ni and nj. If (pj�pi)Tni (pi�
pj)

Tnj � 0, then the edge is convex. Otherwise, it is nonconvex. If the edge satis�es the convex
condition. and at least one of (pj � pi)

Tni and (pi � pj)Tnj is positive, then we say the edge [pipj ]
is positively convex. If both of them are zero then we say it is zero convex. If at least one of them
is negative, the edge is negatively convex.

De�nition 2.4 Face convexity
Let [pipjpk] be a triangular face of a polyhedron P. If its three edges are non-negatively (positively
or zero) convex and at least one of them is positive convex, then we say the face [pipjpk] is positively
convex. If all the three edges are zero convex then the face is zero convex. If its three edges are
non-positively (negatively or zero) convex and at least one of them is negatively convex, the face is
negatively convex. Otherwise, [pipjpk ] is non-convex.

Note, that here we are overloading the term convex to characterize the relations between the
vertex normals and edges of faces. We distinguish between convex and non-convex faces in the
simplicial hull below where we build one tetrahedra for convex faces and double tetrahedra for
non-convex faces.

De�nition 2.5 Face tetrahedra
A face-tetrahedron [pipjpkql] is a tetrahedron that is built based on a triangular face [pipjpk] 2 P.
A face-tetrahedron [pipjpkql] is fpositively j zero j negative j non-)g convex if the face [pipjpk ] is
fpositively j zero j negative j non-)g convex.

De�nition 2.6 Tangent containment
A convex face-tetrahedron [p1p2p3p4] is tangent-containing if the tangent planes at the three in-
terpolatory vertices p1, p2 and p3 intersect with [p1p2p3p4]; A pair of non-convex face-tetrahedra
[p1p2p3p4q4] is tangent-containing if the tangent planes at the three interpolatory vertices p1, p2
and p3 intersect with either [p1p2p3p4] or [p1p2p3q4];

5



De�nition 2.7 Simplicial hull
A simplicial hull of triangulation T , denoted as � = (Sf ;Se;Rtf ;Rfe) is de�ned as (1) Sf =
f[pipjpkql]g is a collection of face tetrahedra. (2) Se = f[pipjqksl]g is a collection of edge tetra-
hedra. (3) Rtf = T � Sf is a relation between T and Sf , which can be described as (i) (single
sided) there is one tangent-plane-containing face-tetrahedron [pipjpkql] 2 Sf is built on a convex
face [pipjpk] 2 T and (ii) (double sided) there are a tangent-plane-containing pair of nonconvex
face-tetrahedra [pipjpkql]; [pipjpkql] 2 Sf are built on a nonconvex face [p1p2p3] 2 T , one on each
side;
(4) Rfe = Sf � Sf � Se � Se is a relation between a pair of neighboring face-tetrahedra and
a pair of edge tetrahedra, which can be described as (i) (non-intersection) two face-tetrahedra
[pipjpkql]; [pipjpmqn] 2 Sf that share a common edge [pipj ] 2 T does not intersect each other
and (ii) a pair of edge-tetrahedra [pipjqlsr]; [pipjqnsr] 2 Se where sr = �ql+ (1� �)qn); 0 < � < 1,
are built between the pair of edge-sharing face-tetrahedra that are on the same side of triangulation
T .

3 C2 Mesh of Quintic Patches

The input of our algorithm is a triangulated polyhedron P , with optional C2 data at each vertex. C2

data means that each vertex p is given a gradient vector �f(p) and a Hessian matrix �2f(p). The
gradient vector and/or Hessian matrix can be speci�ed by a plane or a conic surface Fp(x; y; z) = 0
goes through p,

For each vertex that has incomplete C2 data, a preprocessing step computes reasonable ones
by �tting a conic surface to the vertex and its neighboring vertices.

We then construct a simplicial hull
P

as in [BCX95a], except that we impose a stronger tangent
containment condition: For a tetrahedral simplex [p1p2p3p4] built on polyhedral face [p1p2p3],

jNp1 � [p1p4]j > �; (3:14)

where Np1 is the normal at p1 and � is a given small positive constant. We will show later that
we need this stronger condition to guarantee that piecewise surface is connected within �. This
stronger condition can usually be enforced by raising p4.

Once we have established a simplicial hull
P

for the given polyhedron P and a set of point
normals N , we construct a C2 trivariate piecewise polynomial function F within

P
such that F has

the given C2 data at each vertex. We then further set the free polynomial coe�cients so that they
are C2 continuous to each other. We adapted the C1 and functional cubic scheme from [BCX95a]
to quintic piecewise polynomial. Please refer to it for a full description of the C1 scheme.

Figure 3.3 illustrates between the weights of neighboring tetrahedral simplex in �.

V1 = [p1p2p3p4]; V2 = [p01p2p3p
0
4]; W1 = [p001p2p3p4]; W2 = [p001p2p3p

0
4];

V 0
1 = [p1p2p3q4]; V 0

2 = [p01p2p3q
0
4]; W 0

1 = [q001p2p3p4]; W 0
2 = [q001p2p3p

0
4];

and the polynomials fi over Vi, gi overWi, f
0
i over V

0
i and g

0
i over W

0
i be expressed in Bernstein-

Bezier forms with coe�cients ai�; b
i
� and c

i
�, respectively. Now we shall determine these coe�cients
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step by step. Denote

p001 = �11p1 + �12p2 + �13p3 + �14p4; �11 + �12 + �13 + �14 = 1
p001 = �21p

0
1 + �22p2 + �23p3 + �24p

0
4; �21 + �22 + �23 + �24 = 1

p001 = �1p4 + �2p
0
4; �1 + �2 = 1

q001 = 
1q4 + 
2q
0
4; 
1 + 
2 = 1

(3:15)

Algorithm 3.1 C2 quintic scheme(see Figure 3.3)

1. The number 0 weights are given by the function values at the vertices. For examples, a
(1)
5ei

=
f(pi); i = 1; 2; 3.

2. The number 1 weights are determined by formula (2.7).

3. The number 2 weights are determined by formula (2.8).

4. The number 3 weights, that is a
(i)
1220; a

(i)
2210 and a

(i)
2120, are free.

5. The number 4 weights are determined by C1 condition (2.10).

6. The number 5 and 6 weights have to be determined simultaneously. In determining these
weights, we need to consider all the C1 and C2 conditions related to the tetrahedra surround-
ing the vertex p2. Suppose there are k triangles(hence k edges) around p2.

Along edge [p2p3], there are a \clique" of 8 sets of weights with respect of the 8 tetrahedra

around [p2p3]. W
(i)
2210, W

(i)
1310, W

(i)
0410, W

(i)
1220, W

(i)
0320, W

(i)
0230, W

(i)
0311, W

(i)
1211, W

(i)
0221, W

(i)
0212, i =

1; 2, W = a; b; c; d. Actually each of the 8 sets is just a di�erent BB-form with respect to
a di�erent basis. Further studying their relations, we �gure that there is a linear relation

between a
(1)
1211 and a

(2)
1211, regardless of the number 6 weights or weights c

(i)
1211. However, a

number 5 weight, for example a11211, is shared by two \cliques" around [p2p3] and [p2p1].
Therefore, around vertex p2, there is a k� k linear system. One can show that this system is

of rank k�1 and hence always solvable. a(i)1211 are set by solving the system. The other number
5 weights and number 6 weights are set by C2 condition. Please note that the symmetric

linear system with respect to c
(i)
1211 on the other side is trivially satis�ed by the solution of

a
(i)
1211. See Appendix A for further details.

7. The number 7 weights are similarly determined as that of number 6 weights.

8. The number 8 weight a
(i)
1112 are free.

9. The number 9 weights are determined by C1 and C2 conditions. Both the number of equations
and the number of unknowns are 6k. See Appendix B for details.

10. For the number 10 weights, we have six equations parallel to the equations (B.53){(B.56)
with all the index changed by the rule

the index of the number 10 weright = the index of the number 9� e2 + e3 (3:16)

and seven independent weights. By choosing one of them, say b
(i)
3110, to be a free parameter,

the entire system can be solved.
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11. The number 11 weights are determined in the same way as the that of number 9 weights.

12. The number 12 and 13 weights are free. The number 14 weights are determined by C1 and

C2 conditions. That is b
(i)
1103 are de�ned by (2.10), and b

(i)
2102 are de�ned by (2.11). For b

(i)
3101,

we have by (2.12) and (2.13)

�1b
(1)
3101+ �2b

(2)
3101 = b

(1)
4100

��1b(1)3101+ �2b
(2)
3101 = �22b

(2)
2102� �21b

(1)
2102

Hence

b
(1)
3101 =

b
(1)
4100 � �22b

(2)
2102+ �21b

(1)
2102

2�1

b
(2)
3101 =

b
(1)
4100 + �22b

(2)
2102� �21b

(1)
2102

2�2

13. The number 15 weights are similar to that of number 14, the index is changed by the rule
(3.16).

14. The number 16 weights are free, the number 17's are determined by C1 and C2 conditions.

15. The remaining weights with index �1�2�3�4 are determined by C1 and C2 conditions (2.10)
and (2.11) for �4 � 2 and freely chosen for �4 > 2

In summary, the construction steps 1{14 are according to the C1 and C2 conditions across the
common tetrahedra faces that are over or below the original triangulation. Step 15 is according to
the C1 and C2 conditions across the common tetrahedra faces that are on the original triangulation.
Therefore, the composite polynomial function is global C2 continuous.

In the algorithm, there are quite some free weights need to be set. whatever values they are
assigned to have impacts on the shape of the surface. Instead of an optimization analysis, we
proposed two kinds of cheap heuristics. The �rst method is the following. We �rst construct a C1

A-patch surface with cubic patches. After we make sure that the surface looks good, we degree-
raised the whole simplicial hull to quintic patches. Now whatever weights a quintic patch has will
be used as default values if needed. The second method is to always set the free weight so that
the polynomial approximate a polynomial of lower degree. We observe that the �rst method works
better.

4 Functional Zero Contouring Quintics

This section gives a set of su�cient conditions to ensure that each quintic is an A-patch. Namely,
besides C2 continuous between adjacent tetrahedra, the zero contouring surface is singly-connected,
non-singular and topologically equivalent to T .

In the C1 cubic scheme, one is able to arrange the weights of the BB polynomial so that there
is a layer of weights that separates the nonpositive weights and nonnegative. Such an arrangement
turns out to be a simple su�cient condition for an A-patch. However, in the C2 quintic scheme,
after meeting the C2 conditions, the signs of the weights could alternate through the the layers. In
particular, the weights at the 1st, 2nd and 3rd layers can be of any sign. We show in the following
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t

Fixed weights

Free weights

Figure 4.4: Making sure a cubic polynomial is positive by looking into its two subpolynomials

text that, one can arrange the 4th, 5th layers to be nonnegative and large enough in absolute value,
so that the zero contouring surface is an A-patch.

We �rst discuss some su�cient conditions to guarantee that a BB polynomial is positive in
its domain. Then we discuss some su�cient conditions to make sure a univariate BB polynomial
has exactly one root between (0; 1). Then we show that the su�cient functional zero contouring
conditions for a quintic is an integration of the single-rooted and non-rooted conditions at every
rays, for a three-sided patch, shooting from the top vertex p4 of the tetrahedron to the bottom
face, or for a four sided patch, from edge [p4; p

00
1] of the tetrahedron to edge [p2; p3].(for a four See

Figure 3.3.

4.1 Enforcing positivity of a BB polynomial

4.1.1 Univariate

A necessary condition for a univariate polynomial F (�) to be positive in [0; 1] is that F (0) = bm0 > 0
and F (1) = b0m > 0. Actually, if we are given F (0; 1) = bm0 > ", for some small constant " > 0,
and some other weights excluding F (1; 0) = b0m, we can always set b0m and other free weights to
be large enough so that F (�) > 0; � 2 [0:1].

In stead of giving a full proof, we check out several cases that are going to be used in weight
setting processes.

For a cubic BB polynomial

F3(�) = b30B
3
30(�) + b21B

3
21(�) + b12B

3
12(�) + b03B

3
03(�) (4:17)
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Free weights

1-t

t

(2)

(1)

1-t

Fixed weights

Weights of subpolynomial f4

Weights of subpolynomial f4

t

Figure 4.5: Making sure a quartic polynomial is positive by looking at its two subpolynomials

where b30 > 0, b21 are given, set b12 and b03 so that F3(�) > 0 in [0; 1].
From the subdivision properties of BB polynomial, if F3(�) > 0, then there must exist a

subdivision of the BB polynomial where the weights of each piece are all positive. Based on this
observation, we subdivide the univariate cubic polynomial F3(�) into two pieces,

F3(1) = b
(1)
30 B

3
30(�) + b

(1)
21 B

3
21(�) + b

(1)
12B

3
12(�) + b

(1)
03 B

3
03(�) (4.18)

F3(2) = b
(2)
30 B

3
30(�) + b

(2)
21 B

3
21(�) + b

(2)
12B

3
12(�) + b

(2)
03 B

3
03(�) (4.19)

upon � = (1� t; t) (See �gure 4.4). We now just need to choose t carefully so that

b
(1)
21 = (1� t)b30 + tb21 > 0 (4:20)

The other weights are positive function of b12 and b03 and hence can be set to be positive by setting
b12 and b03 large enough. Quantitative details are given in appendix C.

For a quartic BB polynomial,

F4(�) = b40B
4
40(�) + b31B

4
31(�) + b22B

4
22(�) + b13B

4
13(�) + b04B

4
04(�) (4.21)

where b40 > ", b31 and b22 are given, set b13 and b04 so that F4(�) > 0 in [0; 1].
We subdivide the univariate quartic polynomial F4(�) into two pieces,

F4(1)(�) = b
(1)
40B

4
40 + b

(1)
31 B

4
31 + b

(1)
22 B

4
22 + b

(1)
13 B

4
13 + b

(1)
04 B

4
04 (4.22)

F4(2)(�) = b
(2)
40B

4
40 + b

(2)
31 B

4
31 + b

(2)
22 B

4
22 + b

(2)
13 B

4
13 + b

(2)
04 B

4
04 (4.23)
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t 1-t

t

1-t

Weights of subpolynomial f4

Weights of subpolynomial f4 (2)

(1)

Fixed weights

Free weights

Figure 4.6: Making sure a quintic polynomial is positive by looking at its two subpolynomials

upon � = (1� t; t) (see �gure 4.5). By choosing t carefully, one makes sure that

b
(1)
31 = (1� t)b40 + tb31 > 0 (4.24)

b
(1)
22 = (1� t)2b40 + 2(1� t)tb31 + t2b22 > 0: (4.25)

The rest of the control points is a positive function of b13, b04 and hence can be set to be positive.
Quantitative details are given in appendix C

For a quintic BB polynomial,

F5(�) = b50B
5
50(�) + b41B

5
41(�) + b32B

5
32(�) + b23B

5
23(�) + b14B

5
14(�) + b05B

4
05(�) (4.26)

where b50 > ", b41, b32 and b23 are given, set b14 and b05 so that F5(�) > 0 in [0; 1].
We subdivide the univariate quintic polynomial F5(�) into two pieces,

F5(1)(�) = b
(1)
50B

5
50 + b

(1)
41B

5
41 + b

(1)
32B

5
32 + b

(1)
23B

5
23b

(1)
14 B

5
14 + b

(1)
05 B

5
05 (4.27)

F5(2)(�) = b
(2)
50B

5
50 + b

(2)
41B

5
41 + b

(2)
32B

5
32 + b

(2)
23B

5
23b

(2)
14 B

5
14 + b

(2)
05 B

5
05 (4.28)
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upon � = (1� t; t (see �gure 4.6). By choosing t carefully, one makes sure that

b
(1)
41 = (1� t)b50 + tb41 > 0 (4.29)

b
(1)
32 = (1� t)2b50 + 2(1� t)tb41 + t2b32 > 0 (4.30)

b
(1)
23 = (1� t)3b50 + 3(1� t)2tb41 + 3(1� t)t2b32 + t3b23 > 0 (4.31)

The rest of the control points is a positive function of b14, b05 and hence can be set to be positive.
Quantitative details are given in appendix C

4.1.2 Bivariate

Given a bivariate degree m BB polynomial F (�) in [p1p2p3], if F (�) ^ �3 = 0 is �xed and larger
than a small constant ", we can set b00m and any other free weights so that F (�) > 0 in the domain.

A su�cient algorithm to achieve this is given as follows. We �rst construct a \worst case"
univariate degree m polynomial

Fm�(�) = b�m0B
m
m0(�) + :::+ b�(m�j)jB

m
(m�j)j(�) + b�0mB

m
0m(�): (4:32)

where, for the jth layer F (�) ^ �3 = j, 0 < j < m, if a minimum value can be determined from
the �xed weights assign it to b�(m�j)j . Otherwise mark b

�
(m�j)j as a free weights and layer j as free

layer. We then set the free weights to make sure the univariate polynomial Fm� > 0. Then we
make sure that the subpolynomial in each free layer is larger than the corresponding free weight in
Fm�. By doing that, we make sure that the univariate subpolynomial in any line [pp3], p 2 [p1; p2],
is positive.

If we have more time or our computer is more powerful, we may obtain more relax result by �rst

subdividing [p1p2] into n pieces, [p
(i)
1 ; p

(i)
2 ], p

(1)
1 = p1, p

(n)
2 = p2. Then applying the above algorithm

to each triangular simplex [p
(i)
1 ; p

(i)
2 p3], and then in each layer, setting the free weights so that it is

no less than what is required for each subdivided subpolynomial.
Similarly, if b00m is �xed and larger than a small constant ", we can set the weights of F (�)^�3 =

0 and any other free weights so that F (�) > 0 in the domain.

4.1.3 Trivariate

There are two kinds of con�gurations with trivariate BB polynomials. The �rst case is analog to
the bivariate case. For a trivariate degree m BB polynomial F (�) in [p1p2p3p4], if F (�) ^ �4 = 0
is �xed and larger than a small constant ", we can always set b000m and any other free weights so
that F (�) > 0 for any � over the domain simplex. If b000m > " > 0 is given, we can always set the
weights of subpolynomial in [p1p2p3], namely F (�)^ (� = 0) and any other free weights to be large
enough so that F (�) > 0.

The second case, if F (�) ^ �1 = �4 = 0 is �xed and larger than a small constant ", we can
always set the weights of F (�)^ �2 = �3 = 0 and any other free weight to be large enough so that
F (�) > 0. In particular, the worst case polynomial

Fm�(�) = b�m0B
m
m0(�) + :::+ b�(m�j)jB

m
(m�j)j(�) + +::::::+ b�0m(�) (4:33)

where b�(m�j)j is the minimum of F (�)^�1 + �4 = j, if the minimum can be determined. Otherwise

b�(m�j)j is marked free.
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Summing up, in a simplex tetrahedron, if the subpolynomial in a face is given positive, we
can adjust the subpolynomial at its opposite vertex so that the entire polynomial over the simplex
is positive and vice versa. If the subpolynomial in an edge is given positive, we can adjust that
subpolynomial at its opposite edge so that the entire polynomial over the simplex is positive. The
�rst case is for the three sided patch while the second case is for the four sided case.

Similarly, relax result can be obtained by subdividing [p1p2p3p4]. For the �rst case (three sided

patch), [p1p2p3p4] is subdivided into [p
(i)
1 p

(i)
2 p

(i)
3 p4]'s, where [p

(i)
1 p

(i)
2 p

(i)
3 ] is a sub-triangle of [p1p2p3].

For the second case (four sided patch), [p1p2p3p4] is subdivided into [ps1i p
s1
i+1p

s2
i p

s2
i+1's, where [p

s1
i p

s1
i+1

is a subsegment of [p1p4], and [ps2i p
s2
i+1 is a subsegment of [p2p3].

4.2 Su�cient conditions for single-rooted univariate quintic BB polynomials

We now tackle the following problem. Give a univariate quintic BB polynomial

F5(�) = b50B
5
50(�) + b41B

5
41(�) + b32B

5
32(�) + b23B

5
23(�) + b14B

5
14(�) + b05B

5
05(�) (4:34)

where b50, b41, b32, and b23 are given, set b14 and b05 so that the polynomial has exactly one root
within the interval of (0; 1) if (1) b50 < 0, or (2) b50 = 0 and b41 > �, where � > 0 is a constant.

We �rst assume that b50 < 0. Such a quintic BB polynomial can be classi�ed into the 8 cases
in terms of the signs of b41, b32 and b23, shown in �gure 4.7. If we denote each case by a triple
consists of the signs of b41, b32 and b23 respectively, then in cases (�;�;�), (�;�;+), (�;+;+) and
(+;+;+), there is only one sign change in the weights, which is a su�cient condition to guarantee
that there is exactly one root in [0; 1]. We call these four cases category (0).

The other four cases are divided into the following two categories in terms of the di�erence
between b50 and b41: (1) b50 � b41 < �", where " is a small positive number, which can be set as
b50=100; and (2) otherwise. Case (+;+;�), (+;�;+) and (+;�;�) fall into case (1), while case
(�;+;�) is further divided into (1) and (2) (See �gure 4.8).

For a polynomial of category (1), we set b14 and b05 to make sure that the �rst derivative of
F5(�),

F5�(�) = 5((b41� b50)B
4
40(�) + (b32 � b41)B

4
31(�) + (b23� b32)B

4
22(�) +

(b14� b23)B
4
13(�) + (b05 � b14)B

4
04(�)) (4.35)

is positive in [0; 1]. It follow that F5(�) is monotonic and hence single-rooted. The problem is
hence reduced to the quartic case we have discussed in last subsection.

For a polynomial of case (2), we set b14 and b05 to make sure that the second derivative of F (�),

F5��(�) = 20((b32� 2b41 + b50)B
3
30(�) + (b23 � 2b32 + b41)B

3
21(�) +

(b14 � 2b23 + b32)B
3
12(�) + (b05� 2b14 + b23)B

3
03(�)) (4.36)

is positive. The positivity of F��(�) ensure that F�(�) is monotonic, which ensure that F (�) is
single-rooted, providing that F5(0) = b50 < 0 and F5(1) = b05 > 0. As b50 < 0, b41 < 0, b32 > 0
and b50 � b41 � " we have b32 � 2b41 + b50 > 0. Hence the problem is reduced to the cubic case we
discuss in last subsection.

In the case that b50 and b41 > � > 0, the polynomial has a root at � = (1; 0). As b41 > � > 0,
we can set b14 and b05 large enough so that there is no other roots.
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(a) (�;�;�) (b)(�;�;+)

(c)(�;+;+) (d)(+;+;+)

(e)(�;+;�) (f)(+;+;�)

(g)(+;�;�) (h)(+;�;+)

Figure 4.7: Quintic BB polynomials are subdivided into 8 cases according to the signs of weights
b41, b32 abd b23.
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ε

(a) (b)

Figure 4.8: case (�;+;�) is further subdivided. (a) b50 � b41 < �". (b) Otherwise

4.3 Su�cient conditions for quintic A-patches

From de�nition, a three sided quintic patch is an A-patch if a line segment [pp4] connecting the
top vertex p4 and any point p on the bottom [p1p2p3] intersects the surface at most once. In other
words, the univariate subpolynomial in [pp4] has at most one root in [0; 1]. In the case of a four sided
patch, a ray polynomial is the univariate subpolynomial in [p14p23], where p14 2 [p1p4], p23 2 [p2p3].

We �rst assume that, at the bottom face [p1p2p3] (where �4 = 0), F (�) > 0. Then [pp4]
intersects the surface exactly once. We call such a subpolynomial a ray polynomial of the trivariate
polynomial in [p1p2p3p4]. Note that how many times [pp4] intersects with the surface are determined
by the ray polynomial in [pp4]. Recalling that, in section 3, the weights at the 4th and 5th are free
in the C2 continuity weight setting algorithm, each of such univariate quintic polynomials can be
made single-rooted as we discussed above. So if one can check all [p4p]'s for all p in [p1p2p3], to
make sure that the ray polynomial has exactly one root in [0; 1], we make sure that the surface is an
A-patch. But obviously, it is non-practical to keep track of the in�nite number of ray polynomials.

Hence, we instead subdivide the bottom face [p1p2p3] into small triangles [p
(i)
1 p

(i)
2 p

(i)
3 ], such that

the subpolynomial in [p
(i)
1 p

(i)
2 p

(i)
3 p4] is simpler in the sense that the ray polynomials fall in the same

category that we discussed above. We are then able to make sure that all ray polynomials in [p4p]
are single-rooted by making sure that the \worst case" is single-rooted.

Similarly, in the case of a four sided patch [p1p2p3p4], we subdivide edge [p1p4] and edge [p2p3]
to subdivide the tetrahedron into smaller four sided patches, within each of which we enforce that
the surface is an A-patch by treating a \worst" case ray polynomial.

However, it is not practical to subdivide the polynomial into into subpolynomials that exactly
fall into individual categories. Instead, we subdivide the polynomial until the individual subpoly-
nomial can be treated the same way. To see that is possible, in last subsection, we classify the
univariate quintic subpolynomials into 3 categories. Category (0) can be trivially made single-
sheeted by setting b14 and b05 to be positive. So, if a ray polynomial of a trivariate polynomial is
either in category (0) or (1), we can treat them all as if they are all in category (1). Similarly, when
a ray polynomial of a trivariate polynomial is either in category (0) or (2). The algorithm that
guarantees a category (2) subpolynomial single-rooted rely on the fact that b50 + b32 � 2b41 > 0,
which can apply to some member of categories (0) and (1) as well. Hence if we subdivide the
polynomial deep enough, we can get subpolynomial whose ray polynomials are in category (2), or
(0), or (1) but with b50 + b32 � 2b41 > 0.

Based on the above observation, we layout the subdivision scheme in the following way.
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Let F0(�) = F (�) ^ (�4 = 0) be the bivariate polynomial in the bottom face, or the 0th layer,
F1(�) = F (�)^(�4 = 1) be the quartic bivariate polynomial in the 1st layer, F2(�) = F (�)^(�4 =
2) be the cubic bivariate polynomial in the 2nd layer. We de�ne the following two polynomials in
[p1p2p3p4]

F�(�) = F0(�)� F1(�)� (4.37)

F�2(�) = F0(�)� 2F1(�)�+ F2(�)�
2 (4.38)

We denote the weights of polynomial F (�) as b(F ). b(F ) < c means the weights of F are all
less than c.

Then we keep subdividing [p1p2p3p4] until for each subpolynomial [p
(i)
1 p

(i)
2 p

(i)
3 p4] satis�es one of

the following cases.

(0) There is only one sign change;

(1) b(F�) < �", which implies that for every univariate subpolynomial in [p4p], b50 � b41 < �";
(2) b(F1) < 0 ^ (b(F�2) _ b(F2) < 0 _ b(F3) > 0) which implies that for every univariate

subpolynomial in [p4p], b41 < 0 and b50� 2b41+ b32 > 0, or can be classi�ed into category (0).

In cases (1) and (2), we de�ne the worst univariate subpolynomial

Fworst(x) = b�50B
5
50 + b�41B

5
41 + b�32B

5
32 ++b�23B

5
23 + b�41B

5
14 + b�50B

5
05 (4.39)

where

b�50 = Minfb(F0)g
b�41 = Minfb(F1)g
b�32 = Minfb(F2)g

Enforcing the worst univariate subpolynomial to be single-rooted, we guarantee that all the
univariate subpolynomial over [p4p] is single-rooted, which implies that the surface is an A-patch.

In the case that F0(�) is not always positive, we subdivide face [p1p2p3] until in each subpoly-

nomial F
(i)
0 (�) in [p

(i)
1 p

(i)
2 p

(i)
3 ] is one of the following

1. Positive. Set the free weights of F (i)(�) so that the trivariate polynomial has no root.

2. Negative. Set the free weights of F (i)(�) so that the trivariate polynomial has exactly one
root.

3. The subpolynomial in [p
(i)
1 p

(i)
2 p

(i)
3 ] (denoted as F

(i)
4 (�)) is an A-spline [BX92]. A su�cient

condition is that, there exists an integer j(1 � j � 3) an integer k(0 < k < 5) such that

b� � 0; �j = 0; 1; :::; k� 1 (4.40)

b� � 0; �j = k + 1; :::; 5 (4.41)

In this case, say j = 1, we set the free weights of F (i)(�) so that the bivariate subpolynomial

in [p
(i)
2 p

(i)
3 p4] is positive, and furthermore, large enough so that any ray subpolynomial in pp4,

where p 2 [p
(i)
2 p

(i)
3 p4], is single-rooted.
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At a corner of face [p1p2p3], say p1 or � = (1; 0; 0; 0), the weight b5000 = 0. From the stronger
tangent containment condition 3.14 that we have enforced, b4001 > � for some small constant � > 0.
Thus there exists a small neighborhood ��; j����j < �, where F1(�

�) > 0. Hence it can be treated
as an instance of category (1).

In short, the functional zero contour enforcing scheme can be embed into the C2 scheme as
follows. Steps 4 and 8 replace steps 4 and 8 in scheme 3.1. Step 11' is inserted between steps 11
and 12.

Algorithm 4.2 Functional zero contouring

4. If face [p1p2p3] is convex, set a
(i)
1220, a

(i)
2210, a

(i)
2120 to be positive.

8. Set number 8 weight, a
(i)
1112 to be positive.

11'. Set number 12 weight to be large enough so that

(a) we are sure the polynomial in [p1p2p3p4] is a three sided A-patch, and

(b) when we compute number 13, 14 and 15 weights later in step 12, they are large enough
so that we are sure the polynomial in [p

00

1p2p3p4] is a four sided A-patch.

4.4 Summary

In summary, we give an outline of the algorithm. The last step can be incorporated into one,
depending on the implementation.

Algorithm 4.3 Construction of C2 A-patch surface

INPUT: a triangulated polyhedron P .

� Compute the normal at each vertex of P .
� Construct C1 cubic simplicial hull and C1 A-patches

� Degree raising the cubic simplicial hull to quintic. Used as default values.

� Estimate C2 data (Hessian matrix) at each vertex. interpolate them with the polynomials.

� Construct piecewise C2 quintic polynomials.

� Set functional zero contouring conditions.

OUTPUT: C2 A-patch surface.
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(a) (b)

(c) (d)

Figure 5.9: A simple C2 example. (a) Drawn in di�erent shades to show the piecewise structure.
(b) C1: Showing Gaussian curvature. (c) C2: Showing Mean curvature. (d) C2: Showing Gaussian
curvature.
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(a) (b)

(c) (d)

Figure 5.10: A C2 smooth icosahedron. (a) Drawn in di�erent shades to show the piecewise
structure. (b) Gaussian curvature. (c) Mean curvature. (d) Mean curvature. The surface is
modi�ed locally around the patch facing up.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Interactive control of C2 A-patches. Starting from a sphere, the quintic piecewise
surface is deforming toward a cube. (a) Sphere. (b) The surface is dragged toward a vertex of the
cube. Mean curvature map. (c) Toward an edge of the cube. Gaussian curvature. (d) Toward an
face of the cube. Mean curvature. (e) Toward the cube. Gaussian curvature. (f) Toward the cube.
Shaded in pattern to show the piecewise structure.
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5 Implementation

We have presented algorithms for interpolating a three dimensional polyhedron with C2 quintic
A-patches. These algorithms have been implemented in the SplineX and Shilp toolkits of Shas-
tra, a distributed and collaborative geometric design environment [AB93]. Shilp is an X-11 based,
interactive solid modeling system and is used to create a simplicial (face triangulated) polyhedral
model of the desired shape. This model could also be the triangulation of an arbitrary surface in
three dimensions. This triangulation is C1 smoothed by a client/server call to a SplineX computa-
tion using inter process communication. SplineX is a an X-11 based, interactive surface modeling
toolkit for arbitrary algebraic surfaces (implicit or parametric) in BB form. It allows for the cre-
ation of simplex chains (as for example the simplicial hull of the triangulation) and the interactive
change of control points and weights of the A-patches for shape control. SplineX also has the
ability to distribute its rendering tasks (for the display of the individual A-patches) on a network
of workstations, to achieve maximal display parallelism.

Figure 5.9 shows a simple example, quintic A-patches based on 4 triangles sharing a vertex.
Figure 5.10 shows quintic A-patches built on top of a icosahedron. Note that the sizes of edge
patches in pairs are not even, as an convention simplicial hull based on an icosahedron, with
equal sized edge patch pair, would cause case 1 degeneracy(See Appendix B). Figure 5.11 shows
interactive control of C2 quintic A-patches. Starting from a sphere, we drag the surface towards
the vertices of a cube by changing the weights a0113, a1013 and a1103 of the quintic face simplexes.
Note that the simplicial hull in Figure 5.11 su�ers case 2 degeneracy(See Appendix B). Hence we
keep weight a1112 as is, but instead change a0113, a1013 and a1103.

6 Conclusion

We give piecewise C2 quintic A-patch scheme to C2 interpolate or approximate each vertex of a
given polyhedron. However, as a �rst step toward C2 algebraic splines in BB form, the scheme still
has many problems. Compared to the C1 cubic A-patch scheme [BCX95a], this scheme is more
complicated in the following aspects. First, we have to solve larger linear system to achieve C2

continuity. Secondly, it is far more di�cult to guarantee that the surface is fully connected, free of
singularity and unwanted branches, as in general, the \one sign change" principle is not practical.
Thirdly, there are quite many degenerate cases, where the linear systems are singular and we have
modi�ed the simplicial hull to remove the degeneracies.

However, it seems to us there is not much room that we can play with quintic surface for
C2 continuity, under the same simplicial hull structure. Further improvements can be made by
studying more about the degenerated cases, using higher degree surfaces, or di�erent simplicial
hull structures. For example, if we use degree 7 patches, which interpolates some given or pre-
calculated C3 data at each vertex, and C2 elsewhere, we are able to break up those big systems
around the vertices into smaller ones around the edge. Namely, the systems involve no more than
8 simplexes, same level as in the C1 cubic case.

Besides all these problem, the scheme inherits some common problem of surface �tting, as shown
in Figure 5.10, although C2 smooth, the surface looks bumpy. An optimization scheme is hence
needed to construct fair surface with respect to this particular problem.
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A Determining Number 5 and 6 Weights of Quintic

It follows from (2.10) and (2.11) that
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for i = 1; 2. (A.43) can be written brie
y as
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where 
 is the known terms in (A.43). Since
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�21b
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0212 � �2b
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1211 (A:46)

then by substituting (A.42) into (A.45) and (A.46) and then eliminating b
(i)
2210 from (A.44) and

(A.45) we get three equations related to four unknowns which could be written as:
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where � � � are known terms. Since the coe�cient matrix of (A.47) is nonsingular, by solving

[a
(1)
0212 a

(2)
0212]

T from (A.47) and then substituting it into (A.48), we get one equation relating to

the unknowns a
(1)
1211; a

(2)
1211. Let the equation be in the form

�a
(1)
1211 +  a

(2)
1211 = ! (A:49)

Therefore, these unknowns form a closed chain around the vertex p2 in one side of the tangent
plane at p2.

Let
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. . .
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We observe that system
Ax = ! (A:52)

is of rank k�1. In other words, it has in�nite number of solutions. We have not come up with a proof
of this property yet. Assuming this observation is true, we choose the solution that least-squared
approximate the default values.

B Determining Number 9 Weights of the Quintic Scheme

For i = 1; 2,
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and
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Substitute (B.53) and (B.54) into (B.56), we have
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This is a system of the form
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whose determinant is
Qk+r

i=1 �i�(�1)k+r
Qk+r

i=1  i. This matrix is nonsingular in general if the points
given are in the general position. Hence the system can be solved.

However, if the surrounding tetrahedra at the same side of p2 are not closed, the matrix A is
in the form of

A =
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By choosing one unknown, say the l-th to be a free parameter, A can be written as A =
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Hence the system of equations breakup into two smaller sub-systems. Each of them can be solved
separately.

We identify two kinds of degeneracies as follows.

(1) �
(1)
4 = �

(2)
4 , but not equal to zero.

�1 and �2 need to be set to some values other than 0:5 so that A is not singular.

(2) �
(1)
4 and �

(2)
4 are all zero.

In this case, changing �1, �2 would not solve the problem. We perturbed the tops of the face
simplexes to avoid singularity in A.

C Enforcing positivity of quartic and cubic BB polynomials

C.1 Enforcing positivity of a cubic polynomial

For a cubic BB polynomial

F3(�) = b30B
3
30(�) + b21B

3
21(�) + b12B

3
12(�) + b03B

3
03(�) (C:57)

where b30 > 0, b21 are given, set b12 and b03 so that F3(�) > 0 in [0; 1].
We observe that, if F3(�) > 0, then there must exist a subdivision of the BB polynomial where

the weights of each piece are all positive. We subdivide the univariate cubic polynomial F3(�) into
two pieces,
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3
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upon � = t (See �gure 4.4). We now just need to choose t = t0 <
b30

b30�b21
so that

b
(1)
21 = (1� t0)b30 + t0b21 > 0 (C:60)

The other weights are positive function of b12 and b03 and hence can be set to be positive. In
particular,

b
(1)
12 = (1� t0)b

(1)
21 + t0((1� t0)b21 + tb12) (C.61)

> t0((1� t0)b21 + t0b12) (C.62)

Hence if

(1� t0)b21 + t0b12 > 0 or

b12b30 � b220 > 0; (C.63)

b
(1)
12 > 0. It is trivial to verify that if furthermore b03 > 0, all other control points are positive.
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C.2 Enforcing positivity of a quartic polynomial

For a quartic BB polynomial,

F4(�) = b40B
4
40(�) + b31B

4
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4
13(�) + b04B

4
04(�) (C.64)

where b40 > ", b31 and b22 are given, set b13 and b04 so that F4(�) > 0 in [0; 1].
We subdivide the univariate quartic polynomial F4(�) into two pieces,
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upon � = t (see �gure 4.6). By choosing t carefully, one makes sure that
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31 = (1� t)b40 + tb31 > 0 (C.67)
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22 = (1� t)2b40 + 2(1� t)tb31 + t2b22 > 0: (C.68)

Speci�cally, Let r = 1�t
t
, inequality (C.68) is equivalent to
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2 + 2b31r + b22 > 0 (C:69)

Solving this inequality in r > 0,
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Hence by choosing r = r0 >
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Furthermore, with b04 > 0, every other weights are positive.
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C.3 Enforcing positivity of a quintic polynomial

For a quintic BB polynomial,

F5(�) = b50B
5
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5
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5
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4
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where b50 > ", b41, b32 and b23 are given, set b14 and b05 so that F5(�) > 0 in [0; 1].
We subdivide the univariate quintic polynomial F5(�) into two pieces,
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upon � = t (see �gure 4.5). By choosing t carefully, one makes sure that

b
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41 = (1� t)b50 + tb41 > 0 (C.78)

b
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32 = (1� t)2b50 + 2(1� t)tb41 + t2b32 > 0 (C.79)

b
(1)
23 = (1� t)3b50 + 3(1� t)2tb41 + 3(1� t)t2b32 + t3b23 > 0 (C.80)

Similar to the cubic and quartic case, we solve

(1� t)3b50 + 3(1� t)2tb41 + 3(1� t)t2b32 + t3b23 > 0 (C:81)

in 0 < t < 1, or its equivalence

r3b50 + 3r2b41 + 3rb32+ b23 > 0 (C:82)

with r = 1�t
t
.

Let t0 be what we choose for t. We next choose b14 so that
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or
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2
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Setting b05 > 0 makes every other weights positive.
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