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Abstract

Global parameterizations of parametric algebraic curves or surfaces are defined over infinite parameter
domains. In this paper we show how to replace these global real parameterizations with a finite number
of alternate bounded parameterizations, each defined over a fixed, bounded part of the real parameter
domain space. The new bounded parameterizations together generate all real points of the old one
and in particular the points corresponding to infinite parameter values in the old domain. We term
such an alternate finite set of bounded parameterizations a finite representation of a real parametric
curve or surface. Two solutions are presented for real parametric varieties of arbitrary dimension n. In
the first method, a real parametric variety of dimension n is finitely represented in a piecewise fashion
by 2" bounded parameterizations with individual pieces meeting with C* continuity; each bounded
parameterization is a map from a unit simplex of the real parameter domain space. In the second method,
only a single bounded parameterization is used; it is a map from the unit hypersphere centered at the
origin of the real parameter domain space. Both methods start with an arbitrary real parameterization
of a real parametric variety and apply projective domain transformations of different types to yield the
new bounded parameterizations. Both these methods are implementable in a straightforward fashion.
Applications of these results include displaying entire real parametric curves and surfaces, computing
normal parameterizations of curves and surfaces (settling an open problem for quadric surfaces), and
exactly representing an entire real parametric curve or surface in piecewise Bernstein-Bezier form.
Keywords: real parametric curves and surfaces, varieties, computer graphics, projective domain trans-
formations.
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1 Introduction

Algebraic curves and surfaces are commonly used in geometric modeling. Parametric curves and surfaces
are those that can be represented using rational parametric equations, and are particularly important. In
geometric modeling applications, the parametric equations are restricted to some bounded portion of the
~ domain, yielding a segment of a curve or a patch of a surface. However, the algebraic curve or surface is
an image of the entire infinite parameter domain. Attempting to map the entire curve or surface using
very large regions of the parameter domain is not a solution because some finite points may be images of
infinite parameter values.

Thus a natural question arises: can one cover an entire curve or surface, using only a finite number of
bounded regions of the parameter domain ? This is indeed possible, and two methods are described in this
paper.

In the first method, a given rational parameterization is replaced by several bounded parameterizations
that together generate all the points that the original one did, including points that correspond to infinite
parameter values. Projective linear domain transformations (reparameterizations) are applied that map
the unit simplex of each parameter domain onto an entire octant of the original parameter domain space
in turn. This approach for the special case of real parametric curves and surfaces in the Bernstein-Bezier
form, is similar to the technique called homogeneous sampling [9] used to sample finite and infinite domain
points of a parameterization equally. One application of our work is displaying entire real parametric
curves and surfaces. Another application is the first step towards representing an entire real parametric
curve (surface) by a collection of curves (surfaces) in Bernstein-Bezier form, each with positive weights.
This possibility is raised in [17].

In the second approach, it is shown that a single projective reparameterization suffices to map all finite
and infinite parameter values of the old parameterization, using only finite values of the new parameter
domain. In this case the reparameterization is quadratic and the region of the domain space that suffices is
the unit hypersphere of the new domain space. Because of the higher degree and the non-linear boundary of
the domain region, this approach is less practical, but it can be used to compute normal parameterizations
of curves and surfaces — that is, parameterizations that map all points of the curve or surface, without
“missing” any. This issue was discussed in [11], where normal parameterizations for conic curves and some
quadric surfaces were given. The problem of computing normal parameterizations for three important
quadric surfaces was left open, and we shall give the solutions here.

Since the results generalize to higher dimensions, our discussion will be in terms of real parametric
varieties of any dimension. The problem can be stated as follows. Given a real parameterization of a
parametric variety, we would like to compute an alternate set of bounded parameterizations that together
generate all the real points of the variety: those that correspond to finite parameter values, and those that
correspond to infinite parameter values (in the original parameterization).

This paper is organized as follows. In the next section some preliminary definitions and terminology
are given, and the issue of “missing points” is discussed in some detail. In section 3, we show how to
finitely represent a real parametric variety of dimension n using 2" pieces. In section 4 it is shown that
a single reparameterization is sufficient, and in section 5 we make some concluding remarks and indicate
directions for future work.

2 Finite parametric representations

The set of solutions of a set of polynomial equations with real coefficients in m variables forms a real
algebraic set in R™, where R is the field of real numbers. A real algebraic set that cannot be properly
represented as the union of two real algebraic sets is called a real variety. A parametric variety is one



whose points can be given as the image of a map over some domain space. We restrict our attention to
maps defined by rational functions.
Let the points of a variety V' of dimension » in R™ (n < m) be given by a rational-function map in n
parameters:
Z1(81,.-+58n)
V(S) = ’ 8; € (_005 +°°)
Tm(S1y.++y3n)

The rational functions z;(sy,...,s,) constitute a parameterization of the variety and are assumed to
have a common denominator. Methods exist for computing rational parameterizations of various classes of
varieties (1, 2, 3, 4, 13, 14, 16, 21]. All these algorithms generate parameterizations of curves and surfaces
over infinite domains.

We view the map as one from the real projective space of n dimensions to the real affine space of m
dimensions, i.e. V(s) : RP* — R™. By doing so, we allow each parameter s; to take on any value in R as
well as the value co. It is often the case that a finite point (one in R™) of the variety given by rational
functions is mapped by an infinite parameter value in RP".

For example, a 1-dimensional real variety in R? is defined by the bivariate polynomial equation z2 +
y? — 1 = 0. The points are in the image of the univariate rational functions

23 s2 -1

z(s) = Y y(s) = 771 %€ (=00, +00) (1)

. Notice that the point (0,1) € R? of the variety is the image of the parameter value s = oo € RP.

2.1 Missing points of parameterizations

There are two categories of potential missing points of a real parametric representation of a variety.

First, a parametric variety may have finite points that correspond to infinite parameter values. The
methods in {11, 23], though computation intensive, exhibit a way to prove whether or not a given parame-
terization has such missing points and to compute them. Two different solutions are provided in this paper
for dealing with missing points and generating new parameterizations which do not have missing points.

Examples. A simple case is the unit circle, whose parameterization (1) and missing point were given
earlier. Figure 1 shows two surfaces, an ellipsoid and a Steiner surface. A point is missing on the ellipsoid,
and a curve from the Steiner surface. The parameterizations of the ellipsoid and the Steiner surface are
given in Table 1. For each parameterization we show the image of a rectangular domain region centered
at the origin. All such images show a “hole” or gap (the clover-leaf on the ellipsoid is a hole).

Increasing the area of the domain region will shrink the gap but never close it. Furthermore, if the
domain region is discretized uniformly to generate a piecewise-linear mesh approximating the surface,
the pieces tend to be large away from the gap, but small and dense near the gap; curvature-sensitive
approximation techniques are necessary.

Second, parametric varieties of dimension greater than 1 can have base points, which are points in the
parameter domain at which all numerators and (common) denominator of a parameterization vanish. For
surfaces it has been shown that a domain base point corresponds to an entire curve on the surface [15].
For example, consider the variety defined by z2 + y2 — 22 — 1 = 0. A parameterization for it is

(z(u,v), y(u,v), z(u,v)) = <u2 —vi41 2uv 2u )

uw4v2-1" w240v2-1" w2421



Figure 1: Missing points due to infinite parameter values

which has the base points (u, v) = (0,£1); it can be shown that these points map onto the lines (2(8),y(8),2(s)) =

(—1,s,5) and (z(t),y(t), 2(t)) = (—1,t,—t) on the surface. Essentially, approaching the domain base point
from two different directions leads to different surface points, in the limit.

Domain base points cause “pseudo” missing points on the variety that are the image of finite parameter
values. These points on the variety are only missing in that the rational map itself is ill-defined, when
specialized to the domain base points. We don’t present a reparameterization solution to this problem but
leave it open for future research.

One way for surfaces is as follows: besides reparameterization, one may augment the existing param-
eterization with parameterizations of the image points corresponding to base points, as suggested in [8].
Such space curves on the surface are called seam curves, and are known to be rational. Algorithms for
computing rational-map parameterizations of these curves are given in [18], but they are not practical at
this time. A more practical approach might be to numerically approximate the seam curves.

2.2 Problem statement

We wish to replace a parameterization over an infinite parameter domain with a finite number of pa-
rameterizations, each over a fixed, bounded parameter domain. Suppose we are given a parameterization
V(s) : RP" — R™ of a variety. We wish to compute maps Qy,.. .y Qk, With @; : R® — R™, such that
UL,Qi(R™) = V(RP"). That is, the new maps restricted to finite values together yield the same set of
points that the given one does, even though the latter maps both finite and infinite domain values. To
derive a finite representation we also find a bounded region D C R™ to which the @; can be be restricted,
ie., UL Qi(D) = V(RP).



2.3 Main results

Given one parameterization of V, it is possible to compute a finite representation of it, and we show two
ways below.

In the first way, an affine variety of dimension n is finitely represented using 2" parameterizations,
with the bounded domain D being the unit simplex in R™. In the second way, only one parameterization
suffices, but its degree is twice that of the original, and the bounded domain D is the unit hypersphere in
R™. The second approach can be used to compute parameterizations of real parametric varieties that are
free of missing points.

3 Piecewise finite representation

Suppose we are given a real parametric variety V of dimension n and a parameterization V(s) for it.
We compute 2" parameterizations, each restricted to the unit simplex of the parameter domain R”, that
together give all the points that V(s) did for s € RP".

We use linear projective domain transformations (reparameterizations) to map, in turn, the unit simplex
D of the new parameter domain space onto an entire octant of the original parameter domain space. The
reparameterizations are specified in affine fractional form for convenience, but in practice they would be
applied by homogenizing a parameterization and then substituting polynomials.

THEOREM 1 Consider a real parametric variety in R™ of dimension n, n < m, which is parameterized
by the equations
. Z1(81y .-+ Sn)
V(s) = » 8 €(—00,+00)
ZTm(815.+-,8n)
Let the 2™ octant cells in the parameter domain R™ be labelled by the tuples < O1,...05 > witho; € {-1,1}.
Then the 2" projective reparameterizations V(t<y,,..s.>) given by

t;
-ty —ty—...—t,’

8 =0y i=1,...,n (2)
together map all the points of the variety V(s),s; € (—00,+00), using only parameter values satisfying
t;20andty +to+...+1t, <1.

PROOF. We must show that every point in the old domain RP" is the image of some point in the
new domain R". In particular, we show that the hyperplane ¢, +...+ t, = 1 bordering the unit simplex in
R™ maps onto the hyperplane at infinity in RP", and the rest of the points of the unit simplex are mapped
onto a particular octant of the original domain space, depending on the signs of the o;.

Let s = (¢s1,...,C80,¢C3n41) € RP™, where ¢ € R is a non-zero constant of proportionality and s,4; = 0
is the equation of the hyperplane at infinity in RP*. Let t = (t1,...,ta) € R™. Since (2) is a map from
R™ — RP", the following relationship holds between the s; and t;, under one of the 2" transformations
K OlyeeeyOpn >

c81 = 0‘1t1

C8p = oOpnty
CSn41 = 1—(t1+...+tn)



Figure 2: Piecewise finite

representations



Let sign(a),a € R be —1 or +1 according to whether a < 0 or a > 0, respectively.

First we show that every s € RP™ on the hyperplane at infinity is the image of some point t =
(t1,..-,ts) € R™ under one of the transformations, and additionally that t; > 0 and ¢; + ...+ ¢, = 1.

Smce s is on the hyperplane at infinity, 3,43 = 0, and hence

cs; = o5t i=1,...,n
? b

0 = 1—(t1+...+tn)

Then a solution (2,,...,%,) is derived by setting

o; = sign(s;)
_ 1
¢ = Zt—l T84
o= o
E?:l i8¢

Noting that oys; > 0 and not all of the s;,7 = 1,...n can be zero, it follows that #; > 0 and Yrati=1
Second, let s € R™ C RP", i.e. sp41 # 0. We show that s is the image of some t € R™ under one of
the transformations, and additionally t lies in the unit simplex of R™.
We can set s,43 = 1 w.lo.g. and the following system of equations for the ¢; is derived:
csg = o5t; i=1,...,n

¢ = 1=(ti+...4+1,)

We can solve this linear system by setting

g; = sign(s;)
1
¢ = T
1+ 370, ous;
b 08

and since oys; > 0 it follows that ¢; > 0 and ¢; + ...+ ¢, < 1, hence this point t is in the unit simplex in
R", but not on the hyperplane ¢; +...+ ¢, = 1.

We have thus proved that all of RP™ is mapped by the transformations (2), restricting each to the unit
simplex of R™. O

COROLLARY 1 Rational curves given by aparameterzzatzon C(s) = (z1(8), - ., zm(3))T, s € (—00, +00)
can be finitely represented by C(—t—) C( ) using only 0 < t < 1.

COROLLARY 2 Rational surfaces given by a parameterization S(s1,s2) = (z1(s1,52), - - -, Zm(81, 82))7,
81,82 € (—00,+00) can be finitely represented by

ty 1) -t 1Y)

S S
(1—t1—t2,1—t1—t2) (1—t1—t2,1—t1—t2)
( -—t1 —tg t]_ —t2 )

-ty —ty’ 1=t — ¢y l-t1—t’ 1=t -t

using only t1,13 > 0At; + 15 < 1.



Examples. Figure 2 shows several piecewise representations of surfaces using corollary 2. Points on a
surface that are correspond to a particular quadrant of the parameter domain space RP? are given a color
unique to that quadrant, and the entire surface is trimmed to some bounding box of R3. The upper left
shows a Steiner quartic variety, whose quadratic parameterization is given in Table 1. In the upper right
is an “elbow” cubic variety, whose parameterization is

482 + (s + 65+ 4)t —4s— 8 4t% 4 (—s? — 65— 20)t + 252 + 85 + 16 (25 + 6)1% + (—4s — 12)t — 5% — 43
262 —4t+ 32 +45+8 ' 2t — 4t + 52+ 45+ 8 ’ 262 — 4t + 52 + 45+ 8

A singular cubic surface appears in the lower left; its parameterization is

B+24+83 -T2 41 23 +212 — 752 4253+ 2 st — 753
B4+s341 ’ tB34s34+1 B4+ 341

An arbitrary quartic variety whose parameterization is quadratic is given in the lower right; its parametric
equations are
23 4ts 1—s%2—¢?
24122782442 -2 524422

4 Single finite representation

We now consider the problem of finitely representing a real parametric variety using only one parame-
- terization. Put another way, can we find parameterizations of varieties that have no missing points 7 In
(11], such normal parameterizations are given for ellipses and some quadric surfaces. Their method for
proving a parameterization normal involves elimination-theoretic computations based on the method of
characteristic sets developed for geometric theorem proving [23]. The method is general, but lengthy ma-
chine computations are involved and the authors were unable to find normal parameterizations for three
important quadrics, namely the ellipsoid, hyperboloid of one sheet, and hyperboloid of two sheets; they
pose it as an open problem to either find such normal parameterizations or to prove they don’t exist. It
is also shown that the lowest-degree normal parameterization of an ellipse is of degree 4, which hints that
normal parameterizations for the above quadrics will also need to be of degree 4, at least.

We can achieve the same results simply by using projective reparameterizations to bring points at
infinity in the parameter domain to finite distances. Instead of using linear projective reparameterizations,
however, we now use quadratic projective reparameterizations to solve this problem.

THEOREM 2 Consider a real parametric variety of dimension n in R™, n < m, which is parameterized
by the equations

21(81, ey 8,,)
V(s)= : » 8 € (~00,+00)
Tm(S15..+,8n)
The single projective quadratic reparameterization given in fractional affine form as
t

Tl-- - -2

8 i=1,...,n 3)

yields a finite representation V() of the rational variety V(s), restricting t? + ...+ 12 < 1.



Figure 3: Single finite representations



PROOF. In this case, the proof consists of showing every point in the old domain RP" is the image
of some point in the new domain R", using only the single transformation (3). We will show that the unit
hypersphere in the new domain space maps onto the hyperplane at infinity of the old domain space, and
every other point in the old parameter domain space is the image of a corresponding point in the new
domain, which lies in the interior of the unit hypersphere.

Once again let s = (¢sy,...,¢8,41) € RP*, c € R, ¢ # 0 and we fix s,4; = 0 as the hyperplane at
infinity. Let t € R™. The equations (3) are a map from R™ — RP™:

cs; = I;
CS8p = 1n
enp1 = 1—(+...+1)

First, consider points s on the hyperplane at infinity, i.e. Sn41 = 0. Then (3) yields a system of
equations

csi = t=1,...,n
0 = 1-(+...+82)

which has two real solutions, given below:

1
¢ = e
n
V =1 S?
]
t; = c8 = :E*l
E?=1 8?

For either solution, t2 + ...+ tZ = 1, showing that t lies on the unit hypersphere in R™.
Second, consider affine points s € R® C RP™. We can set Sn41 = 1, w.lo.g., and then (3) yields the
system of equations

sy = t=1,...,n
c = 1-(B+...+12)

This system also has two real solutions, given by

-124/14+437%, s?
22?:1 S?

ti = cs;

2
Choosing ¢ = — -, some simple algebra shows that 3 4...12 < 1.

. 87
Thus if s is on the h'y-ﬁel"pla,ne at infinity, there is a point t on the unit hypersphere that maps it;
otherwise, there is a point t in the interior of the unit hypersphere that maps it. Only the single map (3)
is necessary. O
Given a parameterization of a variety, an application of theorem 2 yields a normal parameterization of
the corresponding variety. Thus we can compute normal parameterizations of the ellipsoid and one- and

two-sheeted hyperboloids, settling the open issue raised in {11] of whether normal parameterizations for
these varieties exist.
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[ Varety Il Equation [ Parameterization [ Missing Points

Ellipse S+ -1=0 (L, 2) (a,0)

Ellipsoid St +5—1=0 (sr28tr, b, L) (0,0,¢)
Hyperboloid (1S) i—; + %; — z—; -1=0 (a:;__::_"'ll), ,,3_';'3'_1 , ﬂi%) {f; + {5— —1=0,s= o} \ {(—a,0,0)}
Hyperboloid (25) St -4+1=0 (522, oy, SrHD) (0,0,¢)

Steiner 22y +y? 2% 4 2222 — 2zyz =0 (,1+—2",ﬁ, ?’ﬁ?&"s”%’tﬁ) (0,0,r),re(=1,1),7#0

Table 1: Real parametric varieties and their missing points

| Variety I Normal Parameterization |
. —a(u'—3u’+1) 2b(u—u’)
Ellipse ( WT—uiFl ' ui—uTFl
Elli id 2au(l—u’~v?) 2bv(l—u’—v?) —c(v +2uv?=3v i ruT—3uT41)
1psor vi42udy3—y3tut—ud41) vi42udviavifut—uaf1? vi+2udyd—vifut=yud4l
. a(vi4+2u?vi-3vitut—ui4l) 2buy 2cu(l—u?=v?)
Hypetbolmd (IS) (_(04+2uz”:_3"2+u4_3u2+1), —(u‘+2u’v’—30’+u‘-—3u3+15’ —(v‘+2u’u’—303+u‘—3u’+1)
. a(vi42u¥vi-3vituT—u?41) 2buy 2cu(l-u?—v¥)
Hyperboloid (2S) (_(w+zu2u=—3v=+u4-3uim’ —(vi+2u3v3-3vitui—3uT+1)’ (v F2uTv3 —3vifui—3ulF1)
: —2«0’—2u:’j;2u —20°—Zu’uj‘-_2u 2uy
Steiner (v +2uvi—vitut—ui41) vI42uTvI I Fui—uIF1? vi4:2udvi— il —uT]

Table 2: Normal parameterizations of some varieties

COROLLARY 3 Using theorem 2, we can compute normal parameterizations for the ellipse, ellipsoid,
hyperboloid of one sheet, and hyperboloid of two sheets.

The equations of several varieties are given in Table 1. A rational parameterization for each variety
is listed, as well as the missing points of each parameterization. The missing points can be computed
either using the general machine computations of [11], but for these particular varieties direct, elementary
arguments suffice [20].

In Table 2, normal parameterizations of these varieties are given; one for the ellipse is found in [11], all
those for surfaces are new. For the ellipse, the parameters can be restricted to fu| < 1, and for the quadric
surfaces they can be restricted to u? + v2 < 1. The parameterizations map these bounded domain regions
onto the entire variety, without missing any points.

Examples. The upper half of Figure 3 shows a normal ellipsoid parameterization graphed over the
parameter region u? + v < 1. Likewise, the lower half shows a normal Steiner surface parameterization.
The parameters of both are restricted to the unit disk in R2. The left-hand side of each figure is unshaded
to emphasize that no parts of the surface are missing (compare these to Figure 1).

5 Conclusions and future work

In this paper we have presented two ways by which infinite parameter values can be avoided when dealing
with parametric curves and surfaces. The results were presented for parametric varieties of any dimension,
and were used to solve the open problem of computing quadric surface parameterizations that do not have
any missing points.

11



These results have been applied as a first step in the robust display of arbitrary real parametric curves
and surface [20]. Another application is a first step towards exactly representing a arbitrary real parametric
curve or surface in piecewise rational Bernstein-Bezier form, with positive weights.

Future directions for research include examining the other “missing points” problem (due to domain
base points) in more detail, and also considering the issue of computing those real points on a real para-
metric variety that do not correspond to any real parameter value, but to a complex parameter value.
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