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We present a sufficient criterion for the Bernstein Bezier (BB) form of a trivariate polynomial
within a tetrahedron, such that the real zero contour of the polynomial defines a smooth and
single-sheeted algebraic surface patch, We call this an A-patch. We present algorithms to build a
mesh of cubic A-patches to interpolate a given set of scattered point data in three dimensions,
respecting tbe topology of any surface triangulation T of the given point set. In these algorithms
we first specify “normals” an the data points, then build a simplicial hull consisting of tetrahedral
surrounding the surface triangulation 2’, and finally construct cubic A-patches within each
tetrahedron. The resulting surface constructed is C’ (tangent plane) continuous and single
sheeted in each of the tetrahedral. We also show how to adjust the free parameters of the
A-patches to achieve both local and global shape control.

(Categories and Subject Descriptors: F,2. 1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems rompufat~ons on po/vnrmziuLs; (1.1.1 [Numerical Analy-
sis]: Interpolation —intc,rpo(atior~ formulas; smoothing; spline and pieceu, i.se polynomial interpo-
lation: 1.3.5 [Computer Graphics]: Methodology and Techniques --interartfw fwhnique.$

(k,neral Terms: Algorithms

Additional Key Words and Phrases: Algebraic surfaces, computer-aided geometric design,
freeform surface, geometric continuity

1. INTRODUCTION

The importance of implicit surface representation in modeling geometric
objects or reconstructing the image to scattered data has been described in
various papers (see, e.g., Bajaj 1993, Dahmen and Thamm-Schaar 1993, Guo
1991a, Lodha 1992, and Sederberg 1985). The main advantages of implicit
surface over its parametric counterpart are that (1) the set of algebraic
surfaces are closed under basic modeling operations such as offset and
intersection, often required in a solid modeling system. For example, the
offset of a parametric surface may not be parametric, but is always algebraic
and has an implicit representation. (2) For the same polynomial of degree n,
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104 . C. L. Bajaj et al.

implicit algebraic surfaces have more degrees of freedom
(=(n:3) -’)

compared with rational parametric surface
(<4(ni2)-’)0fthe same

degree. Hence, implicit algebraic surfaces are more flexible for approximating
a complicated surface with a fewer number of pieces or for achieving a higher
order of smoothness. However, the main shortcoming held against the popu-
lar use of implicit surfaces is that the representation being multivalued may
cause the real zero-contour surface to have multiple sheets, self-intersections,
and several other undesirable singularities.

In Section 3 we present a sufficient criterion for the Bernstein-Bezier (BB)
form of a trivariate polynomial within a tetrahedron such that the real zero
contour of the polynomial is a smooth (nonsingular), single-sheeted algebraic
surface. We call this an A-patch. In Section 4 we describe how to build a
simplicial hull consisting of tetrahedral surrounding a surface triangulation T
of the set of scattered data points in 3-D. We then show in Section 5 how a
mesh of cubic A-patches can be used to construct a C 1 interpolatory surface,
respecting the topology of the surface triangulation T. In Section 6 we show
how to adjust the free parameters of the A-patches to achieve both local and
global shape control. This C 1 cubic A-patch fitting algorithm is quite appro-
priate for free-form design. In analogy to the final smoothing of an artist’s
rough sketches, complicated smooth models can be directly formed by first
creating a rough polyhedral model of the desired object and then using the
fitting algorithms to produce a Cl smooth solid with extra local and global
parameters for fine shape control. Proofs of all the theorems and lemmas are
given in the Appendix.

1.1 Related Prior Work

The work of characterizing the BB form of polynomials within a tetrahedron,
such that the zero contour of the polynomial is a single-sheeted surface
within the tetrahedron, has been attempted in the past. Sederberg [1985]
showed that, if the coefficients of the BB form of the trivariate polynomial on
the lines that parallel one edge, say, L, of the tetrahedron all increase (or
decrease) monotonically in the same direction, then any line parallel to L will
intersect the zero-contour algebraic surface patch at most once. Guo [1991a]
treated the same problem by enforcing monotonicity conditions on a cubic
polynomial along the direction from one vertex to a point of the opposite face
of the vertex. From this he derived a condition aA ~1*,4 — aA > 0 for all
A = (Al, A2, A3, Ad)T with Al 2 1, where aA are the coefficients of the cubic in
BB form and ei is the ith-unit vector. This condition is difficult to satisfy in
general, and even if this condition is satisfied, one still cannot avoid singular-
ities on the zero contour. Our condition of a smooth, single-sheeted zero
contour in Theorem 3.2 generalizes Sederberg’s condition and provides an
efficient way of generating A-patches.

The second problem we consider is how to join a collection of A-patches to
form a C!1 smooth surface interpolating scattered data points and respecting
the topology of a given surface triangulation T of the points. For this
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problem, prior approaches have been given by Dahmen [ 1989] using quadric
patches, Dahmen and Thamm-Schaar [1993] and Guo [1991a, 199 lb] using
cubic patches, and Bajaj and Ihm [1992] using quintic patches for convex
triangulations and degree-seven patches for arbitrary surface triangulations
T. All of these papers provide heuristics to overcome the multiple-sheeted
and singularity problems of implicit patches. In this paper our cubic A-patches
are guaranteed to be nonsingular and single sheeted within each tetrahedron.

While the details of the methods of Dahmen and Thamm-Schaar [ 1993] and
Guo [ 1991b] differ somewhat, they both use the scheme of Dahmen [ 1989] of
building a surrounding simplicial hull (consisting of a series of tetrahedral) of
the given triangulation T. Such a simplicial hull is nontrivial to construct for
triangulations, and none of the papers [Dahmen 1989; Dahmen and Thamm-
Schaar 1993; Guo 1991a, 1991b] enumerate the different exceptional cases
(possible even for convex triangulations) nor provide solutions to overcoming
them. We too use the simplicial hull approach in this paper, but enumerate
the exceptional situations and provide some heuristic strategies for rectifying
them.

Guo [ 1991b] used a Clough-Tocher split [Clough and Tocher 1965] and
subdivided each face tetrahedron of the simplicial hull, hence utilizing three
patches per face of T. In this paper we consider the computed “normals” at
the given data points, and distinguish between “convex” and “nonconvex”
faces and edges of the triangulation. These concepts are formally defined in
Section 4. We use a single cubic A-patch per face of T except for the following
two special cases: (1) For a nonconvex face, if, additionally, the three inner
products of the face normal and its three adjacent face normals have different
signs, then one needs to subdivide the face using a single Clough–Tocher
split, yielding C 1 continuity with the help of three cubic A-patches for that
face. (2) Furthermore, for coplanar adjacent faces of T, we show that the C‘
conditions cannot be met using a single cubic A-patch for each face. Hence,
we again use Clough–Tocher splits for the pair of coplanar faces, yielding C’1
continuity with the help of three cubic A-patches per face. See also the
examples and figures in Section 7, where the savings in patches becomes
evident.

Related papers that approximate scattered data using implicit algebraic
patches are [Bajaj 1992, Lodha 1992, and Moore and Warren 1991]. A
classification of data fitting using parametric surface patches is given in
Peters [ 1990].

2. NOTATION AND PRELIMINARY DETAILS

Problem. Given a list of data points P = {p,,... , pk) G lR3 and a surface
triangulation T of these points, construct a mesh of low-degree algebraic
surfaces such that the composite surface is single-sheeted C 1 continuous and
has the same topology as T.

Convex hull and affine hull. Let (PI,..., pj} E R3 with j <4. Then the
convex hull of these points is defined by [ pl p2 “.” p,] = {P ~ ~:) : P
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106 . C. L. Bajaj et al.

= Z~= I a,P,, a, 2 ‘~ E~. I ai = 1), a?d ‘he affine ‘u~~ ‘s ‘efined by ‘P1P2
. . . Pj) = {p G R3 :P = x~.l ffipi, x~.l CY, = 1}. The interior of the convex
hull [plpz ““” pjl is denoted by (PIPZ ““. p,)= {p= R3:p = X<=l C%P,,

ai > 0> z~=~ ~, = 1}.

Bernstein-Bezier ( BB) form. Let p ~, p2, p3, p4 E IR3 be affke indepen-
dent. Then the tetrahedron ~ith vertices p ~, p2, p3, and p4 is V =

[P1P2P3P1]. For anY P = ~i.l aipi ~ v, a = (al, a2, a3, a4)T is the
barycentric coordinate of p. Let p = (x, y, Z)T and pi = (xi, y,, z, )T. Then
the barycentric coordinates relate to the Cartesian coordinates via the follow-
ing relation:

[I=i :: :IK! ’21)

Any polynomial f(p) of degree n can be expressed as BB form over V as

f(P) = EA.. bLBf(a), A ~-Z~, where

4
is Bernstein polynomial, IAl = ~i= ~Ai with A = (Al, AZ, ~3, A4)~, a = (al,

a2, a3, a4)T = ~~= ~cr,e, is a barycentric coordinate of p, bh = bA,A2A3A4(as a

subscript, we simply write A as AlA2A3AA) are called control points, and Z:
stands for the set of all four-dimensional vectors with nonnegative integer
components. The following basic facts about the BB form will be used in this
paper. The first is derived from the directional derivative formulas (see Farin
1990):

LEMMA 2.1. lff(p) = ~lA1.. b~B:(cx), then

b(n-l)e, +e, = brie, + ;(PJ -pi) Tvf(pi), j= 1,2,3,4; j#i, (2.2)

where

[ 1df(p) df(p) C?f(p) T
Vf(p) = ~——

r?y dz “

Formula (2.2) will be used to determine the control points around a vertex
from the given normal at that vertex.

LEMMA 2.2 [Farin 1990]. Let f(p) = ~lA1. n aABf(cr) and g(p) = EIA[..
b~BJ( al be two polynomials defined on two tetrahedral [p, P2 P3 P41 and

[P; P2P3P41, rewe~tiveb. Then

(0 f and g are Co continuous at the common face [ P2 P3P41 if and only if (iff )

aA=bA, forany A =OA2A3A4, IAI=n. (2.3)
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(ii) f andg are C’ continuous at the common face [pi p~p4] iff (2.3) holds and

b 1AAA,A8= pId IA2A.,Ai + t%ao A, A,, A,. O1O(J

(2.4)
+ f$aOAIA, A, .0010 + ~4af)AlA,A, .0001 !

where /3= ( /31,Pz, fl~, /34)7’ are defined by the relation pi = /31PI + /3yPz +

/%iP,\ + t% P,, IPI = 1.
Relation (2.4) is called coplanar condition.

Degrw eleuation. The polynomial f(p) = ~,,, . b, B;( a ) can be written

as one of dgree n + 1 (see, e.g., Fari~ 1990): f(p) = ~ , ~ ., (Eb)AB~ “ ‘(a),

A =J”l, where (Eb)A = l/(n + 1)~, ~A, bA ,,.

Variation diminishing property [Farin 1990, p. 54]. Let y(t)
= ~ ~ ,, b, B~(t ); then y(t) has no more intersections (counting the multiplic-
ities) with any line than does the polygon {i/n, b,}: ,, in [0, 1].

Transfimmation, Since ~~ , at = 1, we have from (2.1) that

[1[

l’ .Y, –.s,

s= y, – .V.,
.2 z,

‘“;’ “;’;’IF:l+F:l=AEil+ FIl(2’)
—z, Z2– Z4 .z–zd ,

Let f(x, .Y, z) = g(al, az, a,)). Then it is easy to check that

Therefore, the surface f( x, y, z) = O is smooth (i.e., Yf( x, y, z) # O) iff the
surface g( u,, Crz, q) = O is smooth (i.e., ‘7g(al, az, u:;) # O). This means
that the smoothness problem of the surface f( x, y, z ) = O can be treated
directly in its barycentric form.

3. SUFFICIENT CONDITIONS OF AN A-PATCH

Let F’(a)= ~1, ,, hAB;’(a) be a given polynomial of degree n on the simplex

(tetrahedron) S = {( (11, ai, a:], ad Y’ER4:~:1al = 1, a, > O). The surface
patch within the simplex is defined by SF c S : F( al, az, c~,), a~) = O. The
following two conditions on the trivariate BB form will be used in this paper:

Snt[mth certiccs condition. For each i(l < i < 4), there is at least one
nonzero b,,,,,,A,h, for A, > n – 1.

Smooth edges condition. For each pair (i, j)(l< i, j <4, i #j), there
either is at least one nonzero b for m = O, 1,. ... n, or the polyno-
mials Z 1, ‘o b,,,,,, ,,, B> ‘h%h x;, ‘o %,<, .{,,

1 ?1? w T (k nl ~ ,,,,, +,,B:, ‘(t)

have no common zero in [0, 1], for distinct i, j, k, 1.
If the surface SF contains a vertex/edge, then by the formulas of direc-

tional derivatives (see Farin 1990, p. 312), it is easy to show that the surface
is smooth there if the smooth vertex/edge conditions above are satisfied.
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108 . C. L. Bajaj et al. 

Fig. 1. Three-sided (a, b, c and d) and four-sided patches (e and f). Some of them are 
disonnected. The filled vertices mark the boundaries of the patches. 

Definition 3.1 Three-sided patch. Let the surface patch S, be smooth on 
the boundary of the tetrahedron S. If any open line segment (ej, a*) with 
(Y* E Sj = {(ai, (Ye, c+, a,>r: ffj = 0, q > 0, Cizj q = 1) intersects S, at 
most once (counting multiplicities), then we call S, a three-sided j-patch (see 
Figure 1). 

Definition 3.2 Four-sided patch. Let the surface patch S, be smooth on 
the boundary of the tetrahedron S. Let (i, j, k, I) be a permutation of (1,2, 3, 
4). If any open line segment (a*, /3*) with cy* E (e,ej) and /3* E (eke,) 
intersects S, at most once (counting multiplicities), then we call S, a 
four-sided ij-k&patch (see Figure 1). 

It is easy to see that, if S, is a four-sided ij-kl-patch, it is then also a 
ji-lk-patch, a lk-ji-patch, and so on. The Appendix contains proofs of the 
following lemmas and theorems: 

LEMMA 3.1. The three-sided j-patch and the four-sided ij-kl-patch are 
smooth (nonsingular). 

THEOREM 3.2. Let F(a) = CIA,=, b,B,“(a) satisfy the smooth uertex and 
smooth edge conditions and j(1 I j I 4) be a given integer. If there exists an 
integer k(0 I k < n) such that 

b h,A,A,A, 2 07 Aj=O,l ,..., k- 1, (3.1) 

b h,h,h,A, S ‘3 Aj = k + l,...,n, (3.2) 
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und ~ * ,iv’oifk>o, ~ ,A ~ b, <0 for at least one m(k < m s n), then

A, n Al m

SF is a three-sided j-patch.

THEOREM 3.3. Let F(a) = ~ IA, ~ bAB~( a ) satisfy the smooth uertex and
,smooth edge conditions, and let (i, j, k, 1) be a permutation of (1, 2, 3, 4). If
there exists an integer k(O < k < n) such that

b~,A2A,,A4> 0, Ai+Aj=O, l,..., &l, (3.3)

b~,A,>A{A,< 0, A,+ A,)= k+l, . . ..n. (3.4)

and ~ ~ b,>Oifk>O,~ ,,,, b, <0 foratleastonem(k < m < n),,,,,
A,I A, [) h,t Al n,

then SF is a four-sided ij-kl-patch.

Note. The conditions on the coet15cients bh in Theorems 3.2 and 3.3 are
suftlcient, but not necessary. For example, if we want some Bl < 0, it is not
necessary to let every b~ < 0, for IAl = n, A4 = 1.

Some properties of A-patches

(a) For a three-sided j-patch, if bA =0 for A =(n –l)e,r, +le,, 1 =0,
l,. ... k(rn+j, k<n), and bA+Ofor A=(n-l)e~+ e,, ,s+j, m, then
the edge [e, em] is tangent with SF at em with multiplicities k. See also
Figure 2a.

(b) For a four-sided ij-kl-patch, if bA = O for A = (n – q, – qz)ek + qle, +

q2e, ?ql+q2=o, l,. ... s,~ and b~# Ofor A=(n — l)eh+el, then SF is
tangent ,s times with face [e, e,ek ] at eh.

Note that a four-sided patch may degenerate into a two-sided patch; see
Figure 2b. However, we do not need to treat the degenerate patches any
different, but consider it to be a special four-sided patch.

(c) For a three-sided j-patch, if b~ = O for A = (n – m)e, + mek, m = 0,
1,. ... n, then SF contains the edge [ e,, ek]. Furthermore, if b, = O for
A=(rl–m –l)e, +mek+el, m=O, l,. ... l,thentheS~S~ is tan-
gent with the face [e, e,eh 1. See also Figure 3a and b.

(d) For a three-sided j-patch, any point P 6 SF can be mapped to a triple
(u,, a~, (ro, (r, + a~ + al = 1, a,, cr~, al 20 or a point a“ ~S, = {(al,
(tz, a:], a~ )*: a, = O), Furthermore, there exists a one to one mapping
between SF and S; = {a”: a“ = S], F(e,, ). F(a*) < O).

(e) For a four-sided ij-kl-patch, arty point P G SF can be mapped to a tuple
(w,, a~), O S a, S 1,0 S crk < l,or two points a“ = (e, e,) = {(al, az, as,

‘r.(rl) .a~, = fr/ = O) and /?” ● (ekel) = {(al, az, cr~, ai)T:crl = a, = O). Fur-
thermore, there exists a one-to-one mapping between SF and (( a,,
Pk)~:F( a“). F( P*) s O}. If F( a’) = O, SF is degenerated and all the
points with the same a~ collapse into one point.
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0 positive control points 

eJ free control point 

zero control point 

negative control point 

(a) 

positive control pomts 

free control pomt 

zero control point 

negative control point 

(W 

Fig. 2. (a) Three-sided patch tangent at p Ir pz, p3. (b) Degenerate four-sided patch tangent to 

face [p1p2p41 at p2 and to face 1~1~3~41 at ~3. 

Hence a three-sided patch can be mapped into a triangular domain while a 
four-sided patch can be mapped into a quadrilateral domain. This observation 
gives rise to the terms three-sided patch and four-sided patch. 

Note that smooth three-sided or smooth four-sided patches are not neces- 
sarily connected within a single tetrahedron. Figure 1 shows some examples. 
Subsequent sections detail how a combination of smooth A-patches are pieced 
together to form a C1 smooth global surface. 

4. NORMALS AND THE SIMPLICIAL HULL 

For the given point set P = { pl, . . . , pk) E R3 and their surface triangulation 
T, we first construct a normal set N = {n1,. . . , nkI E R3 for P. That is, for 
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positive control 

free control point 

zero control point 

negative control point 

positive control points 

free control point 

zero control point 

negative control point 

(W 

Fig. 3. (a) Three-sided patch interpolating edge [ pzp3]. (b) Three-sided patch interpolating 

edges tpzp31 and [PEPSI. 

each point pi, we associate a normal ni. We will force the constructed surface 
to interpolate points pi and at each point have a normal ni for i = 1,. . . , k. 
These normals therefore also provide a mechanism to control the shape of the 
C1 interpolating surface. Common approaches to construct these normals at a 
point pi include (1) an average of the face normals of the incident faces, and 
(2) the gradient of a local spherical fit to the surface triangulation at each 
vertex. Computing an optimal normal assignment is yet an unsolved problem, 
and we are experimenting with different local and global normal selections 
schemes [Bajaj 1992; Pottmann 1992; Moreton 19931. Of course, at times the 
data set can have prespecified normals, and this too can be the input of the 
Cl fitting algorithm. 
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Without loss of generality, we assume that the assigned normals all point
to the same side of T. If T is a closed surface triangulation (a simplicial
polyhedron), then we assume that the normals all point to the exterior.

Definition 4.1 Convex edge and nonconvex edge. Let [pi pj ] be an edge
of T. If (p] – pi )Tni( p, – pj)Tnj z O and at least one of ( pj – pi )Tnl and
(pi – Pj)Tn, is positive, then we say the edge [pi Pj] is negative convex. If
both of the numbers are zero, then we say it is zero convex. A positive convex
edge is similarly defined. If ( pj – p, )Tn,( p, – p] )Tnj < 0, then we say the
edge is nonconvex.

Definition 4.2 Convex face and nonconvex face. Let [ pjpjpk] be a face of
T. If its three edges are nonnegative (positive or zero) convex and at least one
of them is positive convex, then we say the face [pi pj pk ] is positive convex. If
all of the three edges are zero convex, then we label the face as zero convex. A
negative convex face is similarly defined. All of the other cases [pip] pk ] are
labeled as nonconvex.

Note that here we are overloading the term convex to characterize the
relations between the normals and edges of faces. We distinguish between
convex and nonconvex faces in the simplicial hull below, where we build one
tetrahedron for convex faces and double tetrahedral for nonconvex faces.

Definition 4.3 Simplicial huli. A simplicial hull of T, denoted by ~, is a
collection of nondegenerate tetrahedral that satisfies the following:

(1) Each tetrahedron in ~ has either a single edge of T (then it is called an
edge tetrahedron) or a single face of T (then it is called a face tetrahe-
dron ).

(2) For each face of T, there is (are) only one or two face tetrahedral in ~ if
the face is convex or nonconvex.

(3) Two face tetrahedral that share a common edge do not intersect anywhere
else. This condition is referred to as non intersection.

(4) For each edge, there is (are) only one or two pair(s) of common face
sharing edge tetrahedral in ~ if the edge is convex or nonconvex such
that the paids) fill the region between the two adjacent face tetrahedral in
the same side of T.

(5) For each vertex, the tangent plane defined by the vertex normal is
contained in all of the tetrahedral containing the vertex. This condition is
called tangent plane containment.

Note that, for a given surface triangulation with normal assignments, T.
there may exist infinitely many simplicial hulls, or no simplicial hull may
exist. We now describe a scheme for constructing a simplicial hull for the
surface triangulation T and prescribed vertex normal assignment. We also
enumerate the exceptional configurations where a simplicial hull of T is
difficult and then provide a solution for constructing the simplicial hull for a
locally modified T.

ACM Transactions on Graphics, Vol. 14, No. 2, April 1995.
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x

D;
........................

92

a;
% qa

Fig. 4. The constructionof double tetrahedral for adjacent nonconvex/nonconvex faces and
convex ,/noncon vex faces.

.......................

*2

Fig. 5. Construction of single tetrahedral for adjacent convex/convex faces

(1) Build face tetrahedral. For each face F = [P, P2 P31 of 2“, let L be a
straight line that is perpendicular to the face F and that passes through the
center of the inscribed circle of F. Then choose points Pd and/or qd off each
side of F to be the furthermost intersection points between L and the
tangent planes of the vertices of the face. If F is a nonconvex face, two face
tetrahedral [PI P2 p:]P41 and [PIp2p3q41 are formed (double tetrahedral). If F
is positive convex, then p4 is chosen on the same side as the direction of the
normals, and a single face tetrahedron [ p ~P2p3p41 is formed. If F is
negative convex, then q4 is chosen on the the opposite side of the normals,
and again a single face tetrahedron [ p ~p2 p3q4 ] is formed. Figure 4 shows
the cases where at least one of the two adjacent faces is nonconvex, and
Figure 5 shows the case where both faces are convex.

A sufficient condition for constructing face tetrahedral with tangent plane
containment is that the angle of the assigned normal n, at each vertex p,
with each of the surrounding face’s normals is less than 7r/2. If this condition
is not met, then an exception occurs, and we term the vertex as sharp. See
Figure 6a.

A sufficient condition for adjacent face tetrahedral to be nonintersecting is
as follows: For two adjacent faces F = [ pl Pz p3] and F’ = [ pi Pz p3], the
angle between them, denoted as L FF, is defined as the outer dihedral angle
if the edge between F and F’ is negative convex and inner dihedral angle

ACM Transactions on Graphics, Vol. 14, N.. 2, April 1995
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‘-=4%*
(a) (b)

Fig.6. (a) Notangentplanecontainment.(b) Self-intersectingtetrahedral.

otherwise. For [ pz p~ ], the common edge between F and F’, let [ p1P2P3P41
and [pi p zp3 pi 1 be the face tetrahedral, respectively. Then the two tetrahe-
dral are nonintersecting if the angles ~[ php2 p3][ pl p2 p3] < ~L FF’ and

~[ PjP2 P3][ p; P2 P31 < $ L FF’. If this condition is not met, then an excep-
tion may occur, and we term the common edge [ p2 p3 ] as sharp. See Figure
6b.

A heuristic strategy that rectifies the sharp edge and sharp vertex configu-
rations is a local retriangulation of the original surface triangulation T. This
strategy has worked well in several of the smoothing examples we have
performed. An exact algorithm based on subdivision is given in Bajaj et al.
[1994].

(i) Sharp edge problem. Let [ p ~p2 ] be a sharp edge (see Figure 7a),
andlet[ p,p,j](i=l,2; ~=l, 2, ..., ki ) be the remaining surrounding
edges of pi in adjacency order. Take two spheres S( p,, ri ) with centers pi
and radius r,, where ri are positive numbers that are less than half of
the surrounding edge’s lengths IIp, – pij Il.The smaller r, is, the sharper
the constructed surfaces around edge [ p ~p2 ] are. Let qi~ be the intersec-
tion points of S( p,, ri) and [ pi p, J]. Then qil, q,2, . . . . qi~, form two closed
polygons, PI, * Pi] ~ 19 9,, +1> qlj form a four-sided closed polygon, and,

finally, 911, 921, q2k, ! qlk, form another four-sided closed polygon. Trian-
gulate these polygons (the dotted line in Figure 7a) by connecting adja-
cent edges of the polygons in the least inner angle order.

(ii) Sharp vertex problem. Let pl be a sharp vertex (see Figure 7b),
and let [Plplj] (j=l, 2, ..., k) be the surrounding edges of p, in
adjacency order. Take a sphere S( p ~, r) with center p ~ and radius r,
where r is a positive number that is less than half of the surrounding
edge’s lengths IIp ~ – p ~jIl.The smaller r is, the sharper the constructed
surfaces around vertex p 1 are. Let qlJ be the intersection points of S( P 1,
r) and [Plplj]. Then qll, qlz,...> 91k form a closed PolYgon, and PI,,
p ~j, ~, ql j.,, qlj form a four-sided closed polygon. Triangulate these
polygons (the dotted line in Figure 7b) by connecting the adjacent edges
of the polygon in the least inner angle.
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P12

P 14

(b]

Fig. 7. Retriangulation of(a) sharp edge and (b) sharp vertex.

(2) Build edge tetrahedral. Let [ pz p31 be an edge of T, and let [p, p~ p:]]

and [ p; pz p:<] be the two adjacent faces. Let [PI P2 P:1P4] and/or [ PI PZ Pzq4],

and [ p’, P2 P3PL 1 and/or [ P’l P2 p3q~ 1 be the face tetrahedral built for the
faces [ pl PZ p:;] and [ p; P2P31, respectively. Then, if edge [ p2 p3] is noncon-
vex, two pairs of tetrahedral need to be constructed. The first pair [ p’; P2 P;3P41

and I p’; P2P3P~l is b~tween [P\ P2P3P21 and [ pl P2P:SP41. The second pair

[q~pjp,lq41 and [q~p2p3q~l is between [P~P~P,jqjl and [PI p2p3q41 Here?
P’; G ( p4p~) or is above (P4, pi), say,

(1 –t)
Pt;=

(p2+p3)+~(pj+p4),
2

t>l,

so that p; is above plane [ PI Pz p:]] and plane [ pj P2 p:]]. Similarly, ql G
( q4q:l ) or is below (q4, qj ), say,

so that q{ is below plane [p1pzp3] and plane [ p’, pzp:l]. If edge [ pzp3] is
positive/negative convex, only the first/second pair above is needed. If the
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edge [ pz p3 ] is zero convex, no tetrahedron is needed here. It should be noted
that p4 and pi (qA and qj ) are always visible.

5. CONSTRUCTION OF A C’ INTERPOLATOR SURFACE USING CUBIC
A-PATCHES

Having established a simplicial hull ~ for the given surface triangulation T

and a set of vertex normals N, we now construct a C 1 function f on the hull ~
such that

f(p,) =0, ‘f(pi) = nl, i=l,2, . . ..k. (5.1)

and the zero contour of f within ~ forms a C!1 continuous single-sheeted
surface with the same topology as T.

5.1 The Construction of a Piecewise C‘ Cubic Function

The construction of the function f over two adjacent faces of T is divided into
the following three cases:

(a) Both faces are nonconvex.

(b) Both faces are convex.

(c) One of them is convex, and the other is nonconvex.

(a) Both faces are nonconvex. Let F = [p1pzp3] and F’ = [p~pzp31 be
two adjacent nonconvex faces. Then we have double tetrahedra [ p~Pzp3P41
and [ pl pz p~ql] for F, and double tetrahedral [ P> P2P3P~] and [ P’I P2 p3d]
for F’ (see Figure 8). Let

VI = [P1P2P3P41? ‘2=[P’1P2P3P; I, WI = [P; PzP3P417

W2 = [P; P2P3P; I, Y = tPl P2P3q41> v; = [P’l P2P39; l,

w; = [9; P2P3941> w; = [9; P2P39>I>

and the cubic polynomials f, over Vi, gi over Wi, ~! over Vi’, and ,g~ over W,’
be expressed in BB forms with coefficients a;, b;, c;, and d;, i = 1, 2,
respectively. Now we shall determine these coefficients.

Co Continuity. If two tetrahedral share a common face, we equate the
control points of the associated cubic polynomials on the common face (see
Lemma 2.2):

‘:, A2A30= ci1A2A30~ akA2A3h4= b~A,A3A4, b;, A,A30= b;,A,A30,

c~A,A3A4= djA,A,A4, d;, A,A30= d;, A,A30.

Interpolation. Since zero contours of ~ and C and gi and g: pass
through p2 and p3, a; = b; = c; = dj = O for i = 1, 2, and A = 0300, 0030.
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Fig. 8. Adjacent double
faces.

Normal condition

tctrahedra, functions, and control points for two nonconvex adjacent

From (5.1) and (2.2), we have, for j = 2, 3,

1
a2f’,1,.4

=1 ‘j(p, - ‘P,)7 n], a;v, +,,, = .j(p> 7’–p,) n,,
(5.2)

b~,,,,,,l = ~(p’; –p, )TnJ, d;, ,,,, ==/j(q~ – p,)7nJ,

4?, +r, = +(q, -p, )Tn,, 2Cz[>,+,,4= #(q; –pJ)Tnl.

C’ Conditions. At present, set a~(,,,,~,, c~,, ,,,, j = 1, 2, 3, 4, b~o{)l, and

d)oc), to any value (free parameters), and determine the other control points:

(1) Interface of [ Pz p:3pbl and [ P2 p~p~l. Suppose

Then, the C 1 conditions require (see Lemma 2.2)

(5.4)
+ ~iah A2A,,Al,0010 + /%a~A,A,A, ~0001

for AzA:jA4 = 002, 101, 011, 110. Hence, b;ooz, bjlol, and bjoll are de-
fined, leaving a~ul, and a; ,01 to be determined. Equation (5.4) for A2AsAl
= 110 will be treated later.

(2) Interface at [ p2Po P~l. Let

Pi = PIP4 + ~zpi + ~3p2 + p4p31 w] + P2 + P:] + W4 = 1; (5.5)
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then C 1 conditions require

for A1A2A3 = 200, 110, 101, 011. Hence, b~ooo, bjloo, and bjolo are de-
fined. The equation for AlAzAs = 011 will be treated later, together with
(5.4).

(3) Interface between [p2p3q41, [ Pz p3q~ 1, and [ p2 p3q~l. All control points
of g: and some of the control points of ~! can be fixed as ~ and g,. That
is, the relations (5.4)–(5.6) hold when the quantities a’s, b’s, /?’s, and p’s
are substituted by c’s, d’s, y’s, and q’s, respectively. The two untreated
equations left are

where the coefficients y, and q, are defined by

(4) Interface between [ pl p2 p31 and [p; P2 p3J. Let

Then we have

Now we treat the equations (5.4), (5.6), (5.7), (5.8), and (5.11). It follows from
(5.4), (5.6), (5.7), and (5.8) that

TIC&ll + q2C&11 + ~3ab2~o + 7_14a110
(5.13)

= 7ja&210 + yia~lzo + Ylclill.

Therefore, (5. 11)–(5. 13) form a linear system with six equations and six
unknowns a~lll, a~llo, c~lll, for i = 1, 2. It is important to point out that this
is not an independent system (see Theorem 5.1 for the solvability of the
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system). It has four independent equations and infinitely many solutions. In
fact, if we assume that p,, pz, p3, pj are not coplanar and then denote

then we can derive from (5.12) and (5.13) that

Actually, this means any group of four weights (e.g. aj, ~(,,a/)j10 and a~l ,())
defines the same 4-D hyperplane in its own barycentric coordinates (e.g.,
[PI P2 P,j P\l). Therefore, besides a02101 and U,,1201 (or ~,,2101 and c0120’,
there are only 2 degrees of freedom left. We choose al,,,, (or c; ~~~,) to be the
free parameters. They may be determined by approximating a quadratic (see
Section 6 or Dahmen and Thamm-Schaar [1993]).

(b) Both faces are conuex.

(bl) Both faces are nonnegative (or nonpositiue ) conuex. Following the
discussion of (a), the scheme for determining the control points are as
before, except for the following:

(1) Only half of the control points are needed. That is, we need a:, b; for
functions f, and g, if F and F‘ are nonnegative convex, or c;, d; for
functions ~ and g: if F and F’ are nonpositive convex.

(2) a; ~,(, (or c;, IO) can be determined freely as in (a). One way to choose
a~l ,() (or c{,,0 ) is to make the cubic approximate a quadratic (see
Section 6). In particular, ail lo = O (or c;, ~0 = O) if the face is zero
convex.

(3)We now need only (5.15) for unknowns aj)i,1 and ail,; if the edge
[ PZ p:}] is nonnegative convex, or (5.16) for unknowns c,I,,, and c;, j,
if the edge [ p ~p:]] is nonpositive convex.

(b2) One positive convex face and one negative convex face. In this case,
the common edge must be zero convex. Suppose F is positive convex and
F is negative convex. All of the control points are determined as before,
except for the following:

(1) We only need to construct f,, g,, and f;; that is, c; and d: are not
needed. The functions g, and fz have no contribution to the surface
and are used for smooth transition from fl to f;.

(2) a [, ,,, s O and c~l,0 >0 can be determined freely (see Section 6).
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(3) We only ne:d to have (5.11) for i = 2 and (5.15) for unknowns ail II,
ailll, and cO1ll.

(b3) Both faces are zero convex. This case, in fact, is included in case
(bl). The surface is defined directly as the planar faces of the surface
triangulation. No function needs to be constructed.

(c) One convex face and one nonconuex face. suppose [p,p2p31 k

convex and [ p: p z p ~1 is nonconvex, with the following exceptions:

(1) The functions f ~ and g; and their control points c: and d; are not
needed if F is nonnegative convex. The functions fl and g, and their
control points a; and b; are not needed if F is nonpositive convex.

(2) a~llo <0 (or c~llo > O) and a~llo (c~llo) can be determined freely as
in case (b). In particular, a~llo = O (or c~llo = O) if [P1P2P3] k zero

convex.

(3) For the treatment of equations (5.11)-(5.13), we only need to have
(5.11) for z = 2 and (5.15) for unknowns ajlll, a~lll, and c~lll if edge
[p, p,] k nonnegatiw convex, or to Solve (5.11) for i = 2 and (5.13) for
unknowns c~lll, c~lll, and a~lll if edge [ pz p3] is nonpositive convex (see
Theorem 5. l(ii) for the solvability of the system).

Coplanarity of adjacent faces. In the discussions above, we have assumed
that pl, pj, pz, p3 are afhe independent. If pl, pi, pz, p3 are coplanar,
then the coefficient matrices of the linear systems (5.12) and (5.13) are
singular. However, the system (5. 11)–(5. 13) is still solvable (see Theorem 5.1)
taking a~l ~~ or c~l II as free parameters. The other unknowns are given
directly by these equations. Since the parameters ail,0, i = 1, 2, now become
dependent, they are overly determined by the systems (5.11)-(5.13) around
the three edges (e.g., [PI pz][ Pz p3][ p3p1] for aillO), and a solution may not
be possible. In this case, we split the involved tetrahedron into subtetrahedra
by subdividing the triangles [ p ~Pz p3 ] and [P;p2p31 into three subtriangles
at their center points w and w’ (a Clough–Tocher split). A solution is now
possible where the coefficients are specified as before, by regarding w as p ~
and w’ as p;.

We then need to determine the remaining coefficients over the subtetrahe-

dra u] = [P2P3P4w], UZ = [P,PSPIWI, and U3 = [P1P2P4WI such that the
Cl condition is satisfied. In fact, since w G [ p ~pz p3], the coefficients on the
same layer are C 1 related. For the Oth layer (see Figure 9), the control points
labeled ● are thus already determined. The control points o are determined
by a coplanar condition with surrounding ●. Finally, the point ❑ is deter-
mined from the surrounding three points 0 by the coplanar condition.

For the 1st layer of Figure 9, the control points labeled o and ❑ are
similarly determined as the Oth layer. For the 2nd layer of Figure 9, the
control points o are arbitrarily chosen, and ❑ is determined by the coplanar
condition. Finally, the 3rd-layer coefficient is free.
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A,,,,
,.$ ,.

,., ‘,
. .

#.4 ‘.
................

O-th layer 1st lay-r
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5.2 The Solvability of the Related System

Concerning the solvability of the system (5.1 1)-(5.13) and its subsystem, we
have the following result, The proof is given in the Appendix:

THFXJIWN5.1. Ci(wn tuw affine independent point sets ( pz, p,i, pi, p,l )

and (PJ, P,\$ q., .‘ q4). as in Figure 8, (i) the system (5.11)-(5.13) has four
indep(>ndent equations. If ( p], p’l, pz, p:, ) is affine indepcnrknt, then (5.12)
and (5. 13) are four independent equations for the unknouns Cli)l~~ and ~i)l~~,
for i - 1, 2.

(ii) Let {r,, . . ..r.i} =(pl, P’I, pi, P;, 4;, % } and {X1,.,X6} = (all,,,,
} Foran.v 1 s i < j <6, if r,, r,, pz, p,{ are affinea~ll,l, al~llla~~lll, ~’lllll.~<lll .

independent t, then

5.3 Construction of Single-Sheeted A-Patches

Having built C 1 cubics with some free control points, we now illustrate how
to determine these free control points such that the zero contours are
three-sided or four-sided A-patches (smooth and single sheeted).

We assume (without loss of generality) that all of the normals point to the
same side of the surface triangulation T. That is the side on which p4 and p;
lie (see Figure 8). Under this assumption, it follows from Definition 4.1 and
Eq. (5.2) that the control points on the edge, say, a:r. ,(, and a~)lz,, on edge

[p, p,, ] (see Figure 8), are nonnegative if the edge is nonnegative convex, and
nonpositive if the edge is nonpositive convex. Now we can divide all of the
control points into seven groups, called layers. The Oth layer consists of the
control points that are “on” the faces of T. The 1st layer is next to the Oth
layer, and on the same side as the normal direction, followed by the 2nd and
3rd layers. Next to the Oth layer but opposite to the normal is the – 1st layer,
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and then the – 2nd and – 3rd layers. Now we show that we can set all of the
control points on the 2nd and 3rd layer as positive and the control points on
the – 2nd and – 3rd layers as negative.

For the face-tetrahedra, it is always possible to make the 2nd and 3rd
layers’ control points positive, because these control points are free under the
Co condition. For the control points on the edge-tetrahedra, it follows from
(5.4) that the 2nd and 3rd layers’ control points can be positive only if the 2nd
layer’s control points on the neighbor face-tetrahedra are large enough. This
is achieved since ~~ in (5.4) is positive (see the proof of Proposition 5.3 for
details). Similarly, the control points on the – 2nd and – 3rd layers can be
chosen to be negative. Furthermore, all of these control points can be chosen
as large as one needs in absolute value in order to get single-sheeted patches.

Since the control points around the vertices of T are determined by the
normals, the smooth vertex condition is obviously satisfied. If the surface
contains the edge [ pz p~ ] (see Figure 8), then, since a; ~lo (or ail ~~) is freely
chosen, the smooth edge condition is easily satisfied (see the proof of Proposi-
tion 5.3). Referring to Figure 8, we prove in the following that the patches
constructed over VI and WI are single sheeted. The other patches are similar:

PROPOSITION5.2. If the face [ p ~pz p~ ] is nonnegative convex, then the
control points can be determined so that the surface over Vl is a three-sided
4-patch.

PROPOSITION 5.3. If the edge [ pz p~] is nonnegative convex, then the control
points can be determined such that the surface over WI is a four-sided
14-23-patch.

Subdivision. For any face of T = [ PI, Pz, Ptl, if it is nonconvex and if the
three inner products of the face normal and its three adjacent face normals
have different signs, then subdivide the double face tetrahedral into six
subtetrahedra by adding a vertex at the center w of the face (a Clough–Tocher
split). The coefficients are specified as before by regarding w as p ~ (see
Figure 8).

PROPOSITION5.4. If the above subdivision procedure is performed, then the
control points can be chosen so that the surface over VI is a three-sided
4-patch, and the surface over Wl is a four-sided 14-23-patch.

A three-sided (or four-sided) patch, although by itself maybe disconnected,
in the case of a nonconvex face it forms a connected piece of surface with the
other three-sided (or four-sided) patch of the double tetrahedral.

THEOREM 5.2. The global piecewise surface constructed is smooth, con-
nected, and single-sheeted.

With Theorem 5.2, we conclude that the surface is topologically equivalent
to the input triangulation.

6. SHAPE CONTROL

From the discussion in Section 5, there are several parameters that can
influence the shape of the constructed Cl surface. These parameters include

ACM Transactions on Graphics, Vol. 14, No. 2, April 1995.



Modeling with Cubic A-Patches . 123

(a) the length of the normal if its orientation is fixed, (b) a;,,,,, and (c)

al)lol > 0, ah)oz > o) a{~ol~>0, al~o:l >0, and hjool > 0 for z = I, 2.

(a) Interactive shape control. The influence of the length of a normal at a
vertex is that, if the normal becomes longer, then the surface becomes flatter
at this point. Parameter a,,,0 lifts the surface upward to the top vertex of the
tetrahedron, while others push the surface downward toward the bottom of
the tetrahedron. In order to get a desirable surface, one may specify some
additional data points in the tetrahedron considered and then approximate
these points in the least-squares sense.

(b) Default shape control. Here we only consider the effect of the free
parameters; that is, suppose the normals are fixed. The aim of the default
choice of these parameters is to avoid producing bumpy surfaces. The com-
monly used method is to keep the surface patch close to a quadric patch
[Bajaj 1992; Dahmen and Thamm-Schaar 1993].

By least-squares approximation of the coefficients of a quadric [Dahmen
and Thamm-Shaar 1993], one can derive that

1
alllo = ~(alzoO + azloo + azolo + alozo + aoal,, + aolz,,).

Using the same idea, the other parameters can also be determined. For
example, a~ for Ab > 1 can be determined by the degree elevation formula

‘A = ~iAlxA ,,, IAI=3, A, > 1, (6.1)
,=1

where .r~ ,, is the solution of the following equations in the least-squares
sense:

‘A = : ~ A,.YA ,>,, IAI=3, A, =0,1,
l–l

In the same way, bz,,ol can be determined. Therefore, under the Cl condi-
tions, we can define two sets of control points (a;} and {a:) over VI, where
{a;} is yielded from the single-sheeted consideration (see Propositions 5.2-5.4)
and where (a;} comes from approximating a simple (quadratic) surface. Note
that the surface defined by {a]) above may not be desirable in shape, while
the surface defined by {a;) above may not be single sheeted. In our implemen-
tation we take a finite sequence O = to< t, < .””< t.,= 1 and consider
{af ’) ={(1 –t, )a~ +tla~), i =0, 1,...,m, selecting the single-sheeted sur-
face defined by {al’) for the smallest index i. Experiments show that this
approach works well and that a desirable surface is obtained with t,< 0.5.
Examples are shown later in Figure 11.

7. EXAMPLES

Examples of the simplicial hull construction and C 1 smoothed triangulations
using cubic A-patches are shown in Figures 10– 13. Color pictures Figures 12
and 13 are also provided at the end of the paper. Note in these figures how
the “convex” faces are smoothed by a single cubic A-patch per face, while a
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Fig. 10. Surface  triangulation, the simplicial hull,  and some  of the interpolatory  C’ cubic
A-patches.

Clough-Tocher  splitting occurs  for coplanar faces  and some “nonconvex”
faces,  as determined by the vertex normals assignment and the adjacent
faces.

APPENDIX

PROOF  OF LEMMA 3.1. Let g(cwI,  a2, LYE)  = F(a,,  a2, cy3, 1 - cy, - CX~ - CY~).
The smoothness of the surface patch  S, requires that  Vg(al, (Y*,  a,) # 0 for
every  ( aI, az, a3, cy4 IT on S,. We prove  only  the smoothness of the three-sided
j-patch.  The proof of smoothness of the four-sided patch  is similar.

Suppose  the three-sided j-patch is not smooth.  There  will then  be a point
a* = (ffT, ff;, a;, crq* JT E S, in the interior of S such that Vg = 0. Since

ag aF aF-=---
da* dcq da, ’

i = 1,2,3,
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Fig. 11. Different smoothings of the surface triangulation  using C”  cubic A-patches

we have

-=;,F=...=;iF
dF

da, dcYu, da, .

Using Euler’s  formula [Walker 19781 for homogeneous  polynomials

&,g=4F and ia, = 1,
I~ I I r-l

wehave~F/(~cu,)=O,i=1,...,4,Letp,ES~andt=t*E(O,l)suchthat
CY:~  = t’e, + (1 - t”)pl = CY(~*);  th a is, F( a(t* )I = 0. Furthermore, lett

r7F( a(t))

i,t t t* = i$l $% = 0.
,
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Fig. 12. Surface  triangulation and some  of the interpolatory C’ cubic  A-patches.

This  implies  that t* is a double  zero  of F(a(t)),  a contradiction to the
definition  of the three-sided  patch. q

PROOF OF THEOREM  3.2. For the sake of simplicity, we assume  that j = 4.
Let p = (yl, yz, jJ3, OY E S, (i.e., Yi > 0, x3= 1 yi = U,

a(t)  = te, + (1 - t)p = ((1 - t)y,,(l - t)Y,,(l - t)Y3, tjT,

for t E (0, 1). Then

F(a(t))  = c
b,n!
-y~‘y;2y,“3(l  - t)*‘i”2+Ay4

IAl=n  A!

=c
b*(A, + A, + A,)!

A,!A,!A3!
Y :LY;2Y;3

lAl=lZ
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Fig. 13. Complete  smoothing of the surface triangulation  using C’ cubic A-patches

By (3.1)  and (3.21,  B, > 0 if k > 0, B, 2 0, for 1 = 1,. , k - 1, and B, 5 0,
for 1 =k + l,..., n. If B,, = ... =B,, ,,I., =0 and  B,, ,,, <O for some m
with 0 < m I n - k - 1, then F( a(t)) can be written  as
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where CO > 0 if k > 0, C’. m <0, and the sequence CO, Cl .”. C._ ~ has at
most one sign change. By the variation diminishing property of the functional
BB form, the equation I’( a(t )) has at most one root in (O, 1). Finally, we need
to show that the surface at the boundary of the tetrahedron is smooth. In the
proof above, if we allow the intersection to occur at the boundary, then there
may be an intersection of higher multiplicity at t = O or t = 1. That is, the
surface contains vertices or edges of the tetrahedron. Here, the smooth vertex
and smooth edge conditions in the theorem guarantee that the surface is also
smooth on the boundary of S. ❑

PROOF OF THEOREM3.3. Without loss of generality, we assume that (Z, j,
k, 1) = (1, 2, 3, 4). Then the edge [elez] and [e~e~] can be expressed as

[ele,l = {p:p=uel +(1 -u)e,, u= [0,11},

[e,e,l= {p:p=ue, +(l-u)e,, uGIO,l]},

and the line segment passing through the two edges is

a(t) =t[e1e2] + (1 –t)[e3e4] = (ut, (l – u)t, u(l – t), (l – U)(l

for t G (O, 1). Hence,

b~n!
F(a(t)) = ~ ~ ~AI(l – ~)A~U’b(l – ~)A~tA,+.Az(l _ t) A:l+AJ

lAl=n “

I
‘i E

b~(Al + AZ)!(AS + Al)!

Al! Az!At!AA!
UA’(l – U) A’UA”(l -

1=0 lAl=n

- t))T,

v)A’ )
n,!

xZ!(n –z)!
~1(1 – ~)n-~

= ~B,(u,u)B;(t).
1=0

It follows from (3.3) and (3.4) that I’( a(t )) has at most one zero in (O, 1).
Again, the smooth vertex and smooth edge conditions in the theorem guaran-
tee that the surface is smooth on the boundary of S. ❑

PROOFS OF THE PROPERTIESOF A-PATCHES. Property (a) can be verified
by reconsidering the proof of Theorem 3.2. For example, if m = 1, j = 4,
(yl, Yz, y~) = (1, O, O) at em. Hence,

B/(yl,y~,Y3) = b(”.. f)e,+l{j, = 0, 1=0,1,..., k.

Therefore, t = O is the root of 3’( a(t)) with multiplicity k + 1. On the other
hand, em is not a singular point of SF, since b, # O for A = (n – l)e~ + e,.
❑
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We illustrate property (b) by showing that any line passing through edge
[e, e, 1 and vertex eh is tangent to SW with multiplicity s. In fact, if we take., .
[I = 1 in the proof of Theorem 3.3, we have

B/(u, L)) =131(u, l) =bA,,,, +A,,,.,n /)<,, = o.

Hence, t = O is a root of F( a( t )) with multiplicity s + 1. Again,
singular point. ❑

The proof of property (c) is similar to the proof of property (a).

eh is not a

For Property (d), the mappings are given by the definition. A point P = SF
maps to a* E Si if and only if line segment (ei, a’) intersects SF at P. And
the mapping is ‘“one to one for a * @S~ = {a~S,, F’(e, ). F( a*) > O), as (e,,
a *) intersects SF an odd number times iff I’(e,, ) I’( a *) > 0.

The proof of Property (e) is similar to (d).

PROOF OF THEOREM 5.1. (i) The system (5.11)–(5.13) can be written as
X4 = –[a&zloa\lzO]B, where -

A=

a; o @l’ o 7; o

0 a; o 8: 0 Y;

cl; o /%’- PI –P1 o 0

0 a: – A p.: - p, o 0

[1

A.
Hence, the rank of the matrix B 1s at most four; that is, the matrix A is

singular. Since fi~ + O, ~~ + O, the first two rows and the last two rows of A
are independent. That is, matrix A has rank four. Hence, the system
(5.11)-(5.13) has four independent equations. Now we show that, if ( p,, P’l,

P~, P:i ) is afflne independent, then the submatrices AI and 4 are nonsingu-
lar, where

[

A= P4’-P1 –IJl

1[

Az= ‘i–q]
– nl

1
– P2 p: -p,’ – 72 y: – q~ 1

are the submatrices of A and are the coefficient matrices of the equations
(5.12) and (5.13), respectively. This implies that (5. 12) and (5. 13) are four
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independent equations for unknowns a~l ~, and c~l ~~, 1 = 1, 2. In fact, the
a~ne independency of ( p,, p;, Pz, p~) is the necessary and sufficient
condition for the nonsingularity of Al and Az. It follows from (5.3) and (5.5)
that

[1

P’i p~A1=_
11

[

1PI P’I pz ‘3 Bl,

1111

P; o
1 (A.3)

Since p4 #pi and ~{ # O, ~~ # O, matrix Al is of full rank if the matrix

[

PI P’1 P2 P3
1111 1

is nonsingular. On the other hand, if this matrix is

singular, that is, if p ~, pi, p2, p3 are coplanar, then the matrix Al is also
singular. Otherwise, pl, pi will lie on the plane ( p ~p; p2 p~ ) by (A.3), which

yields a contradiction. Similarly, Az is nonsingular iff
[ 1

PI P) ‘2 ‘3 is

1111
nonsingular.

(ii a) If PI, p;, P2, P3 are afline independent, then by (A.3) ,we know that
a~lll, t = 1, 2, can be expressed is an affhe combination of a; ~~0 and a&210,

aL20. By (5.11), c~l ~~, i = 1, 2 can also be expressed as an afflne combination
of a~l10 and a~zlo, a~120.

(b) If we take P4, p;, PZ, P3 or qb, q~, P2, P3 to be the afflne independent

set, then the equations (5. 11)–(5. 13) are already in the form (5.17).

(c) Any other cases can be derived from one of the above cases. ❑

PROOFOF PROPOSITION5.2. Since the Oth layer’s control points are nonpos-
itive, and the 2nd and 3rd layers’ control points can be set as positive, the
defined surface is then a three-sided 4-patch (see Theorem 3.2). ❑

PROOFOF PROPOSITION5.3. First, the Oth layer’s control points are nonpos-
itive. Now we show that the 2nd and 3rd layers’ control points can be set as
positive. Since p“ is above the planes ( p ~pz p3 ) and (pi pz p3) (i.e., it is at
the same side as p4 of the planes), then /3~ >0. Hence, from (5.4) and (5.5),
b 1101 and b 1011 can be set as positive if aoloz and aoolz are chosen large
enough. Similarly, by (5.3), b ~oo2> 0 if aooo~ is chosen large enough. Also,
b2001can be set as positive since it is free. Now it follows from (5.8)–(5. 10) and

W1 > 0> P2 > 0 that I521oo> bZOIO > and b3000 = be set as Positive. Therefore,
the surface defined in this way is a four-sided 14-23-patch over WI if [ p2 p~]
is positive convex. If [ pz p3] is zero convex, that is, if a~zlo = a~lzo = O, then
by (5.12) we can make ail* ~ > 0 and b; ~10>0 by choosing the free parameter

a~llo, L = 1, 2. Hence, the 1st layer’s control points are nonnegative. Hence,
here the patch over WI degenerates to the edge [ pz p~ ], and the smooth edges
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condition is satisfied. However, if the parameter aj ~,0 is overdetermined,
then a subdivision as in the coplanar case is needed. D

PROOFOF PROPOSITION5.4. (i) [ pj pz p:]] is a nonconvex face (see Figure 8),
We show that all of the 1st layer’s control points over V, and W,, L = 1, 2, can
be set as nonpositive, and the – 1st layer’s control points over V,’, i = 1, 2,
and W,’, i = 1, 2, can be set as nonpositive. If p,, p;, Pz, p:~ are afflne
independent, then we use the equalities (5.15) and (5.16). Since both p4 and
P; are at the same side of the surface triangulation T, O;O; >0 for i = 1, 2.
Assume, without loss of generality, that (); >0, 0: >0 and O; >0, fl.~~>0,
so 19; < 0, 19; < 0 and it: < 0, tt~z< 0. Then, by (5.15) and (5.16), we can take

aillo large enough such that a~)l,, >0 and c~l, ~ <0. Furthermore, their
absolute value can be larger than any specified value. Since the 1st and – 1st
layers’ control points that are determined by the normals are nonnegative
and nonpositive, respectively, then all of the 1st and – 1st layers’ control
points can be set as nonnegative and nonpositive, respectively. Therefore, the
surfaces over V, and V,’ are three-sided 4-patches, and the surfaces over W,
and W,’ are four-sided 14-23-patches (see Theorem 3.2 and 3.3). If p ~, p’l, p2,

p:] are coplanar (not afllne independent), then by Theorem 5.1, all of the
unknowns can be expressed linearly by a~l, ~, i = l,2(orc/)lll, i = 1,2). It is
easy to see that we can take a{)l, ~ > 0 (or c~,l~, < O) large (or small) enough so
that C;)l,l <0 (or a:,l,l > O).

(ii) If [p\ p2p:11 k convex, then the edge [ pi p:]] is also convex. Then
Propositions 5.2 and 5.3 can be used for this face and edge. As for the face

[PI p? p,]], the discussion above can be used.

Finally, we point out why the splitting is necessary, Consider the face

[p, P,pll as an example (see Figure 8). In order to have al,lll, a~,,,l, al,,,,
greater than zero, a ~,,,,has to be determined three times by the three C 1
constraints if no splitting is performed. Therefore, in general, a solution is
impossible without splitting. Also note that if the three inner products
between the face normal and its neighbor’s face normals have the same sign
(positive or negative), then a~llo can be determined so that ai)l 1I, a; l,)l. a~,,lI
are greater than zero. Hence, we do not need to split the face here. ~

PROOF OF THEOREM 5.2. We consider as the general case double face
tetrahedral and double edge tetrahedral.

(Smooth ness). The whole surface is smooth as each single piece is smooth.

(Con nectedness and single-sheetedness). Let S = [p, p2 P,{ p,] and S‘ =
[P, p? p:lql 1 be two-face tetrahedral sharing face SJ, SF and &, be the two
three-sided 4-patches over them. From the single-sheeted construction, F( e.!)
< 0 and F’(eq ) > 0 and from the C(, conditions, for u * G Sd, “double” patch

D = SF A S~,, exactly once. Hence D is single-sheeted over the double tetra-
hedral. In particular, p4 m *q4 intersects S;., when F( a *) >0, Sp when F( a $)
< 0, and both SF and S;., at a“ when F( a“) = O where SF and S~. , meet.
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Regard the “double” surface D as a function of a * denoted as D( a *). From
the fact that the two patches are smooth at least Co to each other,

lim D(o*) =D(cr*).
o“+ll*, oEs4

Hence D is connected over the double tetrahedral S A S’.
Similarly, let S = [pi P2 p3 P41 and S’ = [q;P2p3q41 be two edge tetrahe-

dral sharing edge [ p2 p31, and SF, S~,, be the two four-sided 14-23-patches
over them. From the single-sheeted construction, F( /3*) <0 for P * E [piP41
and F“(y*) > 0 for y“ G [q~q4]. From the Co conditions, F(cr*) = F’(a*), for
a* = [ PZ PSI. Again from Property (e), polyline P *a *Y* intersects the double
patch D = SF A S~ exactly once. Hence D is single-sheeted over the double
tetrahedral. In particular, B “a “y * intersects S~, when F( a *) > 0, SF when
F(cY*) <0, and both SF and S~, at a when F(a*) = O where SF and S~
meet. Regard D as a function of (a, P), denoted as D( a, ~), where (a,
1 – a) is the barycentric coordinate of a * and ( P, 1 – /3) is the barycentric
coordinate of ~” or y*. From the fact that the two patches are smooth and at
least Co to each other, we have,

lim D(O,@) =D(cr, /3).
O-.,4-O

Hence D is connected over the double tetrahedral S A S‘. ❑
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