
Automatic Reconstruction of Surfaces
and Scalar Fields from 3D Scans1 2

Chandrajit L. Bajaj3 Fausto Bernardini3 4 Guoliang Xu5

Department of Computer Sciences
Purdue University
ABSTRACT

We present an efficient and uniform approach for the automatic
reconstruction of surfaces of CAD (computer aided design) models
and scalar fields defined on them, from an unorganized collection
of scanned point data. A possible application is the rapid computer
model reconstruction of an existing part or prototype from a three
dimensional (3D) points scan of its surface. Color, texture or some
scalar material property of the physical part, define natural scalar
fields over the surface of the CAD model.

Our reconstruction algorithm does not impose any convexity or
differentiability restrictions on the surface of the original physical
part or the scalar field function, except that it assumes that there is a
sufficient sampling of the input point data to unambiguously recon-
struct the CAD model. Compared to earlier methods our algorithm
has the advantages of simplicity, efficiency and uniformity (both
CAD model and scalar field reconstruction). The simplicity and ef-
ficiency of our approach is based on several novel uses of appropri-
ate sub-structures (alpha shapes) of a three-dimensional Delaunay
Triangulation, its dual the three-dimensional Voronoi diagram, and
dual uses of trivariate Bernstein-Bézier forms. The boundary of
the CAD model is modeled using implicit cubic Bernstein-Bézier
patches, while the scalar field is reconstructed with functional cubic
Bernstein-Bézier patches.

CR Categories and Subject Descriptors: I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling;J.6 [Computer-
Aided Engineering]: Computer-Aided Design.

Additional keywords: Geometric modeling, shape recovery, range
data analysis, algebraic surfaces, triangulations, alpha-shapes.

1This work has been supported in part by NSF grant CCR 92-22467, AFOSR grant
F49620-94-1-0080, ONR grant N00014-94-1-0370 and ARO grant DAAH04-95-1-
0008.

2See also
http://www.cs.purdue.edu/research/shastra/shastra.html

3Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-
1398 USA. Email: fbajaj,fxbg@cs.purdue.edu

4Additional partial support from CNR, Italy
5Computing Center, Academia Sinica, P. O. Box 2719, Beijing, 100080, P. R.

China. Email: xuguo@cs.purdue.edu
Permission to make digital/hard copy of part or all of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
©1995 ACM-0-89791-701-4/95/008…$3.50

1

INTRODUCTION

In this paper we present an approach for the reconstruction of a
surface, and scalar fields defined over it, from scattered data points.
The points are assumed sampled from the surface of a 3D object,
and the sampling is assumed to be dense and uniform (these terms
will be given a more precise meaning later in the paper).

Laser range scanners are able to produce a dense sampling,
usually organized in a rectangular grid, of an object surface. Some
models also allow to measure the RGB components of the color
(i.e. three scalar fields) at each sampled point. When the object has
a simple shape, this grid of points can be a sufficient representation.
However, objects with a more complex geometry, e.g. objects with
holes, handles, pockets, cannot be scanned in a single pass, and the
various scans are not easy to merge [42]. Other applications, for
example recovering the shape of a bone from contour data extracted
from a CT scan, require reconstruction of a surface from data points
organized in slices. The approach of considering the input points as
unorganized has the advantage of generating cross-derivatives by a
uniform treatment of all spatial directions.

The reconstruction problem we are considering may be formally
stated as follows:

Let an unorganizedcollection of pointsP = f(xi; yi; zi)g �
R

3 and associated values W = fwig � R1, i = 1 : : : n, be
given. The points P are assumed sampled from a domain D
inR3 (the boundary of a three-dimensional object) while the
valuesW are assumed sampled from some scalar functionF
on the domain D.

Construct a C1 smooth piecewise polynomial surface SD :
fD(x; y; z) = 0 and a C1 smooth piecewise polynomial
function (surface-on-surface) SF : fF (x; y; z) on some do-
main that contains P such that, for i = 1 : : : n:

(a) jfD(xi; yi; zi)j < "D

(b) jfF (xi; yi; zi)�wij < "F

where "D and "F are user-defined approximation parameters.
The user can also choose the degree of the Bernstein-Bézier
polynomial patches used in the approximation.

Additionally, generate different visualizations of the domain
surface SD and the surface-on-surface SF .

In this paper we reconstruct the C1 smooth domain SD using a
piecewise algebraic surface (the zero contour of a C1 trivariate
piecewise polynomial function). The surface is constituted by
09

barycentric implicit Bernstein-Bézier patches, which are guaran-
teed to be single-sheeted within each tetrahedron. We have also
developed a method similar to the one described here, but based on
tensor-product Bernstein-Bézier patches [5].

Some researchers have focused on reconstructing a piecewise-
linear representation of the unknown surfaceD [38, 25, 13, 30, 43].
These papers provide a very nice survey of both the varied nature
of applications and past approaches.

Related prior work [2, 6, 7, 15, 16, 27, 28, 35, 33] of fitting with
smooth implicit surface patches, minimally all require an input
surface triangulation of the data points. The surface fitting paper
of [32] is similar to ours in that it only assumes a sufficiently
dense set of input data points but differs from our approach in the
adaptive nature of refinement, in time efficiency and in the degree
of the implicit surface patches used. The authors propose either
a C0 reconstruction algorithm based on an adaptive tetrahedral
decomposition, or a scheme that uses tri-quadratic (degree six)
tensor product implicit surface patches with a Powell-Sabin type
split to achieve C1 continuity.

Our scheme effectively utilizes the incremental Delaunay tri-
angulation for a more adaptive fit; the dual Voronoi diagram for
efficient point location in signed distance computations and degree
three implicit surface patches. Furthermore, in the same time it also
computes a C1 smooth approximation SF of the sampled scalar
function.

A different, three-step solution is described in papers [30, 31,
29]. In the first phase, a triangular mesh that approximates the data
points is created. In a second phase, the mesh is optimized with
respect to the number of triangles and the distance from the data
points. A third step constructs a smooth surface from the mesh.

If the surfaceSD is given, the problem of constructing the scalar
function SF is known as surface interpolation on a surface, and
arises in several application areas, e.g. in modeling and visualizing
the rain fall on the earth, the pressure on the wing of an airplane
or the temperature on the surface of a human body. Note that
the trivariate scalar function SF is a two dimensional surface in
R

4 since its domain is the two dimensional surface SD (and not
all of R3). The problem is relatively recent and was posed as an
open question by Barnhill [9]. A number of methods have been
developed since then for its solution (for surveys see [10, 26, 37,
34]). Most of the proposed approaches interpolate scattered data
over planar or spherical domain surfaces. In [12] and [35], the
domain surface is generalized to a convex surface and a topological
genus zero surface, respectively. Pottmann [39] presents a method
which does not possess similar restrictions on the domain surface but
requires it to be at leastC2 differentiable. In [11] the C2 restriction
is dropped, however the interpolation surface is constructed by
transfinite interpolation using non-polynomials. A similar non-
polynomial transfinite interpolant construction is used in [36], while
the interpolation scheme in [41] requires at least C4 continuity.
Another approach, based on interpolation with cubic (for C1) or
quintic (for C2) polynomials, is described in [8].

1 OVERVIEW OF THE ALGORITHM

Our algorithm consists of the following three phases:

1. Preprocessing: Preprocess the data points so that a signed-
distance function is defined and efficiently computable. I.e.,
given a query point q, the function must return the approxi-
mate distance of the point from the domain surface SD , with
a positive sign if q lies outside the object, and a negative sign
otherwise. We use �-shapes [21] to compute a piecewise
linear approximation of the domain SD , from which the ap-
proximated signed distance is computed. Details on this part
are given in Section 2.
1

2. Approximation: Incrementally decompose the space into
tetrahedra. For each tetrahedron � that contains a portion
of the domain D, compute Bernstein-Bézier trivariate im-
plicit approximants fD� and fF� for both the domain D and
the field F , based on data points and on the signed-distance
function described above. Then compute the errors of the
approximants for the given data points, and repeat the pro-
cess, refining at each step the decomposition, until the errors
meet the specified requirements. The use of a global signed-
distance function in the computation of the coefficients of
each patch guaranteesC0 continuity of the reconstructed sur-
faces. We use an incremental 3D Delaunay triangulation
scheme together with a suitable point-insertion scheme to
avoid badly-shaped tetrahedra in the spatial decomposition.
This part of the algorithm is further detailed in Section 3.

3. Smoothing: Use a Clough-Tocher 12-way split to make the
reconstructed surfacesC1-smooth. See Section 4 for details.

Our domain surface SD and surface-on-surfaceSF reconstruc-
tion scheme does not impose any convexity or differentiability re-
strictions on the original domain surface D or function F , except
that it assumes that there is a sufficient sampling of the input point
data to unambiguously reconstruct the domain surfaceD. While it
is difficult to precisely bound the required sampling density, we ad-
dress this issue in Section 2.4 and characterize the required sampling
density in terms of an �-shape (subgraph of a Delaunay triangu-
lation of the points) which matches the topology of the original
(unknown) sampled surface D. Compared to the above methods
our algorithm thus has the following advantages:

1. It unifies the reconstruction of the domain surfaceD and the
scalar function F defined on the domain surface;

2. It is adaptive and approximates large dense data sets with a
relatively small number of C1 smooth patches.

Outline of the paper: The rest of our paper is as follows. In
Sections 2, 3 and 4 we present a detailed description of Phases 1, 2
and 3 of the reconstruction algorithm as outlined above. In Section 5
we illustrate all the phases of the algorithm with the aid of a simple
2D example. In Section 6 we show some examples of reconstructed
surfaces and surface-on-surfaces, and discuss possible directions of
future investigation.

More details on the algorithm and additional examples can be
found in [4].

2 PHASE 1: PREPROCESSING AND THE
SIGNED-DISTANCE FUNCTION

As we mentioned in Section 1, our algorithm relies on the computa-
tion of the signed-distance �(q) of a query point q from the domain
surface D. The absolute value of �(q) is defined as the Euclidean
minimal distance of the point q from the domain surface D, while
its sign is arbitrarily defined to be positive when q lies outside the
object whose boundary is D, and negative otherwise.

In our implementation of the algorithm, we use �-shapes to
compute a piecewise linear approximation LD of the domain D,
and make use of the associated data-structures (3D Delaunay tri-
angulation and Voronoi diagram) to efficiently locate q w.r.t. the
object and compute the associated signed-distance. An alternative
method for computing an approximated signed-distance function,
based on propagation of normals, is described in [30].

Before describing the actual signed-distance computation, we
briefly review some concepts and results from Computational Ge-
ometry used in the algorithm. The style of this presentation is
informal. The reader can refer to the papers in the references for
more details.
10

(a) (b) (c) (d)

Figure 1: A set of points in 3D (a), and three different �-shapes.
2.1 Delaunay Triangulations

Given a set P of points in R3 one can build a tetrahedralization of
the convex hull ofP , that is, a partition of conv(P) into tetrahedra,
in such a way that the circumscribing sphere of each tetrahedron
� does not contain any other point of P than the vertices of � .
Such a tetrahedralization is called a (3D) Delaunay triangulation
and, under non degeneracy assumptions (no three points on a line,
etc.) it is unique. Many different techniques have been proposed
for the computation of Delaunay triangulations (see [19, 40, 18]).
For our purposes, an incremental approach is particularly well-
suited, as it can be used in both the preprocessing phase and the
incremental refining of the adaptive, approximating triangulation
(see Section 3).

The algorithm we use is the randomized, incremental, flipping-
based algorithm proposed in [22], with heed paid to robustness
issues due to finite precision calculations [18]. At the beginning the
triangulation is initialized as a single tetrahedron, with vertices “at
infinity”, that contains all points of P . At each step a point from P
is inserted as a new vertex in the triangulation, the tetrahedron in
which p lies is split and the Delaunay property is re-established by
“flipping” tetrahedra.

This algorithm uses a data structure, called the history DAG,
that maintains the collection of discarded tetrahedra. The DAG
is used to locate the tetrahedron in which the point to be inserted
lies. When a tetrahedron is split or groups of tetrahedra are flipped,
they become internal nodes of the DAG while the newly created
tetrahedra become their children in the DAG. To locate a point, one
starts at the root of the DAG (the single tetrahedron of the initial
triangulation) and follows links down to a leaf.

It is possible to build the Delaunay triangulation of a set of n
points in Rd in O(n logn + ndd=2e) expected time. The second
term in this expression is of the same order as the maximum number
of possible simplices. In practice, the running time of the algorithm
(for d = 2, 3) is much better than this theoretic bound (the actual
running time depends on the distribution of points).

2.2 Voronoi Diagrams

Voronoi diagrams are well known tools in computational geometry
(see [3] for a survey). They provide an efficient solution to the
Post Office Problem, that is an answer to the query: what is the
closest point p 2 P to a given point q? Voronoi diagrams are
related to Delaunay triangulations by duality. It is easy to build
a Voronoi diagram once one has the corresponding triangulation,
and vice-versa. A Voronoi diagram is a partition of the space into
convex cells. There is a cell for each point of p 2 P , and the
cell of a point p is the set of points that are closer to p than to
11
any other point of P . So, all one has to do to answer the closest-
point query is to locate the cell the query point lies in. Efficient
point-location data structures can be built on top of the Voronoi
diagram. Using the randomized approach described in [14], one
builds the point-location data-structure (called an RPO-tree, for
Randomized Post Office tree) on top of the Voronoi diagram in
O(n2+") expected time, for any fixed " > 0, and is then able to
answer the closest-point query inO(log n) expected time. The data
structure requires O(n2+") space in the worst case. We use the
RPO-tree data structure for our point location and signed-distance
computations.

2.3 �-Shapes

Given the Delaunay triangulation T of a point set P , regarded as a
simplicial complex, one can assign to each simplex� 2 T (vertices,
edges, triangles and tetrahedra) a size defined in the following way.
Let Θ� be the smallest sphere whose boundary contains all vertices
of �. Then the size of � will be defined to be equal to the square of
the radius of Θ�, and � will be said to be conflict-free if Θ� does
not contain any point of P other than the vertices of �.

The subcomplex Σ� of simplices � 2 T with either one of the
following properties:

(a) The size of � is less than � and � is conflict-free

(b) � is a face of � and � 2 Σ�,

is called the �-shape of P .
�-Shapes have been introduced in the plane in [20] and then

extended to the three-dimensional space in [21].
One can intuitively think of an�-shape as the subcomplex of T

obtained in the following way: imagine that a ball-shaped eraser,
whose radius is

p
�, is moved in the space, assuming all possible

positions such that no point of P lies in the eraser. The eraser
removes all simplices it can pass through, but not those whose size
is smaller than �. The remaining simplices (together with all their
faces) form the �-shape for that value of the parameter �. Two
extreme cases are the 0-shape, which reduces to the collection of
points P , and the 1-shape, that coincides with the convex-hull
of P . Notice that there exists only a finite number of different
�-shapes. The collection of all possible �-shapes of P is called
the family of �-shapes of P (see Figure 1), and can be computed
in time proportional to the number of simplices in T . We use the
�-shape computation for our generating an initial piecewise linear
approximation LD of the domain surface D (see Section 2.4).
1

2.4 Signed-Distance Computation
Obviously the domain surface D is unknown, so we need to build
some suitable approximation of it to classify points as either internal
or external to the object being reconstructed, and to compute a
distance from it.

In the preprocessing phase the Delaunay triangulation of the set
of input points P is computed, and then the Voronoi diagram and
the family of �-shapes of P are constructed. During the process,
the history DAG and the RPO-tree data structures are built to allow
a fast location of the tetrahedron and Voronoi cell a query point q
lies in. Note that all these data structures are intimately related.

Tetrahedra in the Delaunay triangulation are classified as either
internal or external (and assigned a corresponding sign) based on
a particular �-shape chosen as a “good” linear approximation LD

to the surface to be reconstructed. The computation of the signed-
distance is then reduced to locating the query point q in both the
Delaunay triangulation, to decide its sign s = �1, and in the
Voronoi diagram, to find the closestpoint p 2 P . The approximated
signed-distance s � jpqj is then returned.

A difficulty in the process outlined above is the choice of a
suitable value for �. We assume that the input data is dense enough
so that there exists an � such that the �-shape approximates the
object with the same topology as the original unknown surface
D. In our current scheme a suitable � is selected interactively.
The boundary of the selected �-shape must possess the following
properties:

(a) It does not contain any singular (i.e. isolated) vertex;

(b) There are no “missing” edges, i.e. there can be missing
triangles in the boundary, but if two adjacent triangles are
missing, their common edge must be in the �-shape.

These properties make a slightly weaker condition than requiring
that there exist an �-shape that correctly approximates the object
and that has a complete boundary. In our experience it is sometime
difficult to find an � value such that these stronger conditions are
satisfied, even for “reasonably dense” samplings.

When an �-shape with the above properties is determined, it
is easy to distinguish between internal and external tetrahedra in
the underlying triangulation T . One does a breadth first search on
the dual graph of T , starting with a tetrahedron that is known to
be external (e.g. one that has a vertex at infinity) and continuing
with adjacent tetrahedra. These tetrahedra are marked as external
(positive sign) and put in a queue for further processing. When
one hits a tetrahedron � belonging to Σ�, � is marked as internal
and not enqueued. The same happens when, visiting an adjacent
tetrahedron � of a positive tetrahedron�, one finds that the common
face (or all three edges of the common face) belongs to Σ�. This
means that going from � to � one crosses the boundary, so � is
marked as internal (negative sign) and not enqueued.

When the data points are not very dense or uniform, the error
caused by using the approximated distance computation described
above can be too large. In these cases, it is possible to improve the
error by returning the distance of the query point from LD , instead
of P .

3 PHASE 2: INCREMENTAL REFINEMENT
AND APPROXIMATION

In Phase 2 of the algorithm a 3D Delaunay triangulation T is ini-
tialized and incrementally refined, and C0-continuous piecewise-
polynomial functions (approximants) fD and fF are generated.

For each tetrahedron � 2 T that contains a portion of D we
compute two Bernstein-Bézier trivariate polynomials fD� and fF� , to
approximate the part of domain surface and scalar field contained
1

in � , respectively. The coefficients of the polynomials are com-
puted using data points within � and the signed-distance function
described in Section 2.4.

After computing the two polynomials, the errors of the approx-
imants are estimated and, if one or both the errors are too large,
the current triangulation T is refined, until the errors are within the
given bounds. The triangulation refinement is done by adding at
each step a new point to split the tetrahedron with the maximum
error, and using the incremental Delaunay triangulation algorithm
to update the triangulation.

Before describing in further details the computation of the ap-
proximating functions, we recall some facts and terminology related
to Bernstein-Bézier trivariate forms.

3.1 Bernstein-Bézier (BB) Form
Let p1; p2; p3; p4 2 R3 be affine independent. Then the tetrahe-
dron � with vertices p1; p2; p3, and p4, is � = [p1p2p3p4]. For

any p =

4X
i=1

�ipi 2 � , � = (�1; �2; �3; �4)
T is the barycentric

coordinate of p. Let p = (x; y; z)T , pi = (xi; yi; zi)
T . Then the

barycentric coordinates relate to the Cartesian coordinates via the
following relation

2
64

x
y

z
1

3
75 =

2
64

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

3
75
2
64

�1

�2

�3

�4

3
75 (1)

Any polynomial f(p) of degree n can be expressed as a Bernstein-
Bézier (BB) form over � as

f(p) =
X
j�j=n

b� B
n
� (�); � 2 Z4

+

where

B
n
� (�) =

n!
�1!�2!�3!�4!

�
�1
1 �

�2
2 �

�3
3 �

�4
4

is a Bernstein polynomial,j�j =P4
i=1

�i with� = (�1; �2; �3; �4)
T ,

� = (�1; �2; �3; �4)
T is the barycentric coordinate of p, b� =

b�1�2�3�4 (as a subscript,we simply write�1�2�3�4 for (�1; �2; �3; �4)
T)

are called Bézier ordinates, and Z4
+ stands for the set of all four

dimensional vectors with nonnegative integer components.
The points

p� =
�1

n
p1 +

�2

n
p2 +

�3

n
p3 +

�4

n
p4; j�j = n

are called the regular points of � . The points (p�; b�) 2 R4 are
called Bézier points and their piecewise linear interpolation Bézier
net.

The following lemma gives necessary and sufficient conditions
for continuity.

Lemma 3.1 ([24]). Let f(p) =
P

j�j=n
a�B

n
� (�) and g(p) =P

j�j=n
b�B

n
� (�) be two polynomials defined on two tetrahedra

[p1p2p3p4] and [p01p2p3p4], respectively. Then

(i) f and g are C0 continuous at the common face [p2p3p4] if
and only if

a� = b�; for all � = 0�2�3�4; j�j = n (2)
12

Positive

Negative
Layer 0

Layer 1

Layer 2

Layer 3

p
1

p
2

p
3

p
4

Layer 0

Layer 1

Layer 2

Layer 3

p
1

p
2

p
3

p
4

Figure 2: The layers of Bézier ordinates in a tetrahedron. (left)
Three-sided patch. (right) Four-sided patch.

p
1

p
2

p
3

p
4

p
1

p
2

p
3

p
4

Figure 3: The splitting of a tetrahedron (right) into four sub-
tetrahedra (left). Only one of the resulting sub-tetrahedra is shown.

(ii) f and g are C1 continuous at the common face [p2p3p4] if
and only if (2) holds and, for all � = 0�2�3�4, j�j = n� 1,

b�+e1 = �1a�+e1 + �2a�+e2 + �3a�+e3 + �4a�+e4 (3)

where� = (�1; �2; �3; �4)
T is defined by the following rela-

tion

p
0
1 = �1p1 + �2p2 + �3p3 + �4p4; j�j = 1

The relation (3) will be called coplanar condition.
The following Lemmas give sufficient conditions for a patch to

be single-sheeted (see [6] for proofs and further details).

Lemma 3.2 Let � = [p1p2p3p4]. The regular points of � can be
thought of as organized in triangular layers, that we can number
from 0 to n going from p1 to the opposite face [p2p3p4] (see Fig-
ure 2). If the Bézier ordinates are all positive (negative) on layers
0; : : : ; k � 1 and all negative (positive) on layers k + 1; : : : ; n
(0 < k < n), then the patch is single-sheeted (i.e., any line through
p1 and p 2 [p2p3p4] intersects the patch only once).

Lemma 3.3 Let � = [p1p2p3p4]. The regular points of � can be
thought of as organized in quadrilateral layers, that we can number
from 0 to n going from edge [p1p2] to the opposite edge [p3p4]

(see Figure 2). If the Bézier ordinates are all positive (negative) on
layers 0; : : : ; k�1 and all negative (positive) on layersk+1; : : : ; n
(0 < k < n), then the patch is single-sheeted (i.e., any line through
p 2 [p1p2] and q 2 [p3p4] intersects the patch only once).

In the Lemmas above, the Bézier ordinates on layer k can have
any sign. Patches satisfying the conditions of Lemma 3.2 will be
called three-sided; those satisfying the conditions of Lemma 3.3
will be called four-sided.
11
3.2 Outline of Phase 2 of the Algorithm
We are now ready to present in details the steps required to compute
the approximant functions fD and fF .

1. Build an initial bounding tetrahedron � , such thatP � � . Set
T = f�g and V = vertices of � . Mark � as new.

2. For each new tetrahedron � 2 T , compute the signed-
distance at all its regular points p� . If the values of �(p�),
j�j = n, do not satisfy either Lemma 3.2 or Lemma 3.3, then
set #D� = #F� = 1. Otherwise, compute local approximants

f
D
� (p) =

X
j�j=n

b
D
� B

n
� (�) (4)

f
F
� (p) =

X
j�j=n

b
F
�B

n
� (�) (5)

for the domain surface D and scalar field F as follows:

For the domain approximant, the coefficients bD� are com-
puted by first interpolating the computed values of the signed-
distance function:

f
D
� (p�) = �(p�); j�j = n (6)

The tetrahedron � is then split into four sub-tetrahedra�1 : : : �4

(see Figure 3) by joining the baricenter of � with its four ver-
tices (�k is the sub-tetrahedron opposite to vertex pk). The
regular points on the faces of the sub-tetrahedra coincide with
those of the original tetrahedron � . For these points we use
the coefficients computed from (6). Notice that on the shared
face of two adjacent tetrahedra these coefficients will coin-
cide, as fD, restricted to that face, interpolates the signed
distance at a number of points equal to the number of its co-
efficients. All interior coefficients of the sub-tetrahedra are
computed by solving the least squares problem
�

fD�k(pi) = 0; pi 2 P \ �k; k = 1 : : : 4
fD�k(p�) = �(p�); j�j = n; �k 6= 0; k = 1 : : : 4

(7)
where we use the values of the signed-distance at regular
points (of each sub-tetrahedron �k) in addition to the data
points contained in � . The signed-distance data helps in
avoiding multiple sheets in the approximating patch.

For the scalar field approximant we compute a least squares
approximation of the field values at data points within � :

f
D
� (pi) = wi; pi 2 P \ � (8)

Notice that the field approximant is not globally continuous.
Continuity will be achieved by averaging and interpolating
values of the approximant at the vertices V of T in a subse-
quent phase, described in Section 4.

3. If the coefficients computed in the step above do not satisfy
the conditions of either Lemma 3.2 or Lemma 3.3, set#D� =

#F� = 1. Otherwise, compute the approximation error for
both functions:

#
D
� =

qP4
k=1

P
pi2P\�

fD� (pi)2

Card(P \ �)

#
F
� =

qP
pi2P\�

(fF� (pi)�wi)2

Card(P \ �)
3

(if � \P = ;, then set #D� = 0 and #F� = 0), and keep track
of the following two quantities:

#
D
�0 = max

�2T
f#D� g

and
#
F
�00 = max

�2T
f#F� g

4. If both #D�0 < "D and #F�00 < "F then the algorithm stops
the incremental refinement phase and begins the smoothing
phase. Otherwise, either �0 or �00 is selected for further re-
finement (according to a user-definablestrategy. E.g.: choose
always�0 first, assigning priority to the surface, as variations
of the scalar field F generally correspond to variations of
the surface). The circumcenter q of the selected tetrahedron
is computed and added to the set V of vertices of the tri-
angulation, q is inserted in T and T is updated with splits
and flippings to accommodate the new vertex and restore the
Delaunay property (adding the center of the circumscribing
sphereof� is utilizing the empty sphere property of Delaunay
triangulations and in general yields good aspect ratio tetrahe-
dra in the final triangulation [17]). At the same time the subset
P \ � of points that lie within each modified tetrahedron �
is updated. This is done by considering the points originally
within the modified simplex, and reclassifying them with re-
spect to the splitting/flipping planes.

Then mark all split/flipped tetrahedra as old and all newly
created ones as new and go back to step 2.

4 PHASE 3: ACHIEVINGC
1 CONTINUITY VIA

A 3D CLOUGH-TOCHER SCHEME

The functions fD(p) and fF (p) computed in phase 2 of the algo-
rithm are not C1 continuous. To achieve C1 continuity, we apply a
subdivision scheme to the tetrahedra ofT , and computeC1-smooth
Bernstein-Bézier patches on the refined triangulation.

We base our trivariate scheme on the n-dimensional Clough-
Tocher scheme given by Worsey and Farin [44, 23]. In this scheme,
one computes for each vertex in the original triangulation an average
of the values of the functions fD and fF and their gradients, for all
patches that share that vertex (the surface approximant is already
C0, so only the gradient needs to be averaged). In addition, the
average gradient at the middle point of each edge is computed. Each
tetrahedron is then split into twelve sub-tetrahedra by inserting the
incenter of each tetrahedron and a point on each face (the point on the
face shared by two adjacent tetrahedra must be collinear with their
incenters [44]), and joining these points with the original vertices.
A cubic trivariate polynomial is built on each sub-tetrahedron. The
coefficients of the twelve resulting patches are computed based on
the value of the function at each vertex, the average gradient at
vertices and mid-edge points, and the continuity constraint. The
resulting patches are C1 continuous and interpolate the averaged
values and gradient of the functions.

Another trivariate Clough-Tocher scheme (see [1]) splits each
tetrahedron into four sub-tetrahedra. However the interpolants in
each sub-tetrahedra are now of quintic degree and furthermore re-
quire C2 data at the vertices of the main tetrahedron. Since our data
at the vertices of the tetrahedral mesh comes from the averaging of
locally computed low degree interpolants, the higher order deriva-
tives tend to be un-reliable in general. We therefore prefer to use
the lower degree cubic scheme that uses only first order derivatives
at the vertices.

An alternative approach to build a C1 interpolant with cubic
patches has been presented in [8], and its application to our method
is described in [4].
1

5 A SIMPLE 2D EXAMPLE

We present in this section an example of the three phases of the
algorithm. For presentation purposes, the steps are illustrated with
the aid of a 2D example. The method is in fact perfectly suited
for being applied in 2D reconstruction, and we chose to describe
it only for the 3D case to keep the notation simple and because
the most interesting applications arise from the study of fields on
the surface of 3D objects. Restricting ourselves to a bi-dimensional
example allows us to illustrate the various steps with pictures which
we believe are more easily understood. The generalization of the
techniques involved should be clear from the text.

In the following we refer to Figures 4(a)–(n). Figure (a) shows
the sample pointsP 2 R2. Figure (b) shows the associated function
values W . The computed Delaunay triangulation and associated
Voronoi diagram are depicted in Figure (c). These data structures
will be used for fast point location in signed-distance computation.
The chosen �-shape is shown in Figure (d). Four steps of the
approximation phase are illustrated in Figures (e) though (i). Notice
the adaptive subdivision of the plane. The implicit Bernstein-Bézier
patches are shown in red. Empty triangles are light-blue and those
containing a patch are grey. These triangles lie on the zero plane, so
their intersection with the patches form the implicit curve fD = 0.
Figures (l) and (m) show the final reconstructedC1 implicit patches,
after Clough-Tocher subdivision, for both the domain and the scalar
field. The zero contour of fD is finally shown in Figure (n).

6 EXAMPLES AND CONCLUSIONS

Some examples of reconstruction of 3D objects and associated
scalar fields are presented in this Section.

The data for the human femur in Figure 5, 9223 points, comes
from contouring of a CT scan. The algorithm does not use the fact
that the data is arranged in slices. The reconstructed C1 surface
is made by 400 cubic patches. The reconstruction algorithm took
about 10 minutes on a SGI Indigo2.

The engine in Figure 6 has been reconstructed from a data set
containing 9800 points. The number of patches generated in the
approximation phase is 382, with an error equal to 1/100 of the size
of the object. Each patch is of degree 3, and is therefore defined
by 20 coefficients. At the same time, an approximate C1 scalar
field (pressure form a simulated experiment) over the surface has
also been computed. Several techniques can be used to visualize
this surface-on-surface data. In Figure 6(c) we show iso-pressure
regions. With the normal projection method, each point p on the
domain surface SD is projected in the direction normal to SD , to a
distance proportional to the value fF (p) of the field at that point.
The projected surface is visible in transparency in Figure 6(d), with
iso-contours of the pressure projected on it.

The data for the head of Spock is a subsampling (about 104

points have been used) of scan data obtained with a laser 3D
digitizer. The reconstructed surface is constituted by 1100 cubic
patches.

REFERENCES

[1] ALFELD, P. A trivariate clough-tocher scheme for tetrahedral
data. Computer Aided Geometric Design 1 (1984), 169–181.

[2] ALFELD, P. Scattered data interpolation in three or more vari-
ables. In Mathematical Methods in Computer Aided Geomet-
ric Design, T. Lyche and L. Schumaker, Eds. Academic Press,
Boston, 1989, pp. 1–34.

[3] AURENHAMMER, F. Power diagrams: properties, algorithms
and applications. SIAM J. Comput. 16 (1987), 78–96.
14

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l) (m) (n)

Figure 4: An example of reconstruction of the boundary of a two-dimensional shape and an associated scalar field.
115

(a) (b) (c)

Figure 5: (a) Data set for the upper part of a human femur. Data from a CT scan. (b) Final decomposition (wireframe). (c) Reconstructed
object.
(a) (b)

(c) (d)

Figure 6: A jet engine. (a) C0 reconstructed domain. Patches are visible in different colors. (b) Reconstructed domain (afterC1 smoothing).
(c) Iso-pressure contours and regions of a surface-on-surfacepressure function displayed on the surface of the jet engine. (d) The reconstructed
engine surface and visualization of the pressure surface function surrounding the jet engine using the normal projection method.
116

[4] BAJAJ, C., BERNARDINI, F., AND XU, G. Reconstruction of
surfaces and surfaces-on-surfaces from unorganized weighted
points. Computer Science Technical Report CSD-TR-94-001,
Purdue University, 1994.

[5] BAJAJ, C., BERNARDINI, F., AND XU, G. Adaptive reconstruc-
tion of surfaces and scalarfields from dense scattered trivariate
data. Computer Science Technical Report CSD-TR-95-028,
Purdue University, 1995.

[6] BAJAJ, C., CHEN, J., AND XU, G. Modeling with cubic A-
patches. ACM Transactions on Graphics (1995). To Appear.

[7] BAJAJ, C., AND IHM, I. C1 smoothing of polyhedra with
implicit algebraic splines. Computer Graphics 26, 2 (July
1992), 79–88. Proceedings of SIGGRAPH 92.

[8] BAJAJ, C., AND XU, G. Modeling scattered function data on
curved surfaces. In Fundamentals of Computer Graphics,
Z. T. J. Chen, N. Thalmann and D. Thalmann, Eds. Beijing,
China, 1994, pp. 19–29.

[9] BARNHILL, R. E. Surfaces in computer aided geometric de-
sign: A survey with new results. Computer Aided Geometric
Design 2 (1985), 1–17.

[10] BARNHILL, R. E., AND FOLEY, T. A. Methods for constructing
surfaces on surfaces. In Geometric Modeling: Methods and
their Applications, G. Farin, Ed. Springer, Berlin, 1991, pp. 1–
15.

[11] BARNHILL, R. E., OPITZ, K., AND POTTMANN, H. Fat sur-
faces: a trivariate approach to triangle-based interpolation on
surfaces. Computer Aided Geometric Design 9 (1992), 365–
378.

[12] BARNHILL, R. E., PIPER, B. R., AND RESCORLA, K. L. Interpo-
lation to arbitrary data on a surface. In Geometric Modeling,
G. Farin, Ed. SIAM, Philadelphia, 1987, pp. 281–289.

[13] BOISSONAT, J. D. Geometric structures for three-dimensional
shape representation. ACM Transactions on Graphics 3, 4
(Oct. 1984), 266–286.

[14] CLARKSON, K. L. A randomized algorithm for closest-point
queries. SIAM J. Comput. 17 (1988), 830–847.

[15] DAHMEN, W. Smooth piecewise quadratic surfaces. In Mathe-
matical Methods in Computer Aided Geometric Design, T. Ly-
che and L. Schumaker, Eds. Academic Press, Boston, 1989,
pp. 181–193.
11
[16] DAHMEN, W., AND THAMM-SCHAAR, T.-M. Cubicoids: mod-
eling and visualization. Computer Aided Geometric Design
10 (1993), 93–108.

[17] DEY, T. K., BAJAJ, C. L., AND SUGIHARA, K. On good tri-
angulations in three dimensions. Internat. J. Comput. Geom.
Appl. 2, 1 (1992), 75–95.

[18] DEY, T. K., SUGIHARA, K., AND BAJAJ, C. L. Delaunay trian-
gulations in three dimensions with finite precision arithmetic.
Comput. Aided Geom. Design 9 (1992), 457–470.

[19] EDELSBRUNNER, H. Algorithms in Combinatorial Geometry,
vol. 10 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Heidelberg, West Germany, 1987.

[20] EDELSBRUNNER, H., KIRKPATRICK, D., AND SEIDEL, R. On
the shape of a set of points in the plane. IEEE Trans. on
Information Theory 29, 4 (1983), 551–559.

[21] EDELSBRUNNER, H., AND MUCKE, E. P. Three-dimensional
alpha shapes. ACM Transactions on Graphics 13, 1 (Jan.
1994), 43–72.

[22] EDELSBRUNNER,H., AND SHAH,N. R. Incremental topological
flipping works for regular triangulations. In Proc. 8th Annu.
ACM Sympos. Comput. Geom. (1992), pp. 43–52.

[23] FARIN, G. Triangular Bernstein-Bézier patches. Computer
Aided Geometric Design 3 (1986), 83–127.

[24] FARIN, G. Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide. Academic Press, 1990.

[25] FAUGERAS, O. D., HEBERT, M., MUSSI, P., AND BOISSONNAT,
J. D. Polyhedral approximation of 3-D objects without holes.
Computer Vision, Graphics and Image Processing 25 (1984),
169–183.

[26] FRANKE, R. Recent advances in the approximation of sur-
faces from scattered data. In Multivariate Approximation,
C.K.Chui, L.L.Schumarker, and F.I.Utreras, Eds. Academic
Press, New York, 1987, pp. 275–335.

[27] GUO, B. Surface generation using implicit cubics. In Scientific
Visualizaton of Physical Phenomena, N. M. Patrikalakis, Ed.
Springer-Verlag, Tokyo, 1991, pp. 485–530.

[28] GUO, B. Non-splitting macro patches for implicit cubic spline
surfaces. Computer Graphics Forum 12, 3 (1993), 434–445.
(a) (b) (c)

Figure 7: (a) A set of dense, scattered, noisy data points. (b) and (c) C1 smooth reconstructed surface. In (b) patches have been randomly
colored.
7

[29] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWITZER, J., AND STUELZLE, W. Piece-
wise smooth surface reconstruction. In Computer Graphics
Proceedings (1994), Annual Conference Series. Proceedings
of SIGGRAPH 94, ACM SIGGRAPH, pp. 295–302.

[30] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J.,
AND STUELZLE, W. Surface reconstruction from unorganized
points. Computer Graphics 26, 2 (July 1992), 71–78. Pro-
ceedings of SIGGRAPH 92.

[31] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND

STUELZLE, W. Mesh optimization. In Computer Graphics
Proceedings (1993), Annual Conference Series. Proceedings
of SIGGRAPH 93, ACM SIGGRAPH, pp. 19–26.

[32] MOORE, D., AND WARREN, J. Approximation of dense scat-
tered data using algebraic surfaces. In Proceedingsof the 24th
annual Hawaii International Conference on System Sciences
(1991), V. Milutinovic and B. D. Shriver, Eds., vol. 1.

[33] NIELSON, G. M. Modeling and visualizing volumetric and
surface-on-surface data. In Focus on Scientific Visualization,
H. Hagen, H. Muller, and G. M. Nielson, Eds. Springer, 1992,
pp. 219–274.

[34] NIELSON, G. M. Scattered data modeling. IEEE Computer
Graphics & Applications 13 (1993), 60–70.

[35] NIELSON, G. M., FOLEY, T., LANE, D., FRANKE, R., AND

HAGEN, H. Interpolation of scattered data on closed surfaces.
Computer Aided Geometric Design 7, 4 (1990), 303–312.

[36] NIELSON, G. M., FOLEY, T. A., HAMANN, B., AND LANE, D.
Visualizing and modeling scattered multivariate data. IEEE
Computer Graphics & Applications 11, 3 (May 1991), 47–55.

[37] NIELSON, G. M., AND FRANKE, R. Scattered data interpola-
tion and applications: A tutorial and survey. In Geometric
Modeling: Methods and Their Applications, H. Hagen and
D. Roller, Eds. Springer, 1990, pp. 131–160.

[38] O’ROURKE, J. Polyhedra of minimal area as 3D object models.
In Proc. of the International Joint Conference on Artificial
Intelligence (1981), pp. 664–666.

[39] POTTMANN,H. Interpolation on surfaces using minimum norm
networks. Computer Aided Geometric Design 9 (1992), 51–
67.

[40] PREPARATA, F. P., AND SHAMOS, M. I. Computational Ge-
ometry: an Introduction. Springer-Verlag, New York, NY,
1985.

[41] RESCORLA, K. C1 trivariate polynomial interpolation. Com-
puter Aided Geometric Design 4 (1987), 237–244.

[42] TURK, G., AND LEVOY, M. Zippered polygonal meshes from
range images. In Computer Graphics Proceedings (1994),
Annual Conference Series. Proceedings of SIGGRAPH 94,
ACM SIGGRAPH, pp. 311–318.

[43] VELTKAMP, R. C. 3D computational morphology. Computer
Graphics Forum 12, 3 (1993), 115–127.

[44] WORSEY, A., AND FARIN, G. An n-dimensional clough-tocher
interpolant. Constructive Approximation 3, 2 (1987), 99–110.
118

