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Abstract

We present an approach for the reconstruction and
approximation of 3D CAD models from an unorga-
nized collection of points. Applications include rapid
reverse engineering of existing objects for use in a
synthetic computer environment, including computer
aided design and manufacturing. Our reconstruction
approach is exible enough to permit interpolation of
both smooth surfaces and sharp features, while plac-
ing few restrictions on the geometry or topology of
the object.
Our algorithm is based on alpha-shapes to compute

an initial triangle mesh approximating the object's
surface. A mesh reduction technique is applied to
the dense triangle mesh to build a simpli�ed approx-
imation, while retaining important topological and
geometric characteristics of the model. The reduced
mesh is interpolated with piecewise algebraic surface
patches which approximate the original points.
The process is fully automatic, and the reconstruc-

tion is guaranteed to be homeomorphic and error
bounded with respect to the original model when cer-
tain sampling requirements are satis�ed. The result-
ing model is suitable for typical CAD modeling and
analysis applications.
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1 Introduction

The design, engineering and manufacturing planning
of new products is more and more often carried out by
computer simulation. A common need in this process
is incorporating existing objects into this electronic
prototyping environment, to reuse them as part of a
new product, or to adapt and improve their design to
meet new requirements.

The availability of fast and accurate geometric data
acquisition devices, such as the laser range scanner,
has made it relatively simple to acquire the spatial
coordinates of a large set of points from the surface of
a 3D object. Applications that would bene�t from an
e�cient and reliable method for building a geometric
model from this collection of measurements include:

Reverse engineering: Starting from an existing
object, reconstruct a computer model of it, and
then analyze and modify its design. Reverse en-
gineering has relevant applications in the manu-
facture industry.

Shape analysis: Analyze the deformation of a me-
chanical part after a collision.

Authoring 3D virtual worlds:

Quickly build models of characters, actors, and
spaceships from their real counterparts or from
clay mock-ups.

3D fax: Scan an object, and transmit the digitized
data on a phone line. The receiving station
will reconstruct the model and manufacture a
copy using a rapid prototyping technique such
as stereo-lithography.
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Tailor-�t modeling: Manufacture customized
fashion apparels, helmets or prosthesis from a
body scan.

Automatically reconstructing a CAD model of the
object from a dense and uniform sampling of its sur-
face is the subject of this paper. Among the qualities
we would expect from such a model are the following:

� It matches the topological characteristics of the
object;

� It is geometrically accurate;

� It can represent smooth, curvature continuous
surfaces as well as sharp features such as corners
and edges, common in manufactured parts;

� It is suitable to be used in successive phases of
the design and simulation process.

We are interested in both the theoretical challenges
that such a problem raises, and in practical method-
ologies which can be used in real-world applications.
Previous research on this problem has mainly focused
on reconstructing objects whose topology is known
a priori. More recently, several methods have been
proposed for the case of unknown topology. Many of
these methods rely on heuristics to reconstruct spa-
tial relationships between points. While these ap-
proaches have been shown to give good results on
practical examples, there is no guarantee that they
will not fail in producing a valid output. We give a
formal characterization of su�cient conditions for the
sampling.
Our study focuses on dense, unorganized data sam-

plings. Last-generation devices are capable of mea-
suring 104 to 105 points per second, with a resolution
of 10�2 mm. The problem is therefore not that of
inferring a \reasonable" shape from a set of sparse
points on the object's surface, but rather that of pro-
viding a compact, usable, accurate and topologically
consistent representation of the object from a dense
sampling of its surface. We will assume that the data
comes in the form of an unorganized collection of
x; y; z triples, and that no other geometric or topo-
logical information is available. This allows a uni�ed
treatment of di�erent instances of the problem.
We are mainly interested in objects whose geom-

etry is not easily speci�ed as a combination of ba-
sic shapes. For example, many mechanical parts can
be \disassembled" in a set of simple geometric en-
tities (say parallelepipeds, cylinders, spheres etc.),
combined via set operations (a representation called
Constructive Solid Geometry, or CSG). For objects

like these, it makes sense to �t parts form this prede-
�ned small set so that their combination matches the
sampled points. This problem involves shape recogni-
tion and segmentation. We will instead mainly deal
with objects whose boundary is a \free form" sur-
face, or a piecewise combination of smooth surfaces
adjoining along sharp edges.
In summary, our contributions are the following:

1. We devise an e�cient algorithm, based on alpha-
shapes, capable of \connecting the dots", by in-
ferring spatial relationships between the sam-
pled points. The algorithm automatically builds
a triangle-mesh interpolating the data points.
For an object whose \feature-size" is larger than
some �, a �-dense sampling su�ces to recon-
struct a homeomorphic, distance-bounded model
from the sampled points only.

2. We develop a �tting scheme for models with
smooth faces and sharp features, based on a
mesh reduction step followed by least-squares �t-
ting of algebraic patches.

There are aspects of the reverse engineering prob-
lem that we have not investigated in this work. For
example, data is subject to noise, especially in the
vicinity of sharp features, and a reliable recovery of
these features for segmentation purposes can be dif-
�cult using only \local" information. Also, when a
complex, smooth surface is partitioned into patches,
it would be helpful if the reconstruction algorithm
could provide a \natural" partitioning, one for ex-
ample that takes into account symmetries and other
properties of the shape. A discussion of these and
other related issues can be found in the recent re-
view [53]. We provide further discussion of open
problems and future work in Section 9.

2 3D Scanning Technologies

Typical 3D digitizers are based on touch probes, opti-
cal or range laser scanners, and acoustic or magnetic
sensors.
Touch probes can be mounted on a 3D pantograph

(see Figure 1a), and operated manually. Joint an-
gles are measured by electronic or optical sensors,
and these measures are combined and transformed
into x; y; z coordinates. Automatic measurement ma-
chines are also widely used in the mechanical manu-
facturing industry, for example for quality control. In
this con�guration (Figure 1b), the mechanical probe
is attached to a robot arm, and moved in contact with
the object's surface by specialized control software.
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(a) (b) (c)

Figure 1: Several types of 3D digitizers. (a) Mechanical touch probes. (b) A com-
puter-controlled Coordinate Measurement Machine. (c) A laser-range scanner, and the
associated motion platform.

For some applications the object to be measured is
mounted in a lathe stand, and the measuring probe
scans its surface at points arranged in a cylindrical
pattern.

Optical laser scanners shine a point or stripe of
laser light on the object's surface. One or more video
sensors capture the point (or pro�le) from various
viewpoints. The video image is digitized, and the
position of each point is computed via triangulation.
Objects are usually �xed to a platformwhose position
is controlled by precision servo motors. The accuracy
of this motion is crucial in achieving lowmeasurement
errors. For a linearly translating platform one obtains
a regular array of x; y; z measurements, or range im-
age. Other typical platforms allow a rotating motion,
yielding a cylindrical scan of the object. A picture of
a commercial laser-stripe, two-sensor scanner is visi-
ble in Figure 1c. Typical spatial resolutions of such
types of scanners range between 100�m and 500�m,
with a sampling speed of 15,000 points/sec.

The workspace of a �xed-head laser scanners is lim-
ited by the range of motion of the platform. Re-
cent models are trying to overcome this limitation by
mounting the laser scanning head on a precise panto-
graph. This allows to scan, with relative freedom of
movements, objects of relatively large scale and with
complex geometry, very much like one would spray-
paint the object.

It is important to notice that, depending on the
scanning technology used, the acquired data can
have di�erent characteristics. Mechanical, hand held
probes are often used to get precise measurements of
a relatively small number of points on important geo-
metric features of the object. This set of data points
are later connected together manually to form a wire-
frame of curves, which can then be lofted. This pro-

cess is very time-consuming, and is not suitable for
capturing the shape of free-form surfaces. Another
mode of use is to simply \scribble" with the probe
the object's surface, and then use an automatic re-
construction algorithm to �t a surface to the sampled
points.

With laser range scanners, when digitizing objects
with a simple (say roughly cylindrical) geometry, a
single scan might su�ce to capture a regular grid
of points on the whole object's surface. These points
can then be connected to form a triangle mesh. Since
the triangle mesh can contain millions of triangles, it
is usually simpli�ed or approximated with parametric
surface patches before being used as a model. Objects
with a complex geometry, for example when holes and
cavities are present, require more than one scan to
allow the scanning head to \see" all of their surface.
These di�erent scans must then be co-registered, and
converted into a single triangle-mesh. While method-
ologies for doing this have been proposed and shown
to work well for some applications (see Section 3),
they are not completely robust, in that they must
deal with overlapping measurements that not always
match completely, due to the limited accuracy of the
scanning device.

Finally, it must be noted that additional geometric
and topological information might be available. For
example, one could record for each point the position
of the scanning head, which can be used to compute
a global, coherent orientation for the reconstructed
surface. Often a measure of the con�dence associated
with each measurements can also be estimated, based
on the angle of incidence that the sensor viewing di-
rection forms with the surface normal (measurements
are not very reliable when the camera sees the sur-
face pro�le at a grazing angle). Also, many recent
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laser scanners are coupled with an additional video-
camera, which can capture surface color information.

3 Related Prior Work

Research on the 3D reconstruction problem has been
done mainly in three areas: (a) numerical analysis
and approximation; (b) geometric modeling and com-
puter graphics; (c) computer vision.
When reconstructing a model representation from

unorganized points, a major problem is that of infer-
ring the topological genus of the object. Some of the
approaches described in the following assume that the
topological genus of the object is known a priori, and
often restrict themselves to genus-zero objects.
Work in the �eld can be grouped into three broad

categories: In piecewise-linear reconstruction the goal
is constructing a polygonized (often triangulated)
surface that interpolates or approximates the given
points. Computational Geometry provides a rich
framework of concepts and techniques to attack this
problem.
Surface �tting is based on techniques from Com-

puter Aided Geometric Design (CAGD) and Numer-
ical Analysis. The reconstructed object is represented
as a collection of surface patches (algebraic, NURBS,
etc.).
A set of methods based on physically-based model-

ing have been developed and used, especially by the
Computer Vision community. In these methods a sur-
face is \deformed", under the action of applied forces
and internal reactions, until it approximates the data
points.
In the rest of this chapter we give a short overview

of earlier work in the �eld. The exposition is not
meant to be exhaustive, but should give a clear idea of
the range of techniques that have been used. Another
review of the �eld can be found in [13].

3.1 Piecewise-Linear Reconstruction

O'Rourke [39] explored the use of polyhedra to rep-
resent the \most reasonable" reconstruction of an
object from a set of points. In particular, he pro-
posed polyhedra of minimal surface area as a \natu-
ral" model for a given set of points, and described an
algorithm for the computation of an approximation
of such polyhedra.
The problem of reconstructing a polygon of minimal

perimeter having a given set of points as vertices is
equivalent to the Euclidean Traveling Salesman prob-
lem, which is known to be NP-hard. The problem
of computing a polyhedron of minimal surface area

is the 3D version of the minimal perimeter polygon,
and is conjectured to be NP-hard as well.

O'Rourke proposed the following algorithm to com-
pute an approximation of the minimal area polyhe-
dron. The general strategy consists in starting with
the convex hull of the given set of points, and then
shrinking this surface to accommodate points that lie
in its interior. At each step, he selects one interior
point to be inserted in the current triangulated sur-
face based on the distance to the closest face and
other heuristics. Then he replaces the closest (tri-
angular) face with a set of triangles that accommo-
date the new point and the boundary of the old face.
Subsequently, he restores minimality of surface area
in the neighborhood of the newly inserted vertex by
ipping edges across adjacent faces. Contrary to TSP
heuristics, this approximate algorithm is not guaran-
teed to yield a surface area within a �xed percentage
of the minimal. This method is restricted to the re-
construction of objects of topological genus zero.

Boissonnat [12] proposed two methods to build a
triangulation having the given points as vertices. The
�rst method is \local" and surface-based, whereas the
second one is \global" and volume-based.

Following his �rst approach, one starts with creat-
ing an edge between the two closest points. A third
point is then chosen and added, so that a triangle
is formed. Other points are successively added and
new triangles are created, and joined to an edge of
the current triangulation boundary, until all points
have been included. For each edge E on the current
boundary the new point p to be joined toE is selected
among k closest neighbors according to a heuristic.

The second method is based on the idea of �rst
computing a Delaunay triangulation of the convex
hull of the set of points, and then sculpturing the vol-
ume by removing tetrahedra, until all points are on its
boundary, or no tetrahedra can be further removed.
Candidate tetrahedra are kept in a priority queue
according to some geometric criterion, and removed
only if the resulting polyhedron maintains manifold
properties. It can be proved that any polyhedron
of genus zero inside the Delaunay triangulation can
be obtained by such a procedure [12]. However, de-
pending on the sequence of tetrahedra removed by
the algorithm, the sculpturing might get to a point
in which no other tetrahedron can be removed, and
yet some of the data points are still internal to the
sculpted surface. Several geometric measures can be
used to decide which tetrahedra are to be removed
�rst. Boissonnat suggests using the maximum dis-
tance between the boundary faces of a tetrahedron
and the associated parts of its circumscribing sphere.
Tetrahedra with the largest value of this distance are
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removed �rst.

Choi et al. [15], described a method to incremen-
tally form a triangulation, starting from an initial
triangle, based on the assumption that there exists
a point from which all the points of the surface are
visible. After a triangulation is built, it is improved
by edge swapping based on a smoothness criterion.

Veltkamp [54] introduced a new geometric struc-
ture, called the -graph, which contains as a spe-
cial case many well known geometric graphs, such as
the Euclidean Minimum Spanning Tree, the Delau-
nay Triangulation, the Convex Hull and the Gabriel
Graph. The -graph coincides initially with the con-
vex hull, and is progressively constricted (i.e. tetra-
hedra having boundary faces are deleted) until the
boundary of the -graph is a closed surface, passing
through all the given points.

Hoppe et al. [32] compute a signed-distance func-
tion from the data points, and then use its zero-
contour as an approximation of the object. First,
for each data point pi 2 P , they compute a \tan-
gent" plane, and the associated normal n̂i, based on
best-�t of k neighbor points (the k-neighborhood of
pi). The problem is now assigning a consistent ori-
entation to these planes. They build the Rieman-
nian Graph, RG(P ) over P (two points pi; pj 2 P
are connected by an edge in RG(P ) i� either pi
is in the k-neighborhood of pj or pj is in the k-
neighborhood of pi). Each edge (i; j) is assigned the
weight 1� jn̂i � n̂jj, and a minimum spanning tree is
computed. Intuitively, this tree connects points that
have close-to-parallel associated planes. They then
orient the plane associated with the point with the
largest z-value so that its normal points toward the
positive z-direction, and propagate this orientation to
other points traversing the minimum spanning tree.
While there is no guarantee that the algorithm will
�nd a coherent orientation, the traversing order im-
plicit in the MST favors propagation across relatively
smooth portions of the manifold, delaying more di�-
cult areas of high curvature. Their paper shows, with
several examples, that their heuristic yields good re-
sults in practice. Subsequently, the value of a signed-
distance function � is computed at all vertices of a
grid of voxels as the distance of the vertex from the
oriented plane associated with the closest point in
P , with a sign depending on which side of the plane
the point lies in. A marching cubes algorithm is then
used to extract a piecewise-linear approximation of
the zero contour of �. In two subsequent steps, de-
scribed in [33, 31], the constructed mesh is optimized
(i.e., the number of triangles is reduced while the dis-
tance of the mesh from the data points is kept small)
and then a piecewise smooth subdivision surface is

built on it (see also Section 3.2, page 6).

Turk and Levoy [52] proposed to \zipper" together
several meshes obtained from separate 3D-scans of
an object. In this way they can reconstruct a polyg-
onal mesh approximating the surface of an object,
even when a single scan does not su�ce to capture
its shape.

More recently, Curless and Levoy [17] presented
an approach to merge several range images by scan-
converting each image to a weighted signed-distance
function, represented in a regular 3D grid. The range
images are �rst co-registered, and a triangle mesh is
built for each of them by connecting neighbor sam-
ples. Then for each image the contribution to a global
signed-distance function is computed, by evaluating
the distance of each voxel to the triangle-mesh along
the direction of view of the sensor, and computing a
weight based on the angle formed by the viewing di-
rection and the surface normal (typically, range scan-
ners are prone to larger measurement errors when the
surface is viewed at a grazing angle). These values
are incrementally added to previously accumulated
results.

When all the range images have ben integrated,
a marching-cube algorithm is used to extract the
zero-contour surface from the volume. The authors
provide some details on how to �ll holes (areas not
scanned by the sensor) and on some implementation
issues for time and space e�ciency. This method is
claimed to be \robust", because the �nal surface is
extracted from a globally de�ned function. The time
required to merge 48 scans in a 407x957x407 grid
is reportedly above three hours on a 250MHz MIPS
R4400 processor.

Alpha-shapes were introduced in the plane by
Edelsbrunner et al. in [23] and then extended to
higher dimensions [22, 24], as a geometric tool for
reasoning about the \shape" of a set of points. An
�-complex of a set of points P , for a given value of
the parameter �, is a subset of the 3D Delaunay tri-
angulation of P , and the corresponding �-shape is
its underlying space. Intuitively, an �-shape can be
obtained as follows: Consider a ball-shaped eraser,
of radius �, and think of P as a set of points in
space that the eraser cannot inter-penetrate. The 3D
Delaunay triangulation of P is a simplicial complex
formed by tetrahedra, triangles, edges and vertices
(3-, 2-, 1- and 0-simplices, respectively). Imagine
moving the eraser everywhere in space, removing all
simplices that the eraser can pass through (remember
that the eraser is constrained by the data points). All
that is left after the erasing constitutes the �-shape
of P .

Obviously, as � varies, one obtains di�erent �-
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shapes. For example, for � = 0 the �-shape is P
itself. For � = 1 one obtains the convex hull of
P . Varying � from 0 to 1, a �nite collection of �-
shapes is obtained. Notice that in general an �-shape
is a non-connected, non-regular (i.e., having solid as
well as 2-, 1- and 0-dimensional parts) polytope, and
therefore is not directly suitable for our purposes.
An extension of the �-shapes, called weighted �-

shapes (see [22]), allows one to associate a weight to
each data point. The weights can be used to cap-
ture di�erent levels of detail in the sampling. Large
weights can be assigned to points in areas of low sam-
pling density, and small weights can be used in dense
regions to compensate for a non uniform sampling
and for di�erent feature sizes. More details will be
given in Section 4.
An approach based on alpha-shapes to de�ne an

approximate signed-distance function, followed by a
piecewise-algebraic surface �tting, is described in [3]
(see also Section 3.2, page 7).

3.2 Surface Fitting

We have grouped in this Section methods based on
approximating the set of points with a piecewise poly-
nomial, parametric or implicit surface.
An application of this method is described by

Shmitt et al. [45]. The input points are assumed orga-
nized in a rectangular grid, and are adaptively �tted
using Bernstein-B�ezier parametric bi-cubic patches,
joined to form a G1 continuous surface. The approx-
imation process begins with a rough approximating
surface and uses subdivision to achieve the needed
level of accuracy.
Moore and Warren [38] describe a method for �t-

ting algebraic surfaces to scattered dense data. Their
method is adaptive and able in principle to deal with
complex geometry and topology.
The �tting begins with a uniform mesh of tetra-

hedral elements that �ll a region containing the data
points. Then for each element in the mesh that con-
tains points, a surface patch that approximates the
points is computed based on least squares �t of the
data points and of auxiliary data. An element can
be split into smaller elements if the approximation
error is too large, and the process repeated for each
sub-element. Finally, function values and the �rst
k derivatives of each �tting surface are computed at
each vertex of the �nal mesh, and averaged. A Ck

interpolant is de�ned on each element, based on the
averaged values (this process is called free-form blend-
ing by the authors).
It is known that least squares approximation of

data points with algebraic patches might produce sur-

faces having extraneous parts. The auxiliary data
mentioned above serves the purpose of avoiding ex-
traneous surface sheets. This data is an approximate
sampling of the signed-distance function �(x; y; z).

Obviously, since the surface is unknown, the signed
distance can only be estimated. They compute the
absolute value of �(p) as the distance of p from the
closest data point, and assign a sign to it based on
the following scheme. A tetrahedron is regularly sub-
divided into a mesh of smaller sub-tetrahedra. If the
data points are dense enough, then sub-tetrahedra
containing data points form a \layer" that divides
the tetrahedron in two connected components. Ver-
tices of the mesh in these two regions are assigned,
arbitrarily, opposite signs. The auxiliary data is con-
stituted by the approximate value of � computed at
vertices of this mesh of sub-tetrahedra. They prove
that if the data in a tetrahedron can be approximated
within a su�ciently small " by a plane, then �tting
with the auxiliary data produces a smooth, single-
sheeted surface.

They give examples of C0 reconstruction of sur-
faces and briey discuss a C1 method (non adap-
tive) based on biquadratic, tensor-product implicit
patches.

The technique of Hoppe et al. [31] (see Section 3.1,
page 5) starts with a triangulated surface mesh and
produces a smooth surface based on the subdivision
surface scheme of Loop [36]. Their method is based
on minimizing an energy function that trades o� con-
ciseness and accuracy of �t to the data, and is capa-
ble of representing surfaces containing sharp features,
such as creases and corners. The surface is repre-
sented as the limit of an in�nite re�nement process.
While this approach appears promising for some ap-
plications, a non closed-form representation makes it
di�cult to apply standard techniques in later stages
of analysis and design.

More recently, Eck and Hoppe [21] proposed an
alternative surface �tting approach based on tensor-
product B-spline patches. They start by using the
signed-distance zero-surface extraction method of [32]
(see also Section 3.1, page 5). An initial parameter-
ization is built by projecting each data point onto
the closest face. The method continues with building
from the initial mesh a base complex (a quadrilateral-
domain complex, with the same topology of the ini-
tial mesh) and a continuous parameterization from
the base complex to the initial mesh, leveraging on
the work of Eck et al. [20]. A G1 network of tensor-
product B-spline patches, having the base complex
as parametric domain, is then �t to the data points,
based on the scheme of Peters [41]. The �tting pro-
cess is cast as an iterative minimization of a func-
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tional, which is a weighted sum of the distance func-
tional (the sum of square Euclidean distances of the
data points from the surface) and a fairness functional
(thin plate energy functional).
Bajaj et al. [3] used alpha-shapes to build an initial,

piecewise-linear approximation of the shape. They
then de�ne an signed distance function based on the
initial approximation, and �t C1-smooth implicit al-
gebraic patches to the data points and samplings of
the signed distance function. The �tting is done in-
crementally and adaptively, and can be extended to
capture multiple scalar �elds whose values are asso-
ciated to the sampled points. Their method can be
applied to objects of general genus.
Another interesting technique, based on region

growing and restricted to functional surfaces, is de-
scribed in [44].

3.3 Physically Based Modeling

Another class of algorithms is based on the idea of
deforming an initial approximation of a shape, under
the e�ect of external forces and internal reactions and
constraints.
Terzopoulos et al. [50] used an elastically-

deformable model with intrinsic forces that induce
a preference for symmetric shapes, and apply them
to the reconstruction of shapes from images. The al-
gorithm is also capable of inferring non-rigid motion
of an object from a sequence of images.
Pentland and Sclaro� [40] adopted an approach

based on the �nite element method and parametric
surfaces. They start with a simple solid model (like a
sphere or cylinder) and attach virtual \springs" be-
tween each data point and a point on the surface.
The equilibrium condition of this dynamic system is
the reconstructed shape. They showed how the set of
parameters that describe the recovered shape can be
used in object recognition.
Other physically based approaches are described

in [43, 42, 34].

4 Preliminaries

4.1 Topological spaces, homeomor-
phisms, and manifolds

A topological space is a set S together with a collec-
tion U of subsets of S (that is, U is a subset of 2S)
satisfying the following conditions:

1. ; 2 U , S 2 U .
2. If U1; : : : ; Un 2 U then \ni=1Ui 2 U .

3. Arbitrary unions of elements in U lie in U ; that
is, if ~U � U , then [U2 ~U 2 U .

The elements of U are called open sets in S. The col-
lection U is called a topology on S. We often suppress
the U and simply refer to S as a topological space.
A map f from a topological space X to another

topological space Y is continuous if every neighbor-
hood of f(p) in Y is mapped by f�1 to a neigh-
borhood of p in X. If f is bijective, and if both f
and f�1 are continuous, then f is a homeomorphism.
Two topological spaces X and Y are homeomorphic
if there exists a homeomorphism f : X ! Y .
In the following, we will restrict ourselves to sub-

sets of the n-dimensional Euclidean space, S � Rn.
Let us de�ne the following subspaces of Rn, with ori-
gin o:

Hn = fx 2 Rnj xn � 0g
Bn = fx 2 Rnj jjx� ojj � 1g

Sn�1 = fx 2 Rnj jjx� ojj = 1g

Open, half-open, and closed n-balls are homeomorphic
to Rn, Hn and Bn, respectively. An (n � 1)-sphere
is homeomorphic to Sn�1.
A set in Rn is bounded if it is contained in an open

ball. An open covering of a topological space S is a
collection V � U such that [V2VV = S. A space
S is compact if every open covering has a �nite sub-
covering. A subspace of Rn that is both closed and
bounded is compact.
A k-manifold in Rn (n � k) is a subspace that

is locally homeomorphic to Rk. A k-manifold with
boundary is a subspace that is locally homeomor-
phic to either Rk or the half-open k-ball Hk. Points
with a neighborhood homeomorphic to Hk form the
boundary of the manifold X, denoted bd(X). The
boundary of a k-manifold with boundary is a (k�1)-
manifold without boundary.

4.2 Simplicial complexes

A k-simplex �T = conv(T ) is the convex combination
of an a�nely independent point set T � Rn, jT j =
k+1. k is the dimension of simplex �T . A (geometric)
simplicial complex K is a �nite collection of simplices
with the following two properties:

1. if �T 2 K then �U 2 K, 8U � T

2. if �U ; �V 2 K, then �U\V = �U \ �V (1 and 2
imply that �U\V 2 K).

The underlying space of K is [K] = [�2K�. A
subcomplex of K is a simplicial complex L � K.
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4.3 Alpha-shapes

Alpha-shapes [23, 24] associate a mathematically de-
�ned meaning to the vague concept of shape of
an unorganized set of points. Weighted alpha-
shapes [22] are a generalization of alpha-shapes to
sets of weighted points. In the following, we will
shortly review de�nitions and properties of alpha-
shapes. The presentation is adapted from [22]. No-
tice that although the exposition is for unweighted
alpha-shapes, we will use the notation used in the
more general weighted case. A weighted alpha-shape
coincides with an unweighted alpha-shape when all
weights are equal to zero. We restrict our presen-
tation to the three-dimensional case. n-dimensional
weighted alpha-shapes are described in the cited ref-
erence [22].
In the following we will sometimes regard a sphere

of radius � centered in p as a weighted point p of
weight wp = �2. We de�ne the power distance of a
point x from a weighted point p as

�p(x) = jjp� xjj2 �wp

where jjp�xjj is the Euclidean distance between p and
x. A geometric interpretation of the power distance is
the following: If weighted point p represents a sphere
of center p and radius

p
wp, then �p(x) is the square

of the length of a tangent line segment from x to the
sphere (see Figure 2).
Let P � R3 be a �nite set of points (general po-

sition is assumed implicitly throughout the paper),
jP j � 4, and T its Delaunay triangulation. For ev-
ery simplex �T 2 T , let yT be the smallest sphere
(weighted point) such that �yT (p) = 0; 8p 2 T . If
jT j = 4 there is only one such sphere yT , the circum-
sphere of �T . If jT j = k + 1 < 4 there are in�nitely
many such spheres, but only one has minimum ra-

p
wp

p
�p(x)

x pjjp� xjj

Figure 2: Power distance of a point
x from the weighted point p.

dius. The center of yT is located at the intersection
of the chordale of T (see Figure 3)

�T =
\

p;q2T

�p;q; �p;q = fx 2 R3j jjp�xjj = jjq�xjjg

with the orthogonal k-at a�(T ). Let �T be the ra-
dius of yT , and callwyT = �2T the size of the k-simplex
�T . Notice that the size of a 0-simplex is 0. The size
of simplices satis�es the followingmonotonicity prop-
erty: if U � T then wyU < wyT , that is the size of
a proper face of a simplex is smaller than the size of
the simplex itself.
A point q 2 P �T is a conict for yT if �yT (q) < 0,

and yT is conict-free if it has no conicts. Obvi-
ously, all 3-simplices �T 2 T are conict-free, but a
k-simplex, k < 3, can have conicts.

De�nition 4.1 The alpha-complex of P is the sub-
complex �� of T formed by all simplices �T such that:

(a) The size of yT is less than � and yT is conict-
free, or

(b) �T is a face of �U and �U 2 ��.

The underlying space W� of ��, called alpha-shape,
is a polytope, which can be non-connected and di�er-
ent from the closure of its interior (i.e. it may con-
tains parts of heterogeneous dimensionality).

It can be proved (see [22]) that the following is an
alternative de�nition of alpha-shapes:

p qyT

�T

�T

Figure 3: The collection of spheres
containing the two vertices of the
1-simplex T = fp; qg. The sphere
yT of minimum radius �T is drawn
in bold.
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De�nition 4.2 Consider a subset T � P , with jT j =
k + 1 � 3, and the k-simplex �T . Let us call �T �-
exposed if there exists a weighted point x, of weight
wx = � (that is, a sphere of radius

p
�), such that

�x(p) =

�
= 0 8p 2 T
> 0 8p 2 P � T

The alpha-shape W� of P is a polytope whose bound-
ary is the union of all �-exposed simplices spanned
by subsets T � P; jT j � 3. The interior of W� is
formed by those components of R3 bounded by col-
lections of �-exposed 2-simplices �T , such that �T is
�-exposed only on one side (i.e. there exists only one
weighted point of weight � that exposes �T ). The in-
terior points of W� lie on the side of �T that is not
�-exposed.

4.4 Bernstein-B�ezier Forms

Any polynomial of degree n can be expressed as a
Bernstein-B�ezier form (BB-form) over a tetrahedron
� . An algebraic patch is the zero-set of a polyno-
mial, restricted to the supporting tetrahedron. The
Bernstein-B�ezier form is particularly suitable to the
representation of piecewise algebraic surfaces as it al-
lows to express derivative continuity between patches
with simple, geometrically intuitive constraints. The
shape of each patch can be locally controlled by ad-
justing a net of control points. In this section we
review de�nitions and basic properties of BB-forms,
and introduce A-patches, algebraic patches that are
guaranteed to be single-sheeted and singularity-free.
Let p1; p2; p3; p4 2 R3 be a�ne independent.

Then the tetrahedron � with vertices p1; p2; p3; p4,
is � = [p1p2p3p4]. For any p =

P4
i=1�ipi, � =

(�1; �2; �3; �4)T ,
P4

i=1 �i = 1 are the barycentric co-
ordinates of p. Let p = (x; y; z)T , pi = (xi; yi; zi)T .
The barycentric coordinates relate to the Cartesian
coordinates via the following relation:

2
664

x
y
z
1

3
775 =

2
664

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

3
775

2
664

�1

�2

�3

�4

3
775 (1)

Any polynomial f(p) of degree n can be expressed as
a Bernstein-B�ezier (BB) form over � as

f(p) =
X
j�j=n

b� Bn
� (�); � 2 Z4

+

where

Bn
� (�) =

n!

�1!�2!�3!�4!
��11 ��22 ��33 ��44

is a Bernstein polynomial, j�j =
P4

i=1 �i with
� = (�1; �2; �3; �4)

T , � = (�1; �2; �3; �4)
T are the

barycentric coordinates of p, b� = b�1�2�3�4 (as a sub-
script, we simply write �1�2�3�4 for (�1; �2; �3; �4)

T )
are called B�ezier ordinates, and Z4

+ stands for the set
of all four dimensional vectors with non-negative in-
teger components.
The points

p� =
�1
n
p1 +

�2
n
p2 +

�3
n
p3 +

�4
n
p4; j�j = n

are called the regular points of � . The points
(p�; b�) 2 R4 are called B�ezier points, and the regular
lattice of lines connecting them B�ezier net.
The following lemma gives necessary and su�cient

conditions for continuity between adjacent polyno-
mial patches:

Lemma 4.1 (see [25]) Let f(p) =
P

j�j=n a�B
n
� (�)

and g(p) =
P

j�j=n b�B
n
� (�) be two polynomials de-

�ned on the tetrahedra [p1p2p3p4] and [p01p2p3p4], re-
spectively.
Then

(i) f and g are C0 continuous at the common face
[p2p3p4] if and only if

a� = b�; for all � = 0�2�3�4; j�j = n (2)

(ii) f and g are C1 continuous at the common face
[p2p3p4] if and only if (2) holds and, for all � =
0�2�3�4, j�j = n� 1,

b�+e1 = �1a�+e1 + �2a�+e2 + �3a�+e3 + �4a�+e4
(3)

where � = (�1; �2; �3; �4)T are the barycentric
coordinates of p0 w.r.t. [p1p2p3p4], de�ned by the
following relation

p01 = �1p1 + �2p2 + �3p3 + �4p4; j�j = 1

The relation (3) will be called coplanar condition.

4.5 De�nition and Properties of A-
Patches

The success of parametric surfaces in geometric mod-
eling is due to the ease of evaluation and local control
they o�er. Non-UniformRational B-Spline (NURBS)
surfaces have become a fairly standard representation
of free-form surfaces in commercial CAD packages.
However, parametric surfaces have some important
limitations, such as the fact that intersection and o�-
set operations can produce results that are not rep-
resentable exactly in parametric form [2].
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In recent years, there has been an increasing at-
tention to alternative forms of surface modeling. In
particular, piecewise algebraic implicit surface repre-
sentations have many appealing properties.

An algebraic surface [49, 47, 48] is de�ned as the
two-dimensional algebraic variety expressed by the
equation f(x; y; z) = 0, where f is a polynomial. A
piecewise algebraic surface is a collection of surface
patches, pieced together with some degree of deriva-
tive continuity. Each patch is an algebraic surface
with a �nite extent, usually given by a bounding box
or tetrahedron. Piecewise algebraic surfaces of low
degree have many attractive qualities, from the clo-
sure properties with respect to important modeling
operations such as intersection and blending, to a
high design exibility for a relatively low algebraic
degree [2]. By using the Bernstein-B�ezier form to rep-
resent each polynomial, one inherits the large wealth
of useful properties that have made this representa-
tion so popular in the parametric surface domain.

The main shortcoming of algebraic patches is that,
in general, the zero-set of a polynomial can have more
than one real sheet, and may contain singular points.
Researchers have therefore looked at conditions on
the weights that guarantee that the patch is single-
sheeted and singularity-free (or smooth).

Sederberg [49] showed that, if the coe�cients of
the BB-form on the lines parallel to one edge of the
tetrahedron all increase (or decrease) monotonically
in the same direction, then any line parallel to that
edge will intersect the surface patch at most once.
Guo [26] treats the same problem by enforcing mono-
tonicity conditions on a cubic polynomial along the
direction from one vertex to a point on the opposite
face of the vertex. From this he derives the condition
a��e1+e4 � a� � 0 for all � = (�1; �2; �3; �4)T with
�1 � 1, where a� are the coe�cients of the cubic BB-
form and ei is the i-th unit vector. This condition is
di�cult to satisfy in general, and does not in general
avoid singularities on the zero-contour.

Another problem is how to \stitch" together a col-
lection of patches so that they join with the desired
derivative continuity.

For this problem, partial solutions have been given
by Dahmen [18] using quadric patches, Dahmen and
Thamm-Schaar [19], Lodha [35], and Guo [26, 27] us-
ing cubic patches and Bajaj and Ihm [6] using quintic
for convex triangulations and degree seven patches
for arbitrary surface triangulations. All these papers
provide heuristics to overcome the multiple-sheeted
and singularity problems of implicit patches.

All these methods use variations of the scheme de-
scribed in [18] of building a surrounding simplicial
hull of a given triangulation. Such a construction is

nontrivial and none of the papers cited enumerate the
exceptional cases (possible even for convex triangula-
tions) nor provide solutions to overcome them.

Related papers on approximating scattered data
using implicit algebraic patches include [1, 35, 38].

More recently, Bajaj, Chen and Xu [4, 5, 14] have
described a new class of algebraic patches, called A-
patches. A-patches are guaranteed, by imposing con-
straints on the values of their weights, to be non sin-
gular (except where needed, see below) and single-
sheeted. A simplicial hull construction algorithm for
C1 surfaces, using cubic patches, or C2 surfaces, us-
ing quintic patches, is also provided. Exceptional
cases are individuated, and heuristic solutions to
overcome them provided. Here we shortly review def-
initions and properties of A-patches. A more detailed
discussion can be found in the cited references.

A-patches are guaranteed to be single-sheeted
when the conditions described in two following lem-
mas are satis�ed. In particular, A-patches can be
classi�ed as three-sided when a segment connecting a
vertex of the tetrahedron to a point on the opposite
face intersects the patch at most once, and four-sided
when the same property holds for a segment connect-
ing two points on two opposite edges (see Figure 5).

Lemma 4.2 Let � = [p1p2p3p4]. The regular points
of � can be thought of as organized in triangular lay-
ers, that we can number from 0 to n going from p1
to the opposite face [p2p3p4] (see Figure 4). If the
B�ezier ordinates are all positive (negative) on lay-
ers 0; : : : ; k � 1 and all negative (positive) on layers
k + 1; : : : ; n (0 < k < n), then the patch is single-
sheeted (i.e., any line through p1 and p 2 [p2p3p4]
intersects the patch only once).

Lemma 4.3 Let � = [p1p2p3p4]. The regular points
of � can be thought of as organized in quadrilateral
layers, that we can number from 0 to n going from
edge [p1p2] to the opposite edge [p3p4] (see Figure 4).
If the B�ezier ordinates are all positive (negative) on
layers 0; : : : ; k�1 and all negative (positive) on layers
k + 1; : : : ; n (0 < k < n), then the patch is single-
sheeted (i.e., any line through p 2 [p1p2] and q 2
[p3p4] intersects the patch only once).

In the Lemmas above, the B�ezier ordinates on layer
k can have any sign. Patches satisfying the condi-
tions of Lemma 4.2 will be called three-sided; those
satisfying the conditions of Lemma 4.3 will be called
four-sided (Figure 5). See [5] for proofs and further
details.
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p1

p2

p3

p4

p1

p2

p3

p4

Figure 4: The layers of B�ezier ordinates in a tetrahedron. (left) Three-sided patch. (right)
Four-sided patch.

α∗
α∗

α∗

(a) (b) (c)

α∗

α∗

β∗

α∗

β∗

(d) (e) (f)

Figure 5: Di�erent types of patches. (a), (b), (c) and (d) Three-sided patches. (e) and (f)
Four-sided patches.
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p
0
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(a) (b)

Figure 6: (a) Construction of a simplicial hull. The triangles [p1p2p3] and [p01p2p3] belong
to the initial triangle mesh. Vertices p4; p04; q4; q

0
4 have been introduced to form the four

face-tetrahedra (on the two opposite sides of each original triangle). Vertices p001 and q001
are needed to form the four edge-tetrahedra. (b) An example of simplicial hull. Note that
for each tetrahedron the net of control points is also shown. The net of one of the face
tetrahedra is highlighted in red. Patches have been randomly colored for clarity.

(a) (b) (c)

(d) (e) (f)

Figure 7: Modeling with singular A-patches. (a) Interpolating a vertex with a singular
point. (b) Interpolating two vertices. (c) Interpolating an edge with a singular edge on the
surface. (d) Interpolating two edges. (e) Interpolating a face of a cube. (f) The A-patch
surface degenerates into the cube. All the edges are now singular.
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(a) (b) (c)

Figure 8: Examples of simple objects with sharp features modeled with singular A-patches.

4.6 Polyhedra \Smoothing" with A-
Patches

An A-patch is de�ned inside a supporting tetrahe-
dron. When modeling a piecewise algebraic surface,
we need to \stitch" together a collection of patches,
with the desired continuity properties. This raises
two problems: (a) How to build a supporting tetra-
hedral mesh, i.e. a simplicial complex such that A-
patches can be de�ned inside each 3-simplex to form
a continuous (open or closed) surface. (b) How to set
the weights of each patch so that the surface has the
desired derivative continuity properties.

One possibility is to build a 3D triangulation of a
convex polyhedron enclosing the surface to be mod-
eled. One can for example de�ne a �nite set of points
P and compute the 3D Delaunay triangulation T
of P . The subset of tetrahedra � 2 T that inter-
sect the surface will be used as support mesh. With
this construction, no vertex of the support mesh will
in general lie on the surface. The weights of each
patch can be set so that the patch approximates point
data within the tetrahedron, for example by solving a
least-squares problem, and constrained to satisfy the
single-sheeted conditions stated above. We used this
type of construction to build an adaptive approxima-
tion of a trivariate signed-distance function in [3].

Another approach starts with a triangulated two-
manifold that approximates the surface. One then
builds two types of tetrahedra: (a) For each triangle
of the mesh, two face-tetrahedra are created, one on
each side of the triangle, and (b) For each edge of
the mesh, four edge-tetrahedra are introduced, bridg-
ing the gaps between the four face-tetrahedra which
share that edge (see Figure 6(a)). The tetrahedral
mesh obtained with this process is called simplicial
hull (see Figure 6(b) for an example), and details on
its construction can be found in [5, 14]. This method
is used in Section 8 to selectively smooth and approx-

imate a dense mesh of triangles.
Once the simplicial hull is constructed, we need to

set the weights of each patch so that the surface is
C1 (or locally C0 in the presence of a sharp feature)
and the collection of patches:

1. Interpolate the vertices (and optionally the as-
sociated normals) of the triangle mesh;

2. Approximate other data points.

C0 and C1 features can be mixed into the same
model, by appropriately setting weights and allowing
patches with singular vertices/edges [14]. Figures 7
shows how C0 and C1 features can be mixed to inter-
polate some of the vertices, edges and faces of a cube.
Other examples of sharp features modeled with sin-
gular A-patches are illustrated in Figure 8.

5 Overview of the Reconstruc-

tion Algorithm

An example of the reconstruction process is shown
in Figure 9. The simple object shown will be used
as a running example in the following Sections. Our
algorithm is based on the following three phases:

1. Build an initial triangle mesh that interpolates
all data points, approximating the object shape
(Figure 9 (a)-(c)). Our approach (described in
Section 6) is based on alpha-shapes [24], and is
capable of automatically selecting an optimal al-
pha value and improving the resulting mesh in
areas of insu�cient sampling. We also present
a theorem stating su�cient conditions on the
sampling that guarantee a homeomorphic, error
bounded reconstruction.

The resulting triangle mesh can be used to esti-
mate normals at smooth vertices (by averaging
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: The complete reconstruction process. (a) Point sampling. (b) 3D Delaunay
triangulation. (c) Alpha-solid. (d) Simpli�ed mesh. (e) Sharp features. (f) Support mesh.
(g) A-patches. (h) Reconstructed model.
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the normals of incident triangles) and to detect
sharp features (by looking at the dihedral angle
formed by two adjacent triangles). Notice that
for the dense surface sampling that we are in-
terested in, these estimates are usually quite ac-
curate. The use of more complex and accurate
sharp-feature detection strategies will be inves-
tigated in the future.

2. Simplify the mesh to reduce the number of tri-
angles, while guaranteeing good aspect-ratio of
triangles, bounded distance of the data points
from the reduced mesh, and feature preservation
(Figure 9 (d)). The technique used in our paper
has been extended from [8]. The edges and ver-
tices of the reduced mesh are \tagged" as either
smooth (the surface is C1 continuous across it)
or sharp (only C0 continuity), and vertices are
classi�ed according to the type of incident edges
and the number and type of estimated vertex
normals (Figure 9 (e)). Section 7 describes the
mesh reduction algorithm.

3. The reduced mesh is used as the starting point
for a polynomial-patch data �tting. For every
triangle, we build an implicit Bernstein-B�ezier
patch of low degree which interpolates the ver-
tices and vertex normals (if de�ned) and least-
squares approximates data points in its vicinity.
The algebraic patches used (cubic A-patches [4,
5, 14]) allow a simple formulation of C1 con-
tinuity constraints between adjacent patches,
and have been extended to allow the model-
ing of sharp features such as linear sharp edges,
piecewise-planar curved creases and sharp cor-
ners (Figure 9 (f)-(h)). We detail this phase of
the algorithm in Section 8.

Some of the advantages of our method with respect
to existing techniques are the following: (i) Our al-
gorithm does not require costly global optimizations,
and is therefore quite suitable for practical use. (ii)
The reconstructed model is in a form that can be
easily used in successive analysis or modeling steps.
Results of model reconstruction obtained with our

technique are presented and discussed in Section 8.5.

6 Connect-the-Dots: Inferring

Topology from Vicinity

One of the most di�cult problems of surface recon-
struction from unorganized points is understanding
how to connect the points so as to form a surface that
has the same topological (e.g. number of handles) and

geometric (e.g. depressions and protrusions) charac-
teristics of the original.
In this chapter we will formalize the problem of sur-

face approximation and reconstruction, give a set of
su�cient conditions for reconstructing a shape using
alpha-shapes, and introduce an automatic method for
building an interpolating triangle mesh.

6.1 Sampling and Reconstructing a

3D Object

Reconstructing the shape of an object from an un-
organized \cloud" of points is in general an under-
constrained problem. Consider the simple 2D recon-
struction problem illustrated in Figure 10: Several
solutions are possible, and it is di�cult to identify a
\best" solution to the problem. It is therefore of in-
terest looking at the following problem: What are the
characteristics of a sampling S (a �nite set of points)
of the surface of a solid object M , such that M can
be reconstructed from S unambiguously and within
prede�ned approximation bounds?
In particular, we consider the following reconstruc-

tion problem: Starting with a sampling of the surface
B of a solid, we want to compute a triangulated sur-
face K that has the \same shape" of B, and such that
a suitably de�ned distance D(K;B) of K from B is
bounded by a given ". A useful distance measure is
for example:

D(K;B) = max
p2[K]

min
q2B

jjp� qjj:

Stated formally:

Problem 6.1 Let B be the boundary of a solid M ,
and S � B a �nite set of points (sampling). Con-
struct a (geometric) simplicial complex K, such that
K(0) = S, K is homeomorphic to B, and D(K;B) <
".

An algorithm aimed at reconstructing the shape of
an object from point data alone must have a way of
inferring spatial relationships among points. Char-
acteristics of the sampling that guarantee an unam-
biguous and correct reconstruction depend on how
the data is interpreted by the algorithm.
We have already mentioned that alpha-shapes al-

low us to �nd spatial relationships between points of
an unorganized set. The relationships are based on
proximity. Clusters of points close to each other are
grouped to form edges, triangles and tetrahedra, and
more complex structures made of collections of these
simple constituents. An alpha-shape is (the underly-
ing space of) a subcomplex of the Delaunay triangu-
lation (regular triangulation in the case of weighted
points). Therefore, it is relatively easy to compute.
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Figure 10: An example of ambiguous 2D reconstruction from points. From left to right:
A point sampling and three, equally acceptable, reconstructions.

Let us recall that (see Section 4) an alpha-shape is a
polytope whose boundary is composed of �-exposed
k-simplices (convex combinations of subsets T of a
point set S � R3, k = 0; 1; 2). A simplex �T is
�-exposed if there exists a ball of radius

p
� that

\touches" its vertices and does not contain any other
point of S (we will look at the case where weights
can be assigned to points later). If a 2-simplex �T
is �-exposed on both sides then �T does not bound
interior points of the alpha-shape.
Our reconstruction problem can be reformulated as

follows: What are su�cient conditions of a sampling
that guarantee that there exists an � such that the
corresponding �-shape satis�es the requirements of
Problem 6.1?
We can look at the two-dimensional case to get

some insight into the problem. Figure 11 illustrates
the discussion that follows. In this case, we are sam-
pling a 1-manifold B (B is a collection of \loops").
Intuitively, we can think of the points of the sam-
pling as \pins" that we �x on B. We now use a
disk probe of radius � =

p
� to \sense" the manifold.

The probe must be able to move from point to point
of S on the surface, touching pairs of points in se-
quence, and without touching other parts of B. The
pairs of points will be connected by segments of the
alpha-shape, and will form loops homeomorphic (and
geometrically close) to each component of B.
Clearly, a necessary condition is that no two ad-

jacent points of the sampling are farther away than
the diameter of our disk-probe, because otherwise the
probe would \fall" inside the boundary of our solid
object. We also need to make sure that all, and only,
the edges connecting pairs of adjacent points are �-
exposed. To do this, our probe needs to be small
enough to be able to isolate a neighborhood of a point
p on B, or, equivalently, discern \adjacent" points on
B from points that are close in the Euclidean sense
but not on the surface. These requirements are for-
malized in the following

Theorem 6.1 Let B � R3 be a compact 1-manifold
without boundary, and S � B a �nite point set. If

1. For any closed ball D� � R3 of radius �, B \D�

is either (a) empty; (b) a single point p (then
p 2 bd(D�)); (c) homeomorphic to a closed 2-
ball I, such that int(D�) \B = int(I);

2. An open ball of radius � centered on B contains
at least one point of S,

then the alpha-shape W� of S, � = �2 is homeomor-
phic to B and

D(W�; B) = max
p2W�

min
q2B

jjp� qjj < �:

The proofs of the 2D and 3D versions of this theo-
rem appear in [9, 10], respectively.
Notice that locally the error bound can be made

arbitrarily small. In fact, for each segment �T ; T =
fp; qg, if jjp� qjj = 2d, the maximum local error is

� < � �
p
�2 � d2

which has limit zero as d tends to zero. There-
fore, while a �-dense sampling will su�ce to recon-
struct the manifold B with distance bounded by �,
we can alwaysmake the approximation error arbitrar-
ily small in any region C � B by simply sampling C
at a higher density. Also note that the expression for
� converges to zero quadratically, that is it is su�-
cient to double the density of the sampling to reduce
the error by a factor of four.
The conditions above restrict the domain of appli-

cability of our reconstruction tool to curves whose
radius of curvature is larger than �, as otherwise the
ball-intersection requirement is impossible to satisfy
(see Figure 12). Note however the following: (i) This
restriction parallels the band-limited requirement in
Nyquist's theorem; (ii) � can be made (at least in the-
ory) arbitrarily small. The price to pay to reconstruct
small-scale features is to use a high-density sampling,
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B B B

(a) (b) (c)

Figure 11: Sampling requirements for 1-manifolds in R2. (a) The sampling density must
be such that the center of the \disk probe" is not allowed to cross B without touching a
sample point. (b) The radius � of the disk probe must be small enough that the intersection
with B has at most one connected component. (c) Examples of non admissible cases of
probe-manifold intersections.

(a) (b)

Figure 12: A small neighborhood of regions of curvature higher than � can be incorrectly
reconstructed by the alpha-shapeW�2 . Bold segments represent \extraneous" alpha-exposed
1-simplices. (a) A convex sharp feature and a concave high-curvature feature. (b) Extrane-
ous alpha-exposed 1-simplex (detail).
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which is reasonable. On a more practical side: (iii)
the sampling density of laser scanners is usually much
smaller than typical object features (otherwise large
measurement errors would occur), and (iv) data col-
lected in proximity of sharp (or high-curvature) fea-
tures is subject to noise, and therefore not reliable.
Accurately reconstructing sharp features (for exam-
ple to segment the surface into a collection of smooth
faces) requires an elaborate analysis of the data, addi-
tional knowledge of surface characteristics, and some
art (see recent review [53]). We will describe later
how to deal in practice with small features not di-
rectly captured by the alpha-shape.
Note also that one can use weighted alpha-shapes

to reconstruct objects that have been sampled at mul-
tiple resolutions. For example, one might scan some
parts of an object at a relatively coarse resolution,
and other, more complicated, parts at a �ner reso-
lution, and assign di�erent weights to the points of
each scan (an example is shown in Figure 18).

6.2 Alpha-solids

While the theorems above give us su�cient conditions
for a sampling to allow a faithful reconstruction using
�-shapes, in practice one has to deal with less than
ideal scans.
In general, i.e. when the conditions of the theo-

rems above are not satis�ed, an alpha-shape is a non-
connected, mixed-dimension polytope. We are inter-
ested in reconstructing solids, and therefore it is con-
venient to de�ne a \regularized" version of an alpha-
shape. The regularization should eliminate dangling
and isolated faces, edges, and points from the alpha-
shape, and recognize solid components. We will de-
�ne the alpha-solid by giving a construction algo-
rithm for it.

De�nition 6.1 Assume that the regular triangula-
tion and family of alpha-shapes of S has been com-
puted. Then we start from a tetrahedron with a ver-
tex \at in�nity", mark it as exterior, and proceed to
visit adjacent tetrahedra, without crossing faces that
belong to the alpha-shape. All tetrahedra we can reach
in this way are marked as exterior. Now consider the
boundary of the set of marked tetrahedra. If it is not
empty, it is formed by one or more continuous shells
of triangles. We start another search from all un-
marked tetrahedra that have a face on this boundary,
and mark all tetrahedra that can be reached without
traversing alpha-shape faces as internal. We repeat
this procedure until all tetrahedra have been marked.
The union of all interior tetrahedra will be called

the alpha-solid S� of S.

The alpha-solid is clearly a homogeneously three-
dimensional object. Observe also that it can be com-
puted very e�ciently from the underlying triangula-
tion, by simply traversing the adjacency graph.
Varying �, one obtains a �nite collection of dif-

ferent alpha-solids, ranging from the empty set for
su�ciently small values of �, to the convex hull of
the set of points for � large enough.
Since we know that the point sampling comes from

a two-manifold, we can search automatically for the
\best" approximating alpha-solid. Because alpha-
solids can be ordered with respect to the parameter
�, and there is only a �nite number of di�erent alpha-
solids (and corresponding �-values), we can perform
a binary search on the family of alpha-solids. For
example, to reconstruct a single connected body, we
want the following properties to be satis�ed by the
alpha-solid:

1. It is connected;

2. All the data points are on its boundary or in its
interior;

3. Its boundary is a two-manifold.

To search for the minimum � such that the corre-
sponding alpha-solid satis�es these requirements we
proceed as follows:

1. Compute the regular triangulation T and thresh-
old values for alpha-shapes. Let k be the number
of di�erent � values.

2. Do a binary search on the value of �.

(a) Start with min = 0, max = k � 1

(b) Set mid = b(min+ max)=2c and � = �mid.
Compute the corresponding �-solid.

(c) Check whether the �-solid satis�es the
three properties above. If it does, then try
a smaller value of �: Set max = mid and go
back to step 2b. If it doesn't, then try a
larger value of �: Set min = mid+1 and go
back to step 2b. If min � max then exit the
loop.

This algorithm takes O(logn) time (where n is the
size of S) because the number of possible �-values
is bounded by the number of simplices in T , which
is polynomial in n. Observe also that the convex
hull satis�es the three properties above, so the al-
gorithm always terminates successfully. For a suf-
�ciently dense and uniform sampling of the object
boundary the �-solid selected by this strategy is a
good approximation of the object's shape. However,
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Figure 13: Automatic selection of an optimal �-value.
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small, concave features may be occluded by unwanted
tetrahedra, and some of the sampled points might lie
in the interior of the �-solid (see Figure 14). We
improve the initial alpha-solid with the technique de-
scribed in the following section.

6.3 Improving the Alpha-Solid

Our criterion for improving the initial alpha-solid is
based on the search for a subset of tetrahedra whose
boundary interpolates all the points, and that maxi-
mizes the \smoothness" of the triangle mesh, de�ned
as X

ei

j� � ij

over all edges of the triangle mesh, where i is the
dihedral angle formed by the two triangles incident
on edge ei.

Searching for the global optimum for this optimiza-
tion problem would be clearly computationally ex-
pensive (if not intractable: This problem is probably
not easier than computing a mesh of minimal surface
area, which has been conjectured to be NP-complete).

However, in practice our alpha-solid is already a
good approximation of the optimal polyhedron, and
we only need to modify it where concave, high cur-
vature features are present. We therefore resort to a
simple greedy strategy, similar to the \sculpturing"
approach proposed by Boissonnat [12] (see also Sec-
tion 3.1). However, we apply the iterative removal of
tetrahedra only to locally improve the alpha-solid,
rather than as a global strategy to extract an in-
terpolating mesh from the 3D Delaunay triangula-
tion. Our technique, based on the smoothness of the
mesh, gives, in our experience, better results, espe-
cially when sharp features are present (see Figure 14).

The greedy optimization algorithm is as follows.
All tetrahedra having one or more boundary faces
are inserted in a priority queue, where the max pri-
ority is given to tetrahedra with the largest value of
the max distance between a boundary face and their
circumscribing sphere. These candidate tetrahedra
are then extracted from the queue one by one and
considered for removal.

A candidate tetrahedron is removed if and only if:

1. It has one boundary face and the opposite vertex
is internal;

2. It has two boundary faces, the opposite edge
does not lie on the boundary, and the local
smoothness criterion is satis�ed (see below for
details).

When only these two types of tetrahedra are removed,
the boundary of the remaining set of tetrahedra is
guaranteed to remain a manifold [12]. After a candi-
date tetrahedron has been removed, adjacent tetrahe-
dra whose faces become boundary faces are inserted
in the priority queue as candidates for removal.
The smoothness criterion mentioned above is here

stated more precisely:

De�nition 6.2 Consider a tetrahedron having ex-
actly two boundary faces (see �gure 15). These faces
form a dihedral angle 0. They also form four dihe-
dral angles 1 : : : 4 with adjacent boundary faces. Let
� be the following sum:

� =
4X

i=0

j� � ij

� gives a measure of the \local smoothness" of the
mesh: If the dihedral angles formed by all adjacent
boundary faces are all close to straight angles, then �
is small.
Assuming that the tetrahedron is removed, its two

internal faces become boundary faces. We can mea-
sure what the new local smoothness, say �, would be,
and compare it with �.
The local smoothness criterion is therefore the fol-

lowing: remove the tetrahedron if and only if � > �,
that is, if the local smoothness improves.

As in all greedy optimization strategies, the algo-
rithm above might get trapped in a local minimum.
For example, at some point it might become impossi-
ble to remove any tetrahedron, because all have two
boundary faces and none satis�es the smoothness cri-
terion. We therefore do a \look-ahead" search before
deciding whether to remove a tetrahedron that does
not satisfy the criterion: If by removing it, and some
other tetrahedra adjacent to it that consequently be-
come candidates, the smoothness criterion is satis�ed,
then we remove it. The depth of such look-ahead
search can be limited, for all practical purposes, to
a small integer value (we have used 10 for all our
examples).
Figures 16, 17 and 18 and Table 1 illustrate some

examples of alpha-solids computed with the tech-
nique described above.

7 Mesh Simpli�cation

Surface mesh simpli�cation refers to a general cat-
egory of techniques designed to generate compact,
adaptive approximations of dense tesselated sur-
faces. Optimization methods [51, 33, 30] have pro-
duced good results, but their time-intensive nature
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(a) (b)

Figure 14: Sculpturing to locally improve an �-solid. (a) Initial approximation.(b) After
sculpturing.

0

1

2
3

4

Figure 15: Local smoothness criterion.
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Number �-Solid Number of Removed Number of
Object of Points Time tetrahedra tetrahedra Triangles

Femur 9807 1.5 36182 3704 19610
Tibia 9200 1.4 33232 2172 18396
Fibula 8146 1.1 30876 2896 16288
Patella 2050 0.3 7536 683 4096

Part 1 13040 2.5 42507 2473 26088
Club 16864 4.1 58657 754 33142
3 Tori 10833 2.2 42970 2914 21692
Bunny 33123 19.6 127607 3761 66224
Mannequin 10392 2.1 35383 2077 19802

Table 1: Results of alpha-solid reconstruction. The table show for each object, from left
to right: (1) The number of points in the sampling; (2) The time, in minutes, required by
the alpha-solid computation (including 3D Delaunay triangulation, computation of family
of alpha-shapes, automatic selection of alpha value, improvement by local sculpturing). All
computations were carried out on a SGI Indigo2, with a 250MHz MIPS 4400 CPU; (3) The
number of tetrahedra in the initial alpha-solid; (4) The number of tetrahedra removed by
the heuristic; (5) The number of triangles in the boundary of the �nal reconstructed model.

(a) (b) (c)

(d) (e) (f)

Figure 16: Examples of alpha-solids. (a)-(c) The data points are from a random sampling
of a model (Part 1) created with a commercial solid modeler. (d)-(f) The knee data is from
an isosurface extracted from the Visible Human Project data set. Data was reduced by
eliminating roughly 50% of the original points.
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(a) (b) (c)

(d) (e) (f)

Figure 17: Reconstruction from range data. (a) and (d) Combined scans. (b) and (e)
Reconstructed alpha-solid. (c) and (f) Phong-shaded rendering.

(a) (b) (c)

(d) (e) (f)

Figure 18: Example of reconstruction from a multi-resolution scan using weighted al-
pha-shapes. (a) Sampling. Notice how the eyes area has been scanned at higher resolu-
tion. (b) and (c) Weighted points represented as balls. Weights were assigned manually
to simulate a multi-resolution scan. (d) Reconstructed alpha-solid. (e) Alpha-solid after
improvement by sculpturing. (f) The same reconstructed model Phong-shaded.
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leads us to consider more practical methods. He et
al. [29] sample a geometric object into a volume bu�er
which is then low-pass �ltered. Multiresolution sur-
faces are then extracted from the volume bu�er us-
ing traditional isosurfacing techniques. Such an ap-
proach e�ectively generates nested approximations of
surfaces, however the surfaces at each level of detail
do not adapt well to large and small features simul-
taneously. A broad family of algorithms based on
local point, edge, or triangle deletion and retrian-
gulation based on geometric criteria are attractive
for their ease of implementation, ability to capture
sharp features, high simpli�cation rates and fast per-
formance [46, 28, 8, 16].
In this work, we adapt and improve the method

of [8] to handle explicit edge feature detection and
preservation. The resulting algorithm is able to main-
tain a strict bound on the distance between the orig-
inal mesh and the surface mesh, in addition to main-
taining sharp features in the reconstructed triangula-
tion.

7.1 Mesh Simpli�cation Algorithm

The simpli�cation algorithm follows the basic strat-
egy of other \vertex deletion" schemes, and is based
on accumulated error bounds which are propagated
from the original surface mesh through the succes-
sive simpli�ed meshes produced by point deletion. A
compact error representation consisting of two scalar
error bounds per triangle is used. The error values
correspond to a bound on the error (geometric dis-
placement) toward the outside (inside) of the object.
These bounds e�ectively form an envelope surround-
ing the simpli�ed mesh which is guaranteed to con-
tain the original surface, thus maintaining a bound
on the total amount of accumulated error through
successive deletion of vertices. The algorithm can be
summarized as follows:

1. Initialize errors on all triangles to 0

2. Initialize priority queue P of candidate vertices
vi

(a) Classify vi according to vertex con�gura-
tions in �gure 19

(b) Compute an initial triangulation of the
neighbors of vi

(c) Perform edge ipping to lower the error in
the new triangulation

(d) Assign priority based on introduced error
associated with vi

3. While next candidate vertex v from P does not
violate error constraints

(a) Delete v and incident triangles

(b) Add new triangles

(c) Update error values for new triangles

(d) Update P

In the following subsections, we will describe the
steps of the algorithm and our extensions for sharp
feature detection.

7.2 Geometric Error

Errors introduced by deletion of a vertex v are com-
puted by establishing a mapping between the current
triangulation about v and the retriangulation of the
neighbors of v. This is accomplished by normal pro-
jection of the new triangulation onto the original sur-
face, as indicated in Figure 20. As shown in the �g-
ure, this projected triangulation e�ectively segments
the region surrounding a vertex into simple wedge
shapes. In this local mapping of triangulations, the
maximal error (distance between triangulations) oc-
curs at the intersections of new edges with the original
edges, and need only be computed at these points. In
one exceptional case, the triangle which contains the
vertex v which is being deleted, the error must also
be computed between v and the point which projects
to it.
Errors in the geometry are quanti�ed by the signed

distance spanned by the mapping from one triangu-
lation to another. We use the convention that a dis-
placement toward the outside (in the direction of the
normal) of a mesh is a positive displacement, while
displacement toward the inside is a negative displace-
ment.

(a) (b) (c)

Figure 19: Types of candidate ver-
tices. (a) A \smooth" vertex (all di-
hedral angles are larger than feature
angle). (b) A vertex along a feature
edge. (c) A corner.
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(a) (b)

Figure 20: Segmentation of mutual
projection. (a) Projection of new tri-
angulation onto the old one. (b) In-
duced segmentation.

Positive and negative errors contribute to the out-
side and inside accumulated error bounds as illus-
trated in Figure 21. The current error bounds are
represented as thin dashed lines, while the accumu-
lated error bounds for the edge from Vi to Vj are
represented by the thick dashed lines. As expected,
deletion of a concave vertex requires an increase in the
inside error bound, while deletion of a convex vertex
requires an increase in the outside error bound.

7.3 Retriangulation

Our retriangulation strategy starts with an initial tri-
angulation of the \hole" left by v and all adjacent tri-
angles, and then performs edge-ippings to improve
the approximation error. In order to accurately cap-
ture edge features, we modify this portion of the al-
gorithm to detect edges in the triangulation of v by
computing the dihedral angle for each pair of adjacent
triangles incident to v. Edges are classi�ed as fea-
tures by a given threshold dihedral angle, as in [46].
In the case of two feature angles incident to v, our ini-
tial triangulation is constrained to contain the edge

Error bound in original triangulation

Error bound propagated to edge Vi, Vj

Vi

p

Vj

Vi
p1 Vj

Figure 21: Propagating error
bounds to a new triangulation.

de�ning the feature. If three or more feature edges
are incident with v, the vertex will not be deleted.
Retriangulation proceeds by ipping interior edges

which decrease the error introduced by the deletion
of v. Edges are ipped only when the resulting tri-
angulation is non self-intersecting, and no long, thin
triangles are introduced. In order to maintain the
computed features, edges introduced according to the
dihedral angle condition will not be ipped.

7.4 Vertex ordering

The order of vertex deletions is controlled by the pri-
ority queue. Initally, a priority is assigned to each
vertex by computing the error introduced through
the deletion and subsequent triangulation described
above. Vertices which introduce little error, and
whose deletion will not violate the accumulated er-
ror bounds, are given preference over those which
introduce greater error. This approach helps to en-
sure that our error bounds will remain relatively close
to the actual error, giving a good estimation of the
actual error incurred through successive deletions of
points. When each point is deleted, those vertices
in the local neighborhood are revisited, their priori-
ties are recomputed and their position in the priority
queue updated.

7.5 Feature Classi�cation and Nor-

mals Estimation

We need to tag edges of the simpli�ed mesh which
correspond to sharp features in the data, and to esti-
mate normals at vertices of the mesh. This informa-
tion will be used in the data �tting phase.
As we said above, sharp (linear or curved) creases

are detected in the initial, �ne mesh by computing
the dihedral angle between adjacent faces. Where
three or more edges meet at a vertex we have a sharp
corner. When an edge is recognized and tagged as
sharp, it is never ipped during the simpli�cation.
Points between two adjacent sharp edges can how-
ever be removed, as long as the other bounds and
conditions of the simpli�cation algorithm are satis-
�ed. Points removed along sharp features are kept in
a list to be used later in the data �tting step.
For every vertex in the simpli�ed mesh we need to

estimate one or more (in the case of a vertex lying on
sharp feature) normals. Some of the possible cases
are depicted in Figure 22. The simplest case is that
of a smooth vertex. None of the edges incident on
the vertex is tagged as sharp, and the normals of
all incident triangles form small pairwise angles. In
this case a unique normal (computed by averaging
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(a) (b) (c) (d)

Figure 22: Feature classi�cation and normal estimations: A smooth vertex in which a
unique (average) normal is de�ned (a). Two edges along a crease (b); two distinct normals
are de�ned at the vertex. Several sharp edges meeting at a corner (c); each sector between
two sharp edges has its own normal. A singular vertex (d); no normal is de�ned.

all triangles normals) is associated with the vertex.
Notice that even if all edges incident on a vertex are
not sharp, the vertex itself can still be singular. This
is for example the case of the apex of a cone. This
condition is easily checked by looking at the angle
formed by normals to pairs of incident faces. In this
case, no normal is de�ned for the vertex, and the
vertex is tagged as singular. A mix of the previous
situations occurs when two or more sharp edges are
incident on a vertex. These edges partition the region
around the vertex into sectors, for each of which we
will compute a separate normals. Again, the group
of triangles forming a sector can have similar normals
(therefore de�ning a smooth sector with a unique,
averaged normal) or rather divergent, in which case
the sector is singular and no normal is de�ned for it.
In summary, we can say that the region around a

vertex can be divided into one or more sectors, and
each sector has an associated normals (unde�ned in
the case of a singular sector). Notice that normals
can be computed from the initial �ne mesh, and can
therefore provide a rather good estimate of the sur-
face curvature.

8 Piecewise-Smooth

Reconstruction

Our A-patch �tting scheme interpolates the vertices
(and estimated surface normals) of the simpli�ed
mesh computed as described above, and approxi-
mates the remaining data points. Features tagged
as sharp during mesh simpli�cation are retained in
the resulting piecewise-smooth model. The �tting
process begins with the construction of a tetrahe-

dral mesh to act as support for the A-patches. Then,
weights for each patch are set to interpolate vertices
and sharp features, and least-squares approximate
the remaining point. Finally, a fairing and �tting
optimization can be applied to improve the quality
of the reconstructed model.

8.1 Simplicial-Hull Construction

Piecewise algebraic surfaces require a support mesh
of tetrahedra, built over a base triangle mesh. Each
tetrahedron contains a single, smooth (except for con-
trolled singularities required to model C0 features)
and single sheeted A-patch. A patch passes through
the three base vertices of the support tetrahedron, in-
terpolates speci�ed surface normals at these vertices,
and approximates other data points within the tetra-
hedron. Figure 6 shows an example of simplicial hull,
and Figure 23 illustrates the detail of the construc-
tion for a pair of adjacent triangles.
Di�erent schemes for constructing a suitable tetra-

hedral mesh, called simplicial-hull, have been pro-
posed in the literature (see Section 4 for related prior
work). A general simplicial-hull scheme, guaranteed
to satisfy conditions for the construction of a glob-
ally C1 A-patch interpolant, is described in [5]. This
scheme however does not deal with additional data
points to be approximated. We briey describe in the
following the simplicial-hull construction algorithm,
and a simple extension to handle approximation of
internal data points.
The basic construction step consists in building, for

each triangle of the base mesh, a pair of tetrahedra,
on the two sides of the triangle. These face-tetrahedra
will contain a pair of patches that interpolate the
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Figure 23: Construction of a simplicial hull. The triangles [p1p2p3] and [p01p2p3] belong
to the initial triangle mesh. Vertices p4; p

0
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0
4 have been introduced to form the four

face-tetrahedra (on the two opposite sides of each original triangle). Vertices p001 and q001 are
needed to form the four edge-tetrahedra. The picture also shows the assignment of weights
for two patches joining with C1 continuity.
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three vertices of the base triangle (refer to Figure 23).
Gaps between face-tetrahedra built on top of adjacent
triangles are �lled by pairs of edge-tetrahedra, two on
each side of the base mesh. The main requirements
for the simplicial hull are as follows:

Simplicial complex: The collection of tetrahedra
forms a valid (geometric) simplicial complex,
i.e., the only intersections occur between shared
faces.

Tangent-plane containment: For each vertex v
(with an assigned normal) there exist a closed
neighborhood of v on the tangent plane that is
contained in the collection of tetrahedra incident
on v.

Point containment: The collection of tetrahedra
contains all the additional data points to be ap-
proximated.

A classi�cation of special cases is given in the cited
work [5]. Mainly, one is concerned with highly convo-
luted triangle-meshes and wild assignments of vertex
normals. Heuristics to build a simplicial hull in all
these cases are given (local retriangulation can also be
used to avoid some tricky situations). We should note
however that such pathological cases, which must be
dealt with in the general case, are unlikely to occur
in our triangle meshes, as they are derived by a sim-
pli�cation process that uses large triangles in smooth
areas, but approximates the shape of the surface with
smaller triangles in areas of large curvature. Note also
that, where sharp features occur, the tangent plane
containment property can be relaxed.

8.2 Setting the Weights for Piecewise-
Smooth Fitting

The scheme used here follows Bajaj, Chen and Xu [5],
and consists basically in building two tetrahedra for
each triangle of the mesh (face-tetrahedra) and four
tetrahedra for each edge (edge-tetrahedra), see Fig-
ure 23. Splitting is only used in special cases.

Figure 23 also illustrates the scheme to set the
weights of a patch under C1 continuity constraints [5].
The sequence of steps involved is as follows:

1. Set weights i0 to be zero so that the surface in-
terpolates the vertices. Set weights i1 around
each vertex according to its normal so that the
surface interpolates the normal. Weights i2
will be set in the subsequent least-square approx-
imation phase.

2. Weights i1 , i2 and i3 around [p2p3] must

be a�ne coplanar. Solve for i3 according to
the others.

3. Compute weights i6 according to weights
i4 , i3 and i1 . Preset weights i4 to

be positive enough so that weights i6 are also
positive.

4. Compute weights i7 according to weights i5
and i4 . Preset weights i5 to be positive
enough so that weights i7 are also positive.

5. Set weights i8 to be positive. Compute
weights i9 by averaging i6 and i8 .
Weight

�
�

�
�10 is de�ned by the C1 condition.

We now extend the scheme to allow for C0 fea-
tures to be represented, and show how to use a local
energy-minimization approach to set the free weights
for a good data-�t. We will restrict ourselves to the
following types of features (recall Figure 22):

1. Sharp corners (multiple normals de�ned, for ex-
ample the corner of a cube).

2. Singular vertices (no normal de�ned, for example
the apex of a cone).

3. Straight edges (two normals, one for each side,
de�ned at each endpoint).

4. Planar or piecewise-planar curved ridges (two
normals at each endpoint).

Notice that linear or planar features (straight edges
or planar face) can be interpolated by simply setting
all weights on the corresponding edge (or face) equal
to zero.
We will now describe in some detail how to set

the weights for the case illustrated in Figure 23, in
which the edge between the two shaded triangles has
been tagged as sharp, and a planar, curved sharp
edge must be represented. The setting of the weights
for this C0 case is similar to the C1 �tting described
above:

1. Determine the plane that contains the curve. In
the mesh simpli�cation phase, we store points
associated with a sharp feature. We use these
points now to determine a best-�t plane through
the edge [p2p3]. This plane determines the posi-
tion of p001 (or p01).

2. Weights i0 are set to zero so that the surface
interpolates the vertices.
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3. Weights i1 are set according to the normals at
p2 and p3. Let's call these normals n2; n

0
2; n3; n

0
3.

Weights i1 on the two sides of [p2p3p001 ] de-
pend on the projection of the normals on the
plane of triangle [p2p3p001 ]. Let's call these pro-
jections �n2; �n

0
2; �n3; �n

0
3. To achieve C0-continuity

on face [p2p3p001 ], all weights must be the same
on its two sides (after normalization by a scaling
factor). This is possible only if �n2; �n02 (respec-
tively �n3; �n03) lie in the same direction, and if
the ratios j�n2j=j�n02j and j�n3j=j�n03j are equal. If
the condition on the normals is not satis�ed, we
need to \adjust" the normals (for example by
averaging).

4. The following steps are similar to the C1 case, ex-
cept that obviously the C1 conditions on weights
do not propagate through face [p2p3p001 ].

5. Weights i9 and
�
�

�
�10 can be set freely and will

be used to improve the �t to the data.

8.3 Least-Squares Approximation

We have seen in the previous section that some of the
weights in each patch are free, i.e. their value can be
set to guarantee a good �t to the data points.
Bajaj, Ihm and Warren [7] suggest the use of al-

gebraic distance to measure the distance between a
point ~p and a surface f(~x) = 0. The algebraic dis-
tance between a point ~p and a surface f(~x) = 0 is
the value of f(~p) provided that f(~x) = 0 is normal-

ized. The normalization used in the paper is~bT~b = 1,
where~b is the weights of f(~x). In the A-patch scheme,
as some of the non-zero weights are given according
to data at the vertices of the triangulation, no nor-
malization is needed.
The function to be minimized can be written as

follows:

E =
X
i

nX
j=0

(wTB(�j))
2 = wTQw

where i is the index of an A-patch and j is the index of
an auxiliary point within the domain simplex. How-
ever, some equality and inequality constraints must
be added to the system to make sure that continu-
ity and single-sheeted conditions are satis�ed by the
weights. We therefore obtain a quadratic program-
ming problem, which can, in general, be expressed
as

minimize 1
2w
TQw +wTc

subject to aTi w = bi; i 2 E

aTi w � bi; i 2 I:

(4)

where E and I are index sets for equality and inequal-
ity constraints. The matrix Q is symmetric and pos-
itive semide�nite (if not actually positive de�nite).
The general quadratic program with inequality

constraints is almost always solved by an active set
method (see [37], Section 11.3). There is an espe-
cially simple version for the case where Q is positive
de�nite. More details on the solution of this problem
can be found in [14].

8.4 Fairing and Fitting Optimization

Fairing a surface is the process of slightly modi-
fying its shape to improve the distribution of cur-
vature across it. Although the surfaces produced
by our �tting scheme are mathematically derivative-
continuous, fairing is usually required to \remove the
wrinkles" and obtain surfaces that are more aestheti-
cally pleasing. Fairing strategies are usually based on
minimization of a functional that depends on the sec-
ond derivatives of the surface. A popular choice is for
example the thin-plate strain energy, which is propor-
tional to the surface integral of the sum of principal
curvatures squared:

Z
S

�21 + �22 dS

The problem has been studied in detail for the para-
metric case. In general, its solution requires costly
global optimization algorithms.

For implicit surfaces little is known. Chen [14] dis-
cusses two possible methodologies. The �rst tech-
nique is based on iterative, numerical minimization
of a functional that measures the strain energy of a
thin-plate spline. The second technique, simpler and
faster, is formulated as the integral of a weighted sum
of the squares of the �rst and second derivatives of
each patch over its domain tetrahedron. Such an en-
ergy function is easy to be minimized as the optimiza-
tion problem can be formulated as a quadratic pro-
gramming problem with linear inequality constraints.
The fairing process can be combined with an opti-
mization of the �tting to the data points.

While the approaches outlined above gave promis-
ing preliminary results, more research is needed to
devise an e�cient and general fairing and optimiza-
tion for composite algebraic surfaces. We will further
investigate these issues in the future.

8.5 Results

Examples of reconstruction of 3D models are pre-
sented and discussed in this Section.
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(a) (b)

(c) (d)

(e) (f )

Figure 24: Example of an object reconstruction. The shoe was sampled at about 1 � 104
points (a). The selected �-solid is shown in (b). The simpli�ed mesh, 310 triangles (c) is
used in (d) to build the simplicial hull and �t the data with polynomial algebraic patches
(e). The �nal result is shown in (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 25: Example of reconstruction from real range data. The scan (a) contains 16000
points. The �-solid (b) is a mesh of 33142 triangles, simpli�ed to 268 by our algorithm (c).
The reconstructed object contains about 1000 patches and is shown in (d). Another re-
construction, based on a simpli�ed mesh of 636 triangles (e), results in 2500 patches (f).
Di�erent colors have been used to distinguish between face- and edge-patches.
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Number �-Solid & �-Solid Simpl. N. of Fitting
Object of Points Simp. Time Tri. Tri. Patches Error Time

CSG 12128 2.5 24264 290 1680 < 1% 2.0
Shoe 9089 2.0 17786 248 1482 < 1% 2.7
Club 16576 3.2 33142 636 2522 < 1% 4.2
Club 2 16576 3.3 33142 268 1002 < 1.5% 2.8

Table 2: Results obtained with the �-solid preprocessing and A-patch piecewise-smooth
�tting method. Time is in minutes. Errors are relative to the diameter (distance between
farthest points) of the object.

Figure 24 contains a dense sampling of points from
a high-heeled shoe. The original sampling consists of
9089 points, uniformly distributed over the surface.
The reconstructed piecewise linear object contains
17786 triangles. This linear approximation is simpli-
�ed to a rough approximation of 248 triangles, while
maintaining C0 features and a surface distance error
of less than 1%. A total of about 1500 piecewise C0

and C1 cubic patches interpolate the simpli�edmodel
and approximate the original set of points. The en-
tire process required approximately 2.5 minutes for
the computation of the �-solid and successive simpli-
�cation, and about 2 minutes to set the weights of the
polynomial patches for data �tting with the required
continuity.

Figure 25 shows another example from real range
data, reconstructed at two levels of resolution. The
range data consists of over 1:6 � 104 uniformly dis-
tributed points. The reconstructed piecewise linear
approximation of the surface contains 33142 trian-
gles. Mesh reduction produces coarse approximations
of 636 and 268 triangles while maintaining the sharp
features of the object and approximating the surface
to within a tolerance of 1% and 1:5% respectively.
Approximately 2500 (1000) piecewise C0 and C1 cu-
bic patches interpolate the vertices of the simpli�ed
model as well as the normals (when de�ned) while
approximating the original points. The computation
time includes less than 4 minutes for the initial re-
construction and mesh simpli�cation, followed by ap-
proximately 4 minutes for A-patch �tting. All com-
putations were carried out on an SGI Indigo2 (250
MHz MIPS R4400).

9 Conclusions

We presented in this paper a method to reconstruct
the geometric shape of objects from a sampling of
their surfaces. We established su�cient conditions

for the sampling to allow a homeomorphic and error-
bounded reconstruction. The use of alpha-shapes
(and alpha-solids) permitted us to use a solid mathe-
matical framework (to formally prove the sampling
conditions) and to develop e�cient algorithms for
practical uses. Weighted alpha-shapes can be used
to deal with multi-resolution scans.

While other reconstruction techniques from unor-
ganized points exist and can work well in practical
applications, our alpha-shapes based technique is, to
the best of our knowledge, the �rst reconstruction
algorithm which guarantees a correct reconstruction
when certain sampling conditions are satis�ed.
We also described a method to convert the �ne tri-

angle mesh produced by the alpha-solid reconstruc-
tion into a more useful, and manageable, piecewise-
polynomial surface model. Our method is based
on implicit algebraic patches, or A-patches. While
less popular than parametric representations, the A-
patch modeling technique o�ers several advantages,
from the closure with respect to basic modeling op-
erations (o�setting, intersection) to the high design
exibility for a relatively low polynomial degree.

Our method is targeted to shapes that have sharp
features. It starts with an error-bounded simpli�-
cation of the alpha-solid triangle mesh. It creates
a supporting tetrahedral mesh around the simpli�ed
mesh, and �ts A-patches to the data points inside
each tetrahedron.
One of the main advantages of these techniques

over previous methods is that they are fast. In our
current implementation, we reconstruct models from
samplings of the order of 104 points in minutes on a
general purpose, uni-processor workstation. The bot-
tleneck of our current implementation is the amount
of memory used by the incremental triangulation al-
gorithm to store the history of split/ipped tetrahe-
dra. A di�erent implementation (or a di�erent algo-
rithm), could allow us to deal with larger point sets.

Notice that a laser range scan might be more dense
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than is needed by our alpha-solid reconstruction al-
gorithm. A simple pre�ltering can be applied to the
data set to reduce its size. In the following A-patch
�tting phase, all the original measured points can be
used to achieve the best possible reconstruction. As
all of the computation involved in the A-patch �t-
ting is done locally, the algorithms handle large data
sets gracefully. We plan in the future to improve our
fairing and �tting optimization techniques for the re-
constructed A-patch model.
We have not addressed all of the problems

that arise in developing a fully automatic reverse-
engineering technique. We have already mentioned
the problems associated with handling noisy mea-
surements and incomplete information. We have not
attempted to understand the shape of the object to
build a representation that captures its functionality
or manufacturing process.
While more research is needed to answer fully the

needs of reverse-engineering applications, we believe
that automatic reconstruction will become an in-
creasingly viable and common alternative to manual
or semi-automatic shape acquisition.

Acknowledgments. Thanks to the Computer
Graphics Group, University of Washington and the
Stanford University Computer Graphics Laboratory,
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