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Abstract

Interrogative visualization refers to the process of interactive computer graphics display and accurate
quantitative querying of physical data. Quantitative querying includes search for metric, combinato-
rial and topological information. To support this paradigm, we build uniform, compact, co-registered
representations (spline models) of multiple physical data fields over the same domain.

Dense, unstructured volumetric scalar fields are approximated by C!-continuous trivariate polynomial
spline functions of low degree. Additionally, these spline functions are also used to model scattered scalar
fields sampled over a manifold surface in the volume. Using both implicit polynomial spline surfaces and
trivariate polynomial spline functions allows for model representations of both manifold and associated
scalar fields over the same spatial decomposition. Quantitative querying is made efficient by utilizing
various search structures over the modeled field data.

1 Introduction

In many scientific applications one or more physical quantities are measured (or computed, in the case of a
simulation) at a large number of points scattered in space (volumetric data), or on the surface of an object
(manifold data). Here, I provide a brief review of some piecewise polynomial approximation algorithms used
for the construction of spline models of both scattered volumetric and manifold [2, 3, 7]. T give some details
of tensor-product Bernstein-Bézier (BB) polynomial constructions used both as implicit surface splines, as
well as trivariate polynomial function splines, and defined over a single spatial octree decomposition [2].
Tensor-product B-splines or Box-splines could also be used [16].

Scattered data, as opposed to data associated with the nodes of a regular grid, pose challenging visual-
ization problems. Standard techniques for direct volume visualization, isosurface extraction etc. rely on the
existence of a grid of known topology [37]. One common approach to the modeling of scattered data in any
dimension is based on triangulating the data points, simplifying the triangulation to reduce the size of the
model, and then constructing a suitable interpolant on each triangle (or higher-dimensional simplex) of the
reduced model, additionally approximating the original data [1, 29, 30]. The initial triangulation and post
simplification can become quite expensive. Alternatively, spatial decomposition techniques can be used to
approximate a dense set of multiple volumetric scattered scalar values with C''-continuous spline functions of
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low degree. The approach is incremental and adaptive, with the spatial decomposition being refined where
needed to achieve a desired error bounded approximation. Such trivariate polynomial spline approximation
schemes for scattered volumetric and manifold scalar field data, built over 3D incremental Delaunay trian-
gulations are reported in [7, 3]. Here I report on a similar scheme for volumetric data using tensor-product
BB polynomial splines over octree decompositions of a cuboid enclosing the data. Additionally, I review the
modeling of manifolds and associated scalar field data using both implicit tensor product BB polynomial
spline surfaces and trivariate tensor product BB polynomial spline functions over the same spatial octree
decomposition [2].

The main goals achieved by such an adaptive modeling technique are: (i) compact adaptive representa-
tion of domains and associated physical fields and (ii) easy visualization, and interactive querying of physical
fields. Additionally, multiple physical fields for which different data samples are available, can be modeled
by splines defined over the same spatial decomposition, allowing for easy co-registration of the data. In-
cremental regular decompositions, such as octrees, provide a natural search structure as well as a hierarchy
of approximating spline models. Hierarchical spline representations provide interrogative visualization at
multiple approximation levels[20]. Seed cell pre-computations coupled with interval search trees provide fast
multiple query times, such as for isocontouring [8]. Isocontouring and local normal projection methods with
color plots can be used to display fields over a manifold. Parallel implementations of such mphysical field
odeling and visualizations are also easy [6]. Availability of a compact model for multiple, co-registered scalar
and vector fields (and for the geometry of the manifold) allows accurate quantitative queries of combinatorial,
metric and topological properties of the fields. The C! spline model additionally supports computation of
smooth navigation paths in the field data.

An overview of the volumetric data reconstruction algorithm is presented in Section 2. In Section 3 we
show how the manifold data reconstruction problem can be reduced to a volumetric data modeling problem.
Details on the mathematics involved are given in Section 4. Several examples and results are shown and
discussed in Section 5. All proofs of the lemmas and theorems can be found in [2].

2 Modeling of volumetric data

There is a large body of literature on modeling of volumetric data. Reviews of prior work in the field can
be found in [1, 5, 21, 30, 31]. We first describe how to use tensor-product polynomial splines to model dense,
scattered volumetric data. For the sake of simplicity, we describe our method for the reconstruction of a
single, scalar field. Multiple fields can be simultaneously represented by replacing the scalar weights that
define the spline model with vectors of weights.

Our problem can be formally stated as follows:

Definition 2.1 Given a set of points P = {p;}}¥., C R3 and associated data values V = {v;}}V,, build
a trivariate, C'-continuous, piecewise polynomial function W(z,y, z) that approzimates the data within a
given error bound ¢, i.e. such that |W(p;) —vi| <e¢, fori=1,...,N.

The technique starts with the construction of a cuboid (box) containing the data set, and an initial coarse
partition of it into smaller boxes. For each vertex of the grid, we compute a local trilinear approzimant,
based on nearby data points. These approximants define a function value and an associated derivative jet
at each vertex of the grid. In each box we compute a tricubic (or triquadratic) polynomial that interpolates
the vertex data, and such that adjacent functions join with C'! continuity. The error of this approximation
at the ¢-th data point is given by the difference between v; and the value of the spline at p;. If this error
is too large, we proceed to a local refinement, by splitting the box into eight equal sub-boxes. The process
continues until the specified error condition is satisfied.

Inside each box, the polynomial is represented in Bernstein-Bézier form (BB-form). For (z,y,z) € D =
[a1, az] x [b1,b2] X [c1,¢2], a BB-form (m, n, ¢)-polynomial is defined as
m n
W) =30 30 3 wie B (u(2) B} (o(w) B (w(2))

1=0 j=0 k=0

where B (t) = ﬁtz(l — ) u(z) = E24 y(y) = 2=b1 4pq w(z) = £=5-. A tricubic BB polynomial
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Ficure 1: Example of reconstruction from volumetric data. (a) Data points and final
octree. (b) Isosurfaces extracted from the piecewise polynomial spline model.

(see Figure 3) is defined by 64 coefficients (or weights), associated with the vertices of a regular, 4 x 4 x 4

grid.
Let D = [y, as] X [B1, B2] X [11,72] be a cuboid containing the data set P. The outline of the algorithm

1s as follows:

Begin Algorithm

1. Initial Partition. Construct a partition of D. That is choose a;, bj, ¢ so that

a; = a < a1 < ... < a = 0«3
61 = by < b < ... < b£2 = 62
Y1 = ¢ < 1 < ... < Gy = 72

and partition D by D = D;;x, with

Dijr = [ai—1,a;] x [bj_1,b;] x [cr—1, cx], and
1=1,...0,5=1,..., 4y, k=1,...,¢5.

Mark all elements and vertices in the mesh as new.

Local Fitting. For every new vertex ¢ in the mesh, compute a local tri-linear approximant {(z, y, 2),
by least-squares fitting of the data in a neighborhood of q.
Compute the following derivative jet by evaluating at ¢ the function {(x,y, z) and its derivatives:

ﬁ g g %1 %1 %1 931
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The vertex is then marked as old.



3. C! interpolation. For each new element Djj; in the mesh, compute a tricubic BB-polynomial
Wijr(2,y, z) that interpolates the derivative jet at all its eight vertices, and such that the piecewise
polynomial W (z,y, z) is C! continuous over all D. The element is then marked as old.

Details on how to compute the coefficients of W;;;, are given in Section 4. We show there how to create
additional degrees of freedom, by splitting each box into eight sub-boxes, to be used to achieve a better
local fitting to the data. An alternative, tri-quadratic interpolant is also described.

4. Adaptive step. For each element for which a local interpolant has been computed in the previous
step, compute an approzimation error, as the maximum algebraic distance between the function and
the data value at data points, e = max,,ep,;, (|Wijr(p) — vel). If € > € then subdivide D;j into eight
sub-boxes. Mark the sub-boxes and their vertices as new. Then return to step 2.

End Algorithm

Notice that the adaptive refinement of the subdivision can be represented as an octree search structure (see
e.g. [33]). In the following we refer to the level of a box with the following meaning: boxes at level 1 are
those belonging to the coarser subdivision. Boxes at level ¢ + 1 have been obtained subdividing a box at a
level ¢ into eight sub-boxes.

Two adjacent boxes share the common face in one of the following two fashions:

1. The two faces coincide completely.

2. One contains the other as a proper subset.

In step 4, eight new sub-boxes and seven new vertices are created (one for each face plus one in the middle
of the original box). For the vertex shared by all sub-boxes, we always compute the derivative jet from the
local approximant as described in step 2. For the six “face” vertices, there are two possible cases; depending
on whether the box adjacent along that face has also been split or not. In the first case, the vertex has no
data associated with it, and new data is computed in step 2 of the algorithm. In the second case, the “face”
vertex is shared with an adjacent box, for which the C! interpolant has already been computed. In this case
the derivative jet is computed evaluating this interpolant, to guarantee the global C* continuity. Figure 1
shows an example of reconstruction from volumetric data.

3 Modeling of Manifold Data

We consider the problem of reconstructing both the surface of an object and a scalar field on it from dense,
scattered data. We assume that both the surface and the field are continuous and have continuous first-order
derivatives. Since data measurements are subject to error, we do not try to exactly interpolate the data but
rather approximate it within a given tolerance. The problem may be formally stated as follows:

Definition 3.1 Given a set of dense scattered points P = {p;}}\.; C R® on an unknown manifold M, and
associated data values V = {v;},, construct a smooth surface S : S(z,y,z) = 0, such that S approrimates
P within a given error bound eg, and a smooth function F : F(z,y,z), such that F approzimates the data
V' associated with P within a given error bound ep.

The problem of reconstructing the approximation § to the unknown manifold M has attracted the interest
of many authors (for a review, see [11]). Several papers focus on building a piecewise-linear surface [12, 13, 18,
25, 36]. Other methods use parametric or functional surface patches for either local or global interpolation [9,
22,24, 27,32, 34]. A few papers (see [3, 14, 15, 23, 28, 35]) use implicit surface patches. In this paper, we use
an implicitly defined tensor-product polynomial spline surface to approximate the unknown surface M.

The problem of interpolating or approximating data defined over a given manifold in R3 is commonly
referred to as modeling 3D scaitered manifold data or the function-on-surface problem [30]. Prior work on
this subject includes [1, 9, 10, 19, 21, 31].
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FiGURE 2: Reconstruction of a surface and an associated scalar field from scattered data:
(a) Input points. (b) Orientation of normals and octree subdivision. (¢) Polynomial Spline
approximation. (d) Reconstructed scalar field.



F1GURE 3: (left) The sixty-four weights defining a tricubic polynomial in BB form. The
filled dots correspond to weights that are determined by the derivative jet at a vertex. (right)
The eight admissible cases for the signed-distance function é. The sign of § on the sixty-four
control points is uniform in each region delimited by the shaded surface, and changes across
it.

3.1 From surface data to volume data: The signed-distance function

If M is a connected and orientable surface in R?, then it is possible to define (in all R3) a function §(q),
called signed-distance, by

6(q) := sign - dist(q, M)
where dist(g, M) denotes the Hausdorff distance from the point ¢ to the surface M and the sign is chosen
so that 6(q) is positive when ¢ is outside M, and negative when ¢ lies inside it. Then §(¢) = 0 will recover
the surface M.

When only discrete data on a surface is available, an approximate signed-distance can be defined in
some appropriate way (see e.g. [3, 25, 28]). Given the signed-distance function, one can approximate it
with a piecewise polynomial function S(z,y,z) (in a suitable domain containing P), and then extract the
zero-contour of S.

Using the signed-distance function to reconstruct a surface from scattered data points has been considered
by several authors.

Moore and Warren [28] use a tetrahedral decomposition of the space, and reconstruct the surface by
implicit barycentric Bernstein-Bézier patches. For each tetrahedron, they compute the associated surface
patch by least-squares fitting of the data points and samples of a “local” signed-distance function. They
partition the tetrahedron into a regular mesh of tetrahedra, and compute the distance of each vertex of
the mesh to the closest data point. If the data points are dense enough, then the tetrahedra of the mesh
containing at least one point form a “layer” that partitions the mesh into two components (one on each side
of the layer), to which two opposite signs can be assigned arbitrarily. This sign is associated to the distance
values computed for each vertex. This dense-sampling assumption can be too restrictive in some practical
cases.

Hoppe et al. [25] use a more global approach to correctly orient the approximated manifold. First, for
each data point p;, they compute a best fit plane, and the associated normal n;, based on best-fit of &
neighbor points (the k-neighborhood of p;). The problem is now assigning a consistent orientation to these
planes. They build the Riemannian Graph, RG(P) over P (two points p;,p; € P are connected by an



edge in RG(P) iff either p; is in the k-neighborhood of p; or p; is in the k-neighborhood of p;). Each edge
(4,7) is assigned the weight 1 — |n; - 7;], and a minimum spanning tree is computed. Intuitively, this tree
connects points that have close-to-parallel associated planes. They then orient the plane associated with
the point with the largest z-value so that its normal points toward the positive z-direction, and propagate
this orientation to other points traversing the minimum spanning tree. Their method continues with the
construction of a regular subdivision of a cuboid containing the data points into boxes. The value of 6
is computed at all vertices of the subdivision as the signed-distance of the vertex from the oriented plane
associated with the closest point in P. An algorithm similar to marching cubes is then used to construct
a piecewise-linear approximation of the zero contour of é. In two subsequent steps, described in [24, 26],
the constructed mesh is optimized (i.e., the number of triangles is reduced while the distance of the mesh
from the data points is kept small) and then a smooth surface is built on it. While this approach gives
very convincing results, and allows for smooth objects with sharp features to be correctly reconstructed, the
computational time required by the optimization and smoothing steps can be significant.

Bajaj et al. [3] propose the use of a-shapes [17] to build a piecewise-linear approximation of the surface
being reconstructed. The a-shape is a sub-complex of the Delaunay triangulation of the set of points P.
This approach has the advantage of being based on a sound mathematical definition of the shape of a set of
points. The piecewise-linear approximation is then used to compute the value of the signed-distance function
at any point. A piecewise polynomial approximation is subsequently built on a Delaunay 3D triangulation
of a domain containing P.

3.2 Implicit tenosr-product polynomial spline reconstruction of the manifold

The manifold data modeling algorithm, is reduced to the problem of volumetric data modeling by con-
structing the approximate signed-distance function. In our implementation we have used both the normal
propagation approach [25] and the weighted a-shapes [17]. We then use the adaptive algorithm described
in Section 2 to approximate the signed-distance function, whose value is known at data points (where it is
obviously zero) and can be computed (approximately) at any other point. Once the signed-distance function
has been approximated to the given level of accuracy, its zero contour is used as an implicit representation
of the unknown manifold. At the same time, a least squares approximation of the field defined over the
manifold can be computed. In Figure 2 the phases of the reconstruction process are shown. The advantage
of using implicit tensor-product splines is that we can construct both the manifold and the associated scalar
field over the same domain.

Different from the volumetric data modeling case, an important issue here is guaranteeing that the
resulting patches are smooth and single-sheeted. For this, a theorem similar to Theorems 3.2 and 3.3 in [4]
for a tetrahedron can be established for a tensor-product scheme:

Theorem 3.1 Let P;jr = PN\ D;jj. If there exists a plane n(x,y, z) = 0 such that all points of Pyjy, lie within
a distance € from the plane, for a sufficiently small €, then the zero contour of the local fitting Sijr(x,y, 2)
s smooth, single sheeted in Dyjp and lies within some distance, depending only on ¢ and the degree of Sijy,
from the plane w(x,y,z) = 0.

In [32] it is has been pointed out that if all the weights increase or decrease monotonically along one of the
coordinate directions, then straight lines parallel to that direction intersect the surface patch at most once.
A less constrained condition is the following:

Theorem 3.2 Given a BB-form (m,n, q)-polynomial, if there exists an integer | (0 <! < m) such that

U)Z]k;SO,Z:O,,1_1,]:0,,77/,]{7:0,;11
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and there is at least one strict inequality in each set of inequalities, then straight lines parallel to the x-
direction intersect the surface patch exactly once. Similar conclusions hold for the y and z-direction inter-
sections.

These theorems can be used as follows: the volumetric data approximation algorithm adaptively subdi-
vides boxes based on the local fitting error. When dealing with manifold data, one adds the constraint that



the conditions stated in Theorem 3.2 are satisfied. In each box, after the weights have been computed, we
check whether the weights of the signs have one of the eight topologies depicted in Figure 3. If this is true,
then the patch is non-singular and single-valued along each of the principal axes directions. We subsequently
compute the approximation error (w.r.t. the data points), to decide whether to split the box or not. If the
weight-signs test fails, the box is split and the approximation process is repeated in each sub-box.

4 (! Interpolation by tri-cubic or tri-quadratic polynomials

In the overview of our reconstruction algorithm in Section 2 we mentioned that at each vertex ¢ of the octree-
like mesh we compute a tri-linear approximant I(z, y, z) by least-squares fitting of the data in a neighborhood
of the vertex. For example, one could take the k-closest points to ¢, or take all the points contained in a box
or sphere centered around ¢q. The number of points to consider, or the size of the box or sphere, depend on
the particular data set. We then compute the following derivative jet,

ol ol ol o7t 9%l 9%l 831 ()
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and build an interpolant in each element of the mesh. This Section shows a way of constructing tri-cubic
and tri-quadratic interpolants over a box, given the above derivative jet at all its eight vertices, so that
the composite function is C'' continuous. All proofs of the lemmas and theorems stated in this Section can
be found in [2]. The following Lemma tells us how to compute the coefficients around a vertex from the
derivative jet there.

Lemma 4.1 Let

Wi(e,y,z)= Y > wijkBl (w)B} (v)Bf(w),

m n
i=0 j=0 k=0

form >0, n >0, ¢ >0, be a BB-form polynomial on the box D = [a1,as] X [b1,bs] X [c1,¢2]. Then W
interpolates the derivative jet (1) at the vertez (a1, b1, c1) if and only if

wopo = 1 (2)
as — ay Ol
wi = wogo + — — ! oz (3)
by — by Ol
= - 4
Wo10 Wooo + n Oy (4)
o Co — C1 61 -
Wpo1 = Wooo + PR (5)
w110 = Woig + Wipo — Wopo +
(ag — Cll)(bg — bl) (‘321 (6)
mn Oxdy
wig1 = Wipo + Woeo1 — Wopo +
(Clg — al)(CQ - Cl) 821 (7)
mgq 0xz0z
we11 = Woio + Woeo1 — Wopo +
(bg — bl)(Cz - Cl) 321 (8)
ng 0yoz
w111 = Wi+ Wil + Woi1 —

Wpo1 — Wo10 — Wio0 + Wooo +
(a2 — al)(bz - bl)(c2 - Cl) 831 (9)
mngq 0x0ydz

Stmilar conclusions hold for the other 7 vertices of the box D.



Tri-cubic interpolation. We can use tri-cubic polynomials (see Figure 3) to interpolate the derivative
jet at all eight vertices and satisfy the C! continuity constraints, as stated by the following

Theorem 4.1 If two tri-cubic BB-form polynomials W1 and W, interpolate the derivative jet (1) at the
common four vertices of two adjacent boxes Dy and D, then W, and W are C' continuous on the common
face of D1 and D,.

As the last Theorem states, if a volume consists of boxes, and if a tri-cubic BB polynomial on each box
is constructed from the derivative jet at the vertices by formulae (2)—(9), then the composite function is
C! continuous. The proof of the theorem above also shows that m = n = ¢ = 3 is the minimal degree for
forming C' piecewise functions, since there is no degree of freedom left. If a lower degree polynomial is used
or some degrees of freedom are required, one has to subdivide each box into smaller sub-boxes.

Creating degrees of freedom by using tri-cubic interpolation. As mentioned in Section 2, the
purpose of creating degrees of freedom is to achieve a better approximation to the data. For a given box
D with derivative jets on its eight vertices, the interpolating tri-cubic Wp is uniquely defined as described
above. To create some degrees of freedom, we subdivide the box D into eight equally-sized sub-boxes. The
derivative jet at the center ¢ of the box D is free. This means we can freely choose eight weights around ¢
(the value of the other 19 is determined by the C'! continuity conditions). We can determine the values to
assign to the eight weights by least-squares fitting of data values within the box. Of course, this subdivision
process can be repeated if necessary. The composite function is always C! continuous.

Tri-quadratic interpolation. C' interpolation of the derivative jet can also be achieved by a tri-quadratic
piecewise polynomial. However, this requires splitting each box in eight sub-boxes to create additional degrees
of freedom in the choice of coefficients.

The following theorem guarantees that by subdivision, the tri-quadratic interpolants over the eight sub-
boxes exist uniquely and the composite function is C'' continuous.

Theorem 4.2 Let D = [ay,as] X [b1,b2] X [c1,¢2] be a given box. Al each of ils eight vertices Prg, we
are given the derivative jet (1). If we subdivide D into eight sub-bozes Dy, then there exists uniquely one
piecewise polynomial function W on D such that

a. Wrst = W|D

rst

is a (2,2,2)-polynomial, that interpolates the derivative jet at Pygy.
b. W is C' continuous on D.

c. If W' is defined in the same way over an adjacent box D', then W and W' are C' continuous on the
common face of D and D'.

Unlike the tri-cubic interpolation, the subdivision does not lead to extra degrees of freedom.

5 Visualization of Multiple Data Sets

The reconstructed spline model can be used to extract polygonal isosurfaces that can be directly rendered.
In Figure 4, two examples of isosurfaces visualizations are shown. The data is a scattered volumetric sampling
of the electrostatic potential function for a caffeine molecule.

When dealing with manifold data, one often wants to visualize the reconstructed manifold § (domain)
together with the associated fields. A simple way of doing this is by coloring each pixel of the domain surface
with a color proportional to the field value at that point, according to a predefined colormap. Alternatively,
one might draw isocontours of the field over the manifold. Another popular method consists in displaying the
field as a function-on-surface, i.e. a surface obtained by projecting the field from R* to R3. One approach
is to use a radial projection from the center of the domain surface §. However, if the domain surface § is
not convex or has non-zero genus, this method has serious difficulties. Another more natural way is to use a
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FiGUuRE 4: Isosurfaces from a reconstructed piecewise polynomial function. The input
scattered volumetric data represent values of the electrostatic potential function for the
caffeine molecule.

normal projection, that is, project the point p on the domain surface § along the normal to § to a distance
proportional to the value of the field F in p:

VS(p)(F(p) - sz'n)

Gip)=p+1L VS| (Frnaz — Fmin)

where L is a positive scaler, Fj,;, and Fy,q; are minimum and maximum values of F' on §. However again,
if L is not given properly, the surface G may self-intersect when the domain surface § is not convex.

To avoid self-intersections, as in [7], we take L < v = minyes{Rmin(p)}, where Rp,;,(p) is the minimal
principal curvature radius at p of surface S. Since S is a piecewise C! continuous surface and each piece is
C®  hence ¥ > 0. The main task here is to compute 7. In general, it is not easy to compute the exact value of
v, however an approximate 7 serves our purpose as well. When we produce the triangulation of each surface
patch on S, we also compute R,in(p) for vertices p, and then take v = minyes{Rmin(p) : p is a vertex}.
For an implicit surface f(z1, 29, 23) =0, let f; = g—ai, fij = %. The principal curvature radius are the
absolute values of the roots of the equation az? 4 bz + ¢ = 0, with:

3
a = Zﬁ'z(fi+1,i+1fi+z,z’+2—fz'2+1,i+2)
i=1
+ 2 Z Tifi(fir fiw — fij far)
1), k£, k#]
3
b= VIO f2(figrizs + fixzin)
i=1
— 2> fififg)
(=3
¢ = |V

10
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F1GURE 5: Reconstruction of a jet engine from manifold data: (a) Input points for the
outer cowl, with oriented normals. (b) Octree subdivision generated by the approximation
algorithm. (¢) Polynomial spline approximation. (d) Reconstructed engine.
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FI1GURE 6: Visualization of the reconstructed jet engine and a pressure field defined on
its surface: (a) Isoregions of the pressure field show on the jet engine surface. (b) The
pressure field displayed with the local normal projection method. (¢) The polynomial spline
patches of the pressure field. (d) Isocontours of the pressure field displayed on the normally
projected surface.
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FiGurk T7: Visualization of multiple fields from scattered manifold data. The data represent
four different functions (elevation, pressure and two measures of precipitation) over the
surface of the Earth. Isocontouring, pseudo-coloring and a function-on-surface obtained
with the normal projection method are used.

where the indices are taken mod 3. Another approach to determine L is to take
2
I < §— min {min{ lla = #lPIIVSW)I .
reTa | ¢ | 2(¢ —p)"VS(p)
[p,q] € Ty and (¢ — p)* VS(p) > 0}}
where T} is the triangulation of § used to display S;, p € T; means p is a vertex and [p, ¢] € T4 means [p, ¢]
is an edge. It should be noted that if S is convex(i.e., (¢ —p)T VS(p) < 0) or planar(i.e., (¢—p)T VS(p) = 0),

the é can be chosen arbitrarily.
Figures 5 and 6 show an example of a reconstructed object and an associated scalar field from manifold

data. The sampled points come from the surface of a jet engine, while the associated values measure the
pressure on the engine (data from a simulation). Figure 5 shows several steps of the reconstruction process
on one part of the engine. We used the normal propagation method in this example to define an approximate
signed distance function. The 3780 data points for the outer cowl are preprocessed to associate local fitting
planes and orient the associated normals (Figure 5(a)). The approximation algorithm begins with a given
grid (in this case, a uniform subdivision into 5 x 5 x 5 equally-sized boxes) and then adaptively refines it
until the error bound conditions are met (the error in this example was set to 0.01 times the max size of the
object). The final subdivision is displayed in Figure 5(b). A C!-smooth spline surface is obtained, as shown
in Figure 5(¢). The full reconstructed engine is finally shown in Figure 5(d). The complete reconstruction of
this object took about 30 seconds on a SGI MIPS4400 workstation. Figure 6 shows different visualizations
of the reconstructed spline model for the air-pressure field over the surface of the jet engine. In Figure 6(a)
some isoregions of the pressure field have been drawn on the engine surface. In Figure 6(b) we have used the
normal-projection method to show the scalar field as a function-on-surface. Points on the domain surface
have been projected along the surface normal direction to a distance proportional to the value of the field at
that point. The field surface patches are visible in Figure 6(c). Finally, in Figure 6(d), we show isocontours
projected on the function-on-surface.

13



Using the normal projection method one can simultaneously visualize multiple co-registered fields. This
can be extremely helpful in understanding correlation in complex data sets. For example, one might visualize
a manifold domain, and draw multiple function-on-surfaces, one for each field, using different offsets. Alter-
natively, one can draw one field as a function-on-surface, and use the value of other fields to pseudo-color (or
draw isocurves on) the domain or the function-on-surface or both. Figure 7 shows a visualization of multiple
scalar fields over the surface of the Earth, combining several of the techniques described above.

6 Conclusions

Techniques are presented to incrementally and adaptively build polynomial spline models, based on an octree
subdivision, from a set of multiple data values scattered in space. The modeling of manifold data is reduced
to the problem to volumetric field reconstruction, via a signed-distance function. The geometry of the
manifold and the associated physical properties are modeled by trivariate polynomial splines defined over a
common domain, a feature that solves the data co-registration problem and simplifies visualization.

Availability of a spline model coupled with search structures supports interrogative visualization, i.e.
quantitatively querying the data for information like value, differential properties and topological character-
istics. We have implemented sll of the algorithms in our Shastra environment and used it to produce the
pictures shown in this paper.
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