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Abstract

There is a growing interest for the problem of re-
constructing the shape of an object from multiple
range images. Several methods, based on heuristics,
have been described in the literature. We propose the
use of alpha-shapes, which allow us to give a formal
characterization of the reconstruction problem and
to prove that, when certain sampling requirements
are satisfied, the reconstructed alpha-shape is home-
omorphic to the original object and approximate it
within a fixed error bound.

In a companion paper, we describe practical meth-
ods to automatically select an optimal alpha value,
to deal with less-than-ideal scans, and to fit smooth
piecewise algebraic surface to the data points.

1 Introduction

Cheaper, easier-to-use 3D digitizers are foster-
ing a growing interest for the problem of shape-
reconstruction. Automatic methods for reconstruct-
ing an accurate geometric model of an object from a
set of digital scans have applications in reverse engi-
neering, shape analysis, virtual worlds authoring, 3D
faxing and tailor-fit modeling.

Range or optical-triangulation laser scanners pro-
duce a regular grid of measurements, which can be
easily converted to a rectangular or cylindrical sur-
face model when a single scan suffices to capture the
whole object’s surface. However more often multiple
scans are required, and the results must be merged
together. Several approaches have been proposed to
reconstruct the shape of an object from a collection
of digital scans.
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Turk and Levoy [14] proposed to “zipper” together
several meshes obtained from separate 3D-scans of
an object. More recently, Curless and Levoy [5] pre-
sented an approach to merge several range images by
scan-converting each image to a weighted signed dis-
tance function in a regular 3D grid. The zero-contour
of the signed distance function, which can be easily
extracted with a marching cubes algorithm [13], rep-
resents the reconstructed surface.

A different class of methods try to rely on spatial
location of points only, without any assumed knowl-
edge of connectivity between sampled points. Bois-
sonnat [3] proposes two methods to build a triangu-
lation having the given points as vertices. Following
his first approach, one starts with creating an edge
between the two closest points. A third point is then
chosen and added, so that a triangle is formed. Other
points are successively added and new triangles are
created, and joined to an edge of the current triangu-
lation boundary, until all points have been included.
The second method is based on the idea of first com-
puting a Delaunay triangulation of the convex hull
of the set of points, and then sculpturing the volume
by removing tetrahedra, until all points are on its
boundary, or no tetrahedra can be further removed.

Choi et al. [4], described a method to incrementally
form a triangulation interpolating all data points,
based on the assumption that there exists a point
from which all the surface is visible. After a triangu-
lation is built, it is improved by edge swapping based
on a smoothness criterion.

Veltkamp [15] introduced a new general geomet-
ric structure, called v-graph. The y-graph coincides
initially with the convex hull of the data points,
and is progressively constricted (i.e. tetrahedra hav-
ing boundary faces are deleted) until the boundary
of the y-graph is a closed surface, passing through all
the given points.

Hoppe et al. [11] compute a signed distance func-
tion from the data points, and then use its zero-



contour as an approximation of the object. To define
the signed distance from the unknown surface, they
compute a best-fit tangent plane for each data point,
and then find a coherent orientation for the surface
by propagating the normal direction from point to
point, using a precomputed minimum spanning tree
to favor propagation across points whose associated
normals are nearly parallel.

One of the most difficult problems of shape recon-
struction from unorganized points is understanding
how to “connect-the-dots” so as to form a surface
that has the same topological (e.g. number of han-
dles) and geometric (e.g. depressions and protrusions)
characteristics of the original. All the methods listed
above are based on geometric heuristics. While these
methods have been shown to be successful on several
examples and practical applications, they fail to pro-
vide requirements on the sampling that guarantee a
provably correct reconstruction.

Alpha-shapes were introduced in the plane by
Edelsbrunner et al in [8] and then extended to
higher dimensions [7, 9], as a geometric tool for rea-
soning about the “shape” of an unorganized set of
points. They offer the dual benefit of having a solid
mathematical foundation and of being relatively easy
to compute. We have developed several automatic
reconstruction methods based on alpha-shapes and
algebraic-patch fitting [1, 2].

In this paper we formalize the shape reconstruction
problem, give a set of sufficient conditions for recon-
structing an object using alpha-shapes, and discuss
some practical considerations. The paper is orga-
nized as follows: Section 2 contains a short review
of the main concepts and notation used in this work.
In Section 3 we give a formal statement of the shape
reconstruction problems. Section 4 is devoted to a
proof of sufficient conditions on the sampling to al-
low a homeomorphic, error-bounded reconstruction.
In section 5 we illustrate some examples, discuss some
practical considerations, and outline directions for fu-
ture work.

2 Preliminaries

Topological spaces, homeomorphisms, and
manifolds. A topological space is a set S together
with a collection U of subsets of S (that is, U is a
subset of 2°) satisfying the following conditions:
1.0eU,SelU.
2. EU,...,U, €U then NJ_,U; €U.

3. Arbitrary unions of elements in i lie in U; that
is, ifU C U, then Uy €U.

The elements of U are called open setsin S. The col-
lection i is called a topology on S. We often suppress
the U and simply refer to S as a topological space.

A map f from a topological space X to another
topological space Y is continuous if every neighbor-
hood of f(p) in Y is mapped by f~! to a neigh-
borhood of p in X. If f is bijective, and if both f
and f~! are continuous, then f is a homeomorphism.
Two topological spaces X and Y are homeomorphic
if there exists a homeomorphism f: X — Y.

In the following, we will restrict ourselves to sub-
sets of the n-dimensional Euclidean space, S C R”.
Let us define the following subspaces of R”, with ori-
gin o:

o* = {xeR" z,>0}
B* = {zeR"| |lz-of[ <1}
7 = {zeR| Jle—oll=1)

Open, half-open, and closed n-balls are homeomorphic
to R”, H™ and B", respectively. An (n — 1)-sphere
is homeomorphic to S? 71,

A set in R" is bounded if it is contained in an open
ball. An open covering of a topological space S is a
collection V C U such that UyeypV = S. A space
S is compact if every open covering has a finite sub-
covering. A subspace of R™ that is both closed and
bounded is compact.

A k-manifold in R” (n > k) is a subspace that
is locally homeomorphic to R¥. A k-manifold with
boundary is a subspace that is locally homeomor-
phic to either R* or the half-open k-ball H*. Points
with a neighborhood homeomorphic to H* form the
boundary of the manifold X, denoted bd(X). The
boundary of a k-manifold with boundary is a (k—1)-
manifold without boundary.

Simplicial complexes. A k-simplex op =
conv(T) is the convex combination of an affinely in-
dependent point set 7' C R", |T'| = k + 1. k is the
dimension of simplex op. A (geometric) simplicial
compler K is a finite collection of simplices with the
following two properties:

l.ifop € K then oy e K, YU CT

2. if oy, oy € K, then oyny = oy Noy (1 and 2
imply that oynv € K).

The underlying space of K is [K] = Usego. A
subcomplex of K is a simplicial complex L C K.



Alpha-shapes. Alpha-shapes [8,9] associate a
mathematically defined meaning to the vague concept
of shape of an unorganized set of points. Weighted
alpha-shapes [7] are a generalization of alpha-shapes
to sets of weighted points. In the following, we will
shortly review definitions and properties of alpha-
shapes. The presentation is adapted from [7]. No-
tice that although the exposition is for unweighted
alpha-shapes, we will use the notation used in the
more general weighted case. A weighted alpha-shape
coincides with an unweighted alpha-shape when all
weights are equal to zero. We restrict our presen-
tation to the three-dimensional case. n-dimensional
weighted alpha-shapes are described in the cited ref-
erence [7].

In the following we will sometimes regard a sphere
of radius p centered in p as a weighted point p of
weight w, = p?. We define the power distance of a
point z from a weighted point p as

mp(z) = ||10_‘=13||2 — Wp

where ||[p—z|| is the Euclidean distance between p and
z. A geometric interpretation of the power distance is
the following: If weighted point p represents a sphere
of center p and radius ,/w,, then m,(z) is the square
of the length of a tangent line segment from z to the
sphere (see Figure 1).

FiGure 1: Power distance of a point
z from the weighted point p.

Let P C R3 be a finite set of points (general po-
sition is assumed implicitly throughout the paper),
|P| > 4, and 7 its Delaunay triangulation. For ev-
ery simplex op € 7T, let yr be the smallest sphere
(weighted point) such that 7,.(p) = 0,¥p € T. If
|T'| = 4 there is only one such sphere yp, the circum-
sphere of op. If |T| = k4 1 < 4 there are infinitely
many such spheres, but only one has minimum ra-
dius. The center of yr is located at the intersection
of the chordale of T' (see Figure 2)

FiGuRrE 2: The collection of spheres
containing the two vertices of the
l-simplex T' = {p,q}. The sphere
yr of minimum radius pr is drawn

in bold.

= () Xor Xpg = {z € R |lp—2]|| = |lg—z||}
p,qeT

with the orthogonal k-flat aff(7"). Let pr be the ra-
dius of yr, and call wy, = p4 the size of the k-simplex
or. Notice that the size of a 0-simplex is 0. The size
of simplices satisfies the following monotonicity prop-
erty: if U C T then wy, < wy,, that is the size of
a proper face of a simplex is smaller than the size of
the simplex itself.

A point ¢ € P—T is a conflict for yr if 7,,(¢) < 0,
and yr is conflict-free if it has no conflicts. Obvi-
ously, all 3-simplices op € 7 are conflict-free, but a
k-simplex, k < 3, can have conflicts.

Definition 2.1 The alpha-complex of P is the sub-
complex X, of T formed by all simplices op such that:

(a) The size of yr is less than o and yr is conflict-
free, or

(b) or is a face of oy and oy € X,

The underlying space Sy of Xy, called alpha-shape, is
a polytope, which can be non-connected and different
from the closure of its interior (i.e. it may contains
parts of heterogeneous dimensionality).

It can be proved (see [7]) that the following is an
alternative definition of alpha-shapes:
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FIGURE 3: An example of ambiguous 2D reconstruction from points. From left to right: A
point sampling and three, equally acceptable, reconstructions.

Definition 2.2 Consider a subset T C P, with |T| =
k+1<3, and the k-simplex op. Let us call op a-
exposed if there exists a weighted point x, of weight
wy = a (that is, a sphere of radius \/«r), such that

Wx(p):{ =0 VpeT

>0 VpeP-T

The alpha-shape S, of P is a polytope whose bound-
ary is the union of all a-exposed simplices spanned
by subsets T C P,|T| < 3. The interior of S, is
formed by those components of R3 bounded by col-
lections of a-exposed 2-simplices op, such that op is
a-ezposed only on one side (i.e. there exists only one
weighted point of weight o that exposes o). The in-
terior points of S, lie on the side of op that is not
a-exrposed.

When the alpha-shape of a point set P, for some
a, is a connected 2-manifold without boundary, it
partitions the space into two connected components.
The bounded component is the solid enclosed by the
alpha-shape, and will be called alpha-solid. In [2] we
give a more general definition of alpha-solid, as well as
techniques to automatically find an optimal « value
for a given set of points, and heuristics to improve the
alpha-solid in areas of insufficient sampling density
(see also Section 5).

3 Statement of the Problem

Reconstructing the shape of an object from an un-
organized “cloud” of points is in general an under-
constrained problem. Consider the simple 2D recon-
struction problem illustrated in Figure 3: Several so-
lutions are possible, and it is difficult to identify the
“best” among them. It is therefore of interest look-
ing at the following problem: What are the charac-
teristics of a sampling S (a finite set of points) of
the surface of a solid object M, such that M can

be reconstructed from S unambiguously and within
predefined approximation bounds?

In particular, we consider the following reconstruc-
tion problem: Starting with a sampling of the surface
B of a solid, we want to compute a triangulated sur-
face K that has the “same shape” of B, and such that
a suitably defined distance D(K, B) of K from B is
bounded by a given €. A useful distance measure is
for example:

D(K,B) = max min||p — q||.
(K, B) = maxmin|p - g

Stated formally:

Problem 3.1 Let B be a compact 2-manifold with-
out boundary (in particular, the boundary of a solid
M), and S C B a finite set of points (sampling).
Construct a (geometric) simplicial complex K, such
that K = S K is homeomorphic to B, and
D(K,B) <e, for a fired e € R,e > 0.

The pair (K, h), where K is a simplicial complex
and h is a homeomorphism h : [K] — B is called a
triangulation in algebraic topology.

An algorithm aimed at reconstructing the shape of
an object from point data alone must have a way of
inferring spatial relationships among points. Char-
acteristics of the sampling that guarantee an unam-
biguous and correct reconstruction depend on how
the data is interpreted by the algorithm.

We have already mentioned that alpha-shapes al-
low us to find spatial relationships between points of
an unorganized set. The relationships are based on
proximity. Clusters of points close to each other are
grouped to form edges, triangles and tetrahedra, and
more complex structures made of collections of these
simple constituents.

The question we need to answer is therefore the
following: What are sufficient conditions of a sam-
pling that guarantee that there exists an « such that
the corresponding a-shape satisfies the requirements

of Problem 3.17



(a)

(b)

FIGURE 4: Sampling requirements for 1-manifolds in R?. (a) The sampling density must
be such that the center of the “disk probe” is not allowed to cross B without touching a
sample point. (b) The radius p of the disk probe must be small enough that the intersection
with B has at most one connected component. (c) Examples of non admissible cases of

probe-manifold intersections.

4 Sampling Requirements

We can look at the two-dimensional case to get some
insight into the problem. Figure 4 illustrates the dis-
cussion that follows. In this case, we are sampling
a l-manifold B (observe that B is a collection of
“loops”). Intuitively, we can think of the points of
the sampling as “pins” that we fix on B. We now use
a disk probe of radius p = \/a to “sense” the man-
ifold. The probe must be able to move from point
to point of S on the surface, touching pairs of points
in sequence, and without touching other parts of B.
The pairs of points will be connected by segments of
the alpha-shape, and will form loops homeomorphic
(and geometrically close) to each component of B.

Clearly, a necessary condition is that no two ad-
jacent points of the sampling are farther away than
the diameter of our disk-probe, because otherwise the
probe would “fall” inside the boundary of our solid
object. We also need to make sure that all, and only,
the edges connecting pairs of adjacent points are a-
exposed. To do this, our probe needs to be small
enough to be able to isolate a neighborhood of a point
p on B, or, equivalently, discern “adjacent” points on
B from points that are close in the Euclidean sense
but not on the surface. These requirements are for-
malized in the following

Theorem 4.1 Let B C R? be a compact 1-manifold
without boundary, and S C B a finite point set. If

1. For any closed disk D, C R? of radius p, BN D,
is either (a) empty; (b) a single point p (then
p € bd(D,)); (¢) homeomorphic to a closed 1-
ball I, such that int(D,) N B = int(I);

2. An open disk of radius p centered on B contains
at least one point of S,

then the alpha-shape S, of S, o = p?, is homeomor-
phic to B and

D(8a, B) = maxmin|lp — g} < p.
Observe that B is in general a collection of 1-spheres
B;. We will prove the theorem by showing that for
each l-sphere B; C B there is a homeomorphic com-
ponent in §,, and then showing the bound on the
distance.

Before we prove the theorem, we need a few lem-
mas. In the lemmas that follow, B, B;, and S are
those defined above. The symbol D, is used as above
to indicate a closed disk of radius p. We refer to the
two conditions stated in the theorem as conditions 1
and 2. We often refer to two points p, ¢ on a compo-
nent B; of B, and use the symbols X, Y to indicate
the two closed 1-balls on the 1-sphere B; having p, ¢
as boundary points. Obviously X UY = B;.

Lemma 4.1 Let p,q be two points on B. If there
exists D, such that p,q € bd(D,), then D, N B is a
1-ball I, and bd(I) = {p,q}.

Proof: Since D, contains two points of B, by con-
dition 1 it must intersect B in a (closed) 1-ball I,
with p,q € I. Suppose p ¢ bd(I). Then p € int(I).
But p ¢ int(D,) N B, therefore condition 1 cannot be
satisfied. o

Lemma 4.2 Let p,q be two points on B;, and let
X,Y be the two I-balls on B;, bd(X) = bd(Y) =



{p,q}. If there exists D, such that p,q € bd(D,),
then either D,NB=X or D,NB=Y.

Proof: By Lemma 4.1, D, N B is a 1-ball whose
boundary is {p, ¢}. Clearly this 1-ball must be a sub-
set of B;. There are only two 1-balls on B; having
{p, ¢} as boundary, namely X and Y. o

Lemma 4.3 Let p,q be two points on B;, and let
X,Y be the two I-balls on B;, bd(X) = bd(Y) =
{p,q}. Ifint(X)NS =0 then ||p—q|| < 2p.

Proof: Suppose that ||[p— q|| > 2p. Since X is a 1-
ball connecting p and ¢ and [[p—q|| > 2p, there exists
a point ¢ € X such that |[p — || = p. Consider D,
centered in ¢, and observe that p € bd(D,). Since D,
contains two points of B (p and ¢), it must intersect
B in a 1-ball I, and p must be a boundary point of
I, by condition 1.

The other boundary point of I must be contained
in the 1-ball Z between ¢ and ¢. Notice that ¢ cannot
be inint(D,) because |[p—q|| > 2p. Also, there are no
other points of S'in Z C int(X). Therefore int(D,) is
an open disk of radius p centered on B that contains
no points of S, contradicting condition 2. o

Lemma 4.4 Let p,q be two points on B;, and let
X,Y be the two I-balls on B;, bd(X) = bd(Y) =
{p,q}. If int(X) NS = 0 then there exists D, such
that p,q € bd(D,) and D,NB = X.

Proof: Notice that by Lemma 4.2, either D, N B =
X,or D,NB =Y. It will therefore suffice to show
that there must be a point of X other than p,q in
D,.

By Lemma 4.3, ||p — ¢|| < 2p, and therefore
there are two disks Dy ,, D>, such that p,q¢ €
bd(Dy ),k = 1,2, whose centers lie on the oppo-
site sides of the line through p, q. Assume that there
are no points of X other than p,q in either of these
disks.

Consider the line through the midpoint of segment
p,q and orthogonal to the segment. This line must
intersect X at a point ¢, which lies outside the two
disks. Tt is easy to see that |lc — p|| = ||e — q|| >
V2p > p. Then take the disk D, centered in c € X.
Since it contains a point of B in its interior, it must
intersect B in a 1-ball I containing ¢, by condition 1.
Observe that I cannot include p or ¢ because of the
bound on the distance. Therefore, I must be a proper
subset of X. Since X does not contain points of S in
its interior, int(D,) violates condition 2. o

Lemma 4.5 Let p,q be two points on B;, and let
X,Y be the two I-balls on B;, bd(X) = bd(Y) =

g} Ifint(X) NS = 0 then there exist two disks
D, ,,D5, such that p,q € bd(Dy,),k = 1,2 and
D,,NnB=D;,,NB=X.

Proof: Let the two disks Dy , be as in Lemma 4.4.
By that same lemma, one of the two disks, say Dy ,
must be such that 1, , N B = X. Then assume that
for the other disk D3 , N B # X. By Lemma 4.2 we
must have Dy ,N B =Y. All of B; is then contained
in the union of the two disks.

Now consider a disk D,(t) centered in ¢ = te; +
(1 — t)ca, where c1,cy are the centers of D; , and
D> ,, respectively. For 0 <t < 1 the disk moves from
a position coincident with D, , to one coincident with
D, ,. Foreach 0 <t <1, D,(t) contains p and ¢, and
therefore, to satisfy condition 1, must contain all X
or all Y, but can never contain both.

For any point # € int(X) the function

fo@) = ||z =)l —p

is continuous, and negative for ¢t = 0. Since D,(1) N
int(X) # int(X), there exists T € int(X) such that
f#(1) > 0. Then there is a 0 < ¥ < 1 such that
f#() = 0. Let T be the point for which is minimum
the ¢ that makes fz(t) zero.

Then X lies allin D,(%), and Z lies on the boundary
of D,(t). Since T € int(X), and p,q € int(D,(?)),
I = D,(t) N B contains T in its interior. But then
condition 1 cannot be satisfied. o

Lemma 4.6 Consider two points p,q €S. If p € B;
and q € By, 1 # j, then the segment op, T = {p,q} is
not a-exrposed.

Proof: For op to be a-exposed there must exist a
D, such that p,q € bd(D,). But then D, N B must
be a 1-ball by condition 1, which is impossible since
P, q belong to different components of B. o

Lemma 4.7 Consider two points p,q € S, with
p,q € B;, and let X,Y be the two I-balls on B;,
bd(X) = bd(Y) = {p,¢}. If both int(X) and int(Y)
contain points of S, then the segment op, T = {p, q}
1s not a-exposed.

Proof: If there exists D, such that p,q € bd(D,),
then by Lemma 4.2 D, must contain either int(X)
or int(Y"). Since both contain points of S, o7 cannot
be a-exposed. If the disk D, does not exists that op
cannot be a-exposed. o

Lemma 4.8 Consider two points p,q € S, with
p,q € B;, and let X,Y be the two I-balls on B;,
bd(X) = bd(Y) = {p,q}. Ifint(X) NS = 0, then
the segment op, T = {p,q} is a-exposed. Moreover,
or does not bound the interior of Sy (or, equivalently,
or is a singular simplez of the alpha-complez K, ).



Proof: By Lemma 4.4 there exist two disks
D, ,,D> , such that p,q € bd(D,) and Dy ,N B =
X,k =1,2. Since int(X) does not contain points of
S, o7 is a-exposed, and there are two weighted points
z,y, wy = wy = p? that identify o7 as a-exposed.

o

Lemma 4.9 There are at least three points of S on
each B;.

Proof: B; cannot have 0 points on it, because oth-
erwise condition 2 would be violated for any int(D,)
centered on B;. Suppose B; has only one point p of S.
Then take D, centered in p. By condition 1, D, in-
tersects B; in a 1-ball I containing p. Then consider a
point ¢ € B; — I, and a disk D, centered in c. Clearly
this disk cannot contain p. Therefore, int(D,) does
not contain ant point of S, violating condition 1. For
the case of only two points of S on B; one can repeat
the reasoning in Lemma 4.4 and conclude again that
condition 1 would not be satisfied. o

We are now ready to prove Theorem 4.1:

Proof: (i) So(S) and B are homeomorphic.

By Lemma 4.9 there are at least three points of
S on each connected component B; of B. For each
of these points, say p, there are exactly two other
points of S on B;, say qi1,¢a, such that the two 1-
balls on B; having p,qr (kK = 1,2) as boundary do
not contain any other point of S. Therefore, by Lem-
mas 4.6-4.7, for each point of S there are exactly two
incident 1-simplices in §,. Observe that these seg-
ments cannot intersect each other in their interior.
This could be easily proved here, but it will suffice to
notice that the segments are part of the 1-skeleton of
a simplicial complex. The a-exposed segments form a
one l-sphere for each component of B. We can then
build a homeomorphism by mapping each segment
opr, T = {p, q} to the 1-ball X C B; that has p,q as
boundary points and contains no other points of S.

(i1) D(8a(S5), B) < p.

Each segment op, T = {p,q},p,q € B; of 8, is
mapped by the homeomorphism to a 1-ball X C B;.
This ball, by Lemma 4.5, is contained in the intersec-
tion of the two disks D1 ,, D2 ,, p,q € bd(Dg ), k =
1,2 (see Figure 5). It is easy to see that for a point
x in this intersection, the maximum distance é to the
closest point on the segment o7 is § < p. Since this
is true for all segments of S, the bound holds. o

Notice that locally the error bound can be made
arbitrarily small. In fact, for each segment op,T =
{p,q}, if ||p — ¢q|| = 2d, the maximum local error is

b<p—p*—4d?

FiGURE 5: The maximum distance
6 of a point & on the segment p, ¢ to
the closest point of B is bounded by

p.

which has limit zero as d tends to zero.

Therefore, while a p-dense sampling will suffice to
reconstruct the manifold B with distance bounded by
p, we can always make the approximation error arbi-
trarily small in any region C' C B by simply sampling
C' at a higher density. Also note that the expression
for é converges to zero quadratically, that is it is suffi-
cient to double the density of the sampling to reduce
the error by a factor of four.

We are currently working on extending the theo-
rem above to the 3D case, as well as to the more
general case of weighted points in R™. We state the
3D version of the theorem here as a

Conjecture 4.1 Let B C R3 be a compact 1-
manifold without boundary, and S C B a finite point
set. If

1. For any closed ball D, C R? of radius p, BN D,
is either (a) empty; (b) a single point p (then
p € bd(D,)); (¢) homeomorphic to a closed 2-
ball I, such that int(D,) N B = int(I);

2. An open ball of radius p centered on B contains
at least one point of S,

then the alpha-shape S, of S, a = p? is homeomor-
phic to B and

D(S,, B) = maxmin||p — q|| < p.
(Sa, B) = maxmin|lp —q|| < p

The conditions above restrict the domain of appli-
cability of our reconstruction tool to surfaces whose



(a)

FIGURE 6: A small neighborhood of regions of curvature higher than p can be incorrectly
reconstructed by the alpha-shape §,2. Bold segments represent “extraneous” alpha-exposed
1-simplices. (a) A convex sharp feature and a concave high-curvature feature. (b) Extrane-

ous alpha-exposed 1-simplex (detail).

radius of curvature is larger than p, as otherwise the
ball-intersection requirement would be impossible to
satisfy (see Figure 6). Note however the following:
(i) This restriction parallels the band-limited require-
ment in Nyquist’s sampling theorem; (ii) p can be
made (at least in theory) arbitrarily small. The price
to pay to reconstruct small-scale features is to use
a high-density sampling, which is reasonable. On a
more practical side: (iii) the sampling density of laser
scanners is usually much smaller than object features
of interest (otherwise large measurement errors would
occur); (iv) points are not sampled on the sharp fea-
ture, but in its proximity; and (v) data collected in
proximity of sharp (or high-curvature) features is usu-
ally subject to noise, and therefore not reliable. Accu-
rately reconstructing sharp features (for example to
segment the surface into a collection of smooth faces)
requires an elaborate analysis of the data and/or ad-
ditional knowledge of surface characteristics.

5 Conclusions

While the theorems above give us sufficient conditions
for a sampling to allow a faithful reconstruction using
a-shapes, in practice one has often to deal with less
than ideal scans.

In general, i.e. when the conditions of the theo-
rems above are not satisfied, an alpha-shape is a non-
connected, mixed-dimension polytope. We are inter-
ested in reconstructing solids, and therefore it is con-
venient to define a “regularized” version of an alpha-

shape. The regularization should eliminate dangling
and isolated faces, edges, and points from the alpha-
shape, and recognize solid components.

In [2], we define a regularized alpha-solid, and de-
scribe an automatic method for the selection of an
optimal « value, and a heuristic to improve the re-
sulting approximate reconstruction in areas of insuf-
ficient sampling density.

The examples shown in the following have been
computed with our automatic selection strategy and
alpha-solid improvement technique.

Figures 7, 8 and 9 and Table 1 illustrate some ex-
amples of alpha-solids computed with the technique
described above.

The mechanical part shown in Figure 7(a)-(c) was
designed in a commercial solid modeler and randomly
sampled.

The object in Figure 7(d)-(f) (courtesy of Jorg Pe-
ters, Purdue University) was constructed with a sub-
division smoothing of a polyhedron (the result of the
union of three polyhedral approximation of tori, with
their axis aligned to the coordinate axis). This object
has topological genus seven.

The human knee in Figure 7(g)-(i) is a reconstruc-
tion from the Visible Human Project data. An isosur-
face was extracted from the CT volume. As a prepro-
cessing, we reduced the number of vertices from 3-10°
to about 3 - 10%, by replacing clusters of very close
points with only one representative (these clusters oc-
cur frequently in marching-cube surface extraction).

The data for the golf club and the bunny in Fig-



Number | a-Solid || Number of | Removed | Number of
Object of Points Time tetrahedra | tetrahedra Triangles
Femur 9807 1.5 36182 3704 19610
Tibia 9200 1.4 33232 2172 18396
Fibula 8146 1.1 30876 2896 16288
Patella 2050 0.3 7536 683 4096
Part 1 13040 2.5 42507 2473 26088
Club 16864 4.1 58657 754 33142
3 Tori 10833 2.2 42970 2914 21692
Bunny 33123 19.6 127607 3761 66224
Mannequin 10392 2.1 35383 2077 19802

TABLE 1: Results of alpha-solid reconstruction. The table show for each object, from left
to right: (1) The number of points in the sampling; (2) The time, in minutes, required by
the alpha-solid computation (including 3D Delaunay triangulation, computation of family
of alpha-shapes, automatic selection of alpha value, improvement by local sculpturing). All
computations were carried out on a SGI Indigo2, with a 250MHz MIPS 4400 CPU; (3) The
number of tetrahedra in the initial alpha-solid; (4) The number of tetrahedra removed by
the heuristic; (5) The number of triangles in the boundary of the final reconstructed model.

ure 8 was obtained with a laser 3D digitizer.

Figure 9 illustrates the use of weighted alpha-
shapes to reconstruct objects that have been sampled
at multiple resolution. Some parts of the mannequin
head were scanned at a relatively coarse resolution,
and other more complicated parts at a finer resolu-
tion. Appropriate weights were assigned to the points
of each scan.

Table 1 summarizes results and timings on the ex-
amples shown.

Once a triangle mesh has been constructed from
the data points, one can apply mesh simplification,
and subdivision [10], parametric [6, 12] or implicit [1,
2] patch fitting.

We are currently working on a proof for the 3D
and general-dimension, weighted points version of the
sampling theorem.

Other directions for further research include effi-
cient methods for the computation of two-manifold
alpha-shape from the data points without computing
the 3D Delaunay (or regular for the weighted case)
triangulation. It would also be useful to develop a
“real-time” , incremental reconstruction methodology.
With this approach, the partially reconstructed sur-
face would be shown to the user as points get scanned.
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FIGURE 8: Reconstruction from range data. (a) and (d) Combined scans. (b) and (e)
Reconstructed alpha-solid. (¢) and (f) Phong-shaded rendering.

(d) (e) (f)

FIGURE 9: Example of reconstruction from a multi-resolution scan using weighted al-
pha-shapes. (a) Sampling. Notice how the eyes area has been scanned at higher resolu-
tion. (b) and (¢) Weighted points represented as balls. Weights were assigned manually
to simulate a multi-resolution scan. (d) Reconstructed alpha-solid. (e) Alpha-solid after
improvement by sculpturing. (f) The same reconstructed model Phong-shaded.
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