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Spline Approximations of Real Algebraic Surfaces
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We use a combination of both symbolic and numerical techniques to construct several
degree bounded G0 and G1 continuous, piecewise spline approximations of real implicit
algebraic surfaces for both computer graphics and geometric modeling. These approxi-
mations are based upon an adaptive triangulation (a G0 planar approximation) of the
real components of the algebraic surface, and include both singular points and singular
curves on the surface. A curvilinear wireframe is also constructed using minimum bend-
ing energy, parametric curves with additionally normals varying along them. The spline
approximations over the triangulation or curvilinear wireframe could be one of several
forms: either low degree, implicit algebraic splines (triangular A-patches) or multivari-
ate functional B-splines (B-patches) or standardized rational Bernstein–Bézier patches
(RBB), or triangular rational B-Splines. The adaptive triangulation is additionally useful
for a rapid display and animation of the implicit surface.

c© 1997 Academic Press Limited

1. Introduction

Real algebraic surfaces are often used to cope with the problem of modeling complicated
shapes .Bajaj et al. (1995), .Blinn (1982); .Pratt (1987); .Wyvill et al. (1986). Implicitly
defined algebraic surfaces have both advantages, and disadvantages over functional and
parametric surfaces .(Bajaj, 1993). The class of implicit algebraic surfaces is closed under
several geometric operations (intersections, union, offset, etc.), often desired in a solid
modeling system. On the other hand, free-form geometric modeling (display and shape
control) is much easier with parametric curve and surface spline representations (and
evidenced by available software systems). This largely motivates the need for constructing
parametric spline approximations of real algebraic surfaces.

In computer graphics, most rendering algorithms for implicit surfaces [besides ray
tracing .(Hanrahan, 1983; Kalra and Barr, 1989; Sederberg and Zundel, 1989)] rely on
piecewise linear approximations (triangles, polygons) based on space subdivision or poly-
hedron continuation. .Peterson (1984) and .Bloomenthal (1988) use octrees based on reg-
ular spatial partitioning to achieve a polygonal approximation. .Hall and Warren (1990)
use a tetrahedral subdivision. .Allgower and Gnutzmann (1987, 1991) use simplicial con-
tinuation or pivoting algorithms to generate a triangular or quadrilateral polygonal ap-
proximation.
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In this paper, we use neither space subdivision nor polyhedron continuation. Instead,
we use a novel triangular expansion scheme on the real algebraic surface starting from
a seed point and conforming to point and curve singularities on the surface within an
arbitrary bounding box. We then construct a curvilinear wire frame (minimum bending
energy parametric curves with normals for G1 continuity) and finally fit low degree
parametric or implicit surface patches to cover the wire frame smoothly to achieve a
spline approximation. Compared with prior approaches the surface expansion scheme
fully uses the differential properties of the surface, is second order adaptive and conforms
to the surface singularities. This expansion based spline approximation scheme is also a
generalization of our curve marching schemes for spline approximation of real algebraic
curves with singularities .(Bajaj and Xu, 1991, 1994b).

Once a topologically correct triangulation of the implicit surface is achieved, there
exist interpolation and approximation spline fitting schemes which work, however under
various restrictions on the triangulation. .Mann et al. (1992) surveyed several parametric
patch interpolation schemes for triangulated data. .Nasri (1991) considered parametric
surface interpolation on irregular curvilinear networks with prespecified normal condi-
tions at vertices but without singularities. A similar problem is discussed in .Peters (1990).

.Herron (1985a) used parametric surfaces interpolating function values and tangential
derivatives at the vertices of a triangle. His method is generalized in .Herron (1985b) to
cover the G1 continuity case for smooth (non-singular) closed surfaces. Smooth interpo-
lation of a curvilinear wireframe with implicit algebraic patches is given by .Bajaj and
Ihm (1992). .Kolb et al. (1995) fit parametric Bezier patches to minimum norm curve net-
works and .Bajaj et al. (1995) fit iso-contours of trivariate cubic implicit Bernstein–Bézier
surfaces (A-patches), to closed surface triangulations.

In this paper, we additionally present two other parametric curve and surface fitting
solutions to the closed surface interpolation problem for curvilinear networks with sin-
gular vertices. One uses a functional patch by subdividing each triangular patch into
three smaller patches. The other solution requires rational parametric patches to cover
a constructed curvilinear space wire frame. Compared with the method given in .Herron
(1985b), our second approach leads to a lower rational degree of approximation and is
singularity conforming. Using well known transformation techniques such as .Bajaj and
Xu (1994a), one can furthermore convert the smooth rational parametric patches to stan-
dardised rational Bernstein–Bézier (RBB) form or even triangular rational B-splines.

2. Sketch of Approximation Algorithm

1. Singularity and Seed Point Computation. In this step we compute real sin-
gular points and real singular curves of the real surface in a given bounding box, as
well as a real seed point per real surface connected component within the box re-
gion (see Section 3 for details). For singular curves, we construct a piecewise linear
approximation of each real component of the curve.

2. Triangulation. Next, we construct a piecewise linear (triangular) approximation
of the surface with the topology dictated by the surface singularities. The approxi-
mation of the smooth part is based on a power series expansion and from which a
surface triangulation is produced (see Section 4 for details). Expansion vertices and
edges of the triangulation which approach singular points or linear approximations
of the singular curves, are “stitched” to the singular points and edges by additional
edges and by splitting existing triangles.
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3. Wire Construction. In this step we construct a G1 curvilinear wire frame by
computing normals at each vertex of the triangulation and then building a para-
metric space curve with minimum bending energy, and a normal function along the
curve such that the curve G1 interpolates the edge vertices and the curve normal
function has the given normal at the vertices and orthogonal to the tangent of the
curve (see Section 5 for details). The normal at a smooth point of the original sur-
face is provided by the gradient of the surface. At singular points (and curves), the
surface normals are not uniquely defined, and hence the incident normals of the
wire frame are deemed to conform automatically (i.e. the incident surface shall be
just G0 continuous at those points).

4. Patch fitting. For each triangular face consisting of three parametric curve wires
together with normal functions, this step constructs aG0 or a G1 parametric surface
patch that interpolates the wires and has the normal function along the boundary
(see Section 6).

3. Computation of Singularities and Seed Points

The set of solutions (or zero set Z(S)) of a collection S of polynomial equations

S1 : f1(x1, . . . , xn) = 0
... =

... (3.1)
Sm : fm(x1, . . . , xn) = 0

is referred to as an algebraic set. Algebraic curves and surfaces are algebraic sets of
dimension 1 and 2 respectively. Problems dealing with zero sets Z(S), such as the inter-
section of curves and surfaces, or the decision whether a surface contains a set of curves,
are often first versed in an ideal-theoretic form and then solved using Gröbner basis
manipulations. .Bajaj (1990) presented an alternative technique based on constructing
bi-rational mappings between algebraic varieties and hypersurfaces.

Given m independent equations in n variables (3.1), let S be the algebraic variety of
dimension n −m defined by these equations. Then the bi-rational map construction of

.Bajaj (1990) produces a new “triangulated” polynomial system of equations

f̃(x1, . . . , xn−m+1) = 0

xn−m+2 =
h2m−4(x1, . . . , xn−m+1)
h2m−3(x1, . . . , xn−m+1)

... =
...

xn−1 =
h2(x1, . . . , xn−2)
h3(x1, . . . , xn−2)

xn =
h0(x1, . . . , xn−1)
h1(x1, . . . , xn−1)

. (3.2)

This bi-rational map construction is based on the multi-polynomial resultant .(Macaulay,
1916) and multi-polynomial remainder sequences.

Cases of intersection computation of interest in this paper are the computation of sin-
gularities on algebraic surfaces. These are special cases of the above system of equations
and bi-rational map construction. Algebraic surfaces can possess both point and curve
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singularities. Curve singularities reduce to the special case of for n = 3 and m = 2
and x1 = x, x2 = y, x3 = z. In particular the system of equations to compute curve
singularities on the surface is given by

f(x1, x2, x3) = 0
α1fx1(x1, x2, x3) + α2fx2(x1, x2, x3) + α3fx3(x1, x2, x3) = 0

for algebraically independent α1, α2 and α3. In practice one computes the common
intersection curves of f = 0 and fx1(x1, x2, x3) = 0 which are also completely contained
simultaneously by the surfaces fx2(x1, x2, x3) = 0 and fx3(x1, x2, x3) = 0. To test if a
curve is completely contained by a surface one needs to test only if (mn + 1) points of
the curve lie on the surface, where m and n are the degrees of the curve and surface
respectively. Points (x1, x2, x3) on the singular space curve lying on the algebraic surface
are then obtained from the special case “triangulated” system (3.2) by first computing
points on the plane curve f̃(x1, x2) = 0 and then substituting these into x3 = h0(x1,x2)

h1(x1,x2)
.

fx3 = 0.
Point singularities on the algebraic surface reduce to the special case of for n = 3 and

m = 3 and x1 = x, x2 = y, x3 = z, and given by

f(x1, x2, x3) = 0
α1fx1(x1, x2, x3) + α2fx2(x1, x2, x3) + α3fx3(x1, x2, x3) = 0
β1fx1(x1, x2, x3) + β2fx2(x1, x2, x3) + β3fx3(x1, x2, x3) = 0

for algebraically independent αi and βi. Again, in practice one computes the common
intersection points of f = 0, fx1 = 0 and fx2 = 0 and keeps only those points which also
satisfy fx3 = 0. Singular points (x1, x2, x3) on the algebraic surface are then obtained
from the special case “triangulated” system (3.2) by first computing zeros of the univari-
ate polynomial f̃(x1) = 0 and then substituting these into x2 = h0(x1)

h1(x1)
and x3 = h2(x1)

h3(x1)
.

Seed points covering each real component of the surface are computed from the inter-
sections of the surface with a bounding box as well as x1 extreme points (for bounded
components lying completely within the bounding box). Details of the polynomial system
solution are similar to the computation of point singularities and given in .Canny (1988).
Bounds on the numerical approximation (number of bits of precision) required for the
seed points and singular points on the surface are such that the G0 triangulations can be
correctly determined, are similar to ones given for curves in .Bajaj and Xu (1991, 1994b)
and are based on the gap theorem of .Canny (1988).

In this paper, we assume the singular curve of the surface is smooth, that is the curve
can be redefined by the intersection of two smooth surfaces and the two surfaces are not
tangent at their intersection. A piecewise linear approximation is generated with specified
density for each singular curve component .(see Bajaj and Xu, 1994b, for getting the point
list). The line segments of the piecewise linear curve approximation will become the edges
of the surface triangulation to be described in the next section.

4. Adaptive Triangulation

4.1. edge expansion approach

We begin with a few notational definitions.
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Expansible edge. During the process of expansion of the triangular polygon, an edge is
called expansible if we can go further outward from this edge to get a new triangle.
That is

(a) this edge is on the boundary of the present constructed polygon,
(b) this edge is inside the given boundary box.

P -plane, P -expression, Expansion point.
Let p0 = (x0, y0, z0) be a point on the surface f(x, y, z) = 0. Then the orthogonal
transform

T :

 X
Y
Z

 =

 c2 s2 0
−c1s2 c1c2 s1
s1s2 −s1c2 c1

  x− x0

y − y0
z − z0


with

c1 = fz(p0)/‖∇f(p0)‖, c2 =−fy(p0)/
√
fx(p0)2 + fy(p0)2,

s1 =
√
fx(p0)2 + fy(p0)2/‖∇f(p0)‖, s2 = fx(p0)/

√
fx(p0)2 + fy(p0)2

establishes a one-to-one map between (x, y, z) space and (X,Y, Z) space. It is easy
to see that the XY -plane is the tangent plane of the surface f(x, y, z) = 0 at the
point p0. We call this plane as the projection plane of f = 0 at p0, and denote it
the P -plane. The projection of any point p onto the P -plane is denoted by P (p),
and consists of the first two components of T (p). On the P -plane, f(x, y, z) = 0 can
be expressed locally as a power series Z = φp0(X,Y ). We call its truncation up to
degree k a P -expression, denoted by φp0,k(X,Y ). The point p0 is referred to as an
expansion point.

(p, k, ε)-circle, (p, k, ε)-sphere, (p, k, ε)-radius
If the maximal r = r(p, k, ε) for which

‖φp,k(X,Y )− φp(X,Y )‖ < ε for X2 + Y 2 ≤ r2

then we say that the circle X2 +Y 2 = r2 is a (p, k, ε)-circle and X2 +Y 2 +Z2 = r2

is a (p, k, ε)-sphere of f at p and r is the (p, k, ε)-radius.
It is easy to see that r(p, k, ε) converges to the convergence radius of φp(X,Y ) at p
as k →∞.

Algorithm 1
Let S be the collection of singular points and point lists of the singular curves of the

given real algebraic surface.

1. Initial Step. For a given smooth seed point p0 on one component of the surface
f(x, y, z) = 0 and in the given bounding box, we first compute the P -expression
Z = φp0,k(X,Y ). On the P -plane, compute the (p0, k, ε)-radius. Take three uni-
formly distributed points on the (p0, k, ε)-circle, say q0, q1, q2, and refine the points
(qi, φp0,k(qi)) by Newton’s method such that the resulting points Vi are on the
surface. If Newton’s method fails to converge, reduce the radius of the circle and
repeat. If the point Vi is outside the bounding box, then adjust it to the boundary
curve (intersection of the surface and the box). The triangle [V0, V1, V2] is the first
in the triangulation. Next compute the outside angle at each vertex of the triangle.
In this initial case, each edge is expansible except the one that is on the boundary
curve.
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Figure 1. Expansion steps for an adaptive triangulation on real algebraic surfaces.

2. General Step. Suppose we have constructed several space triangles that form one
or more than one connected mesh of triangles. For each mesh, we keep boundary
information such as edges with related expansion points, vertices with angles, etc.
Assume now that at least one of the edges is expansible. Then the general step is
to construct one more triangle that joins the original one and enlarges the mesh.
Refer also to Figure 1.

(a) Find a vertex on the present boundary such that the angle at this point is
minimal and the related two boundary edges are expansible. Start from one
of the two expandible edges that has longer length, say [V1, V2] which is also
the edge of triangle [V0, V1, V2] with expansion point p0 and P -expression Z =
φp0,k(X,Y ). Choose one point q on the P -plane away from the present triangle
and within the (p0, k, ε)-circle such that q is on the middle-perpendicular line
of [P (V1), P (V2)] and as far as possible from P (p0).
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(b) Refine the point (q, φp0,k(q)) by Newton’s method to get a new expansion
point p1. As before, if Newton’s method fails to converge, a nearer point q
to the circle center is used.

(c) Compute the new P -expression Z = φp1,k(X,Y ) and new (p1, k, ε)-circle X2 +
Y 2 = r21.

(d) In the new P -plane at p1, choose a point q1 on the intersection of the middle-
perpendicular line of [P (V1), P (V2)] and the new (p1, k, ε)-circle, then form a
new triangle according to the following cases:

– If the line segment [(P (V1)+P (V2))/2, q1] intersects a previous edge’s pro-
jection on the P -plane and the point T−1(q1, φp1(q1)) lies on a previous
surface patch, we take the intersection point to be q1 and a new trian-
gle [V1, V2, T

−1(q1, φp1(q1))] is formed. Alternatively, if the vertices are
near(within ε) to a singular point in S, then a new edge is added by con-
necting the vertices to the nearest singular point. In practice, this ε could
be chosen interactively.

– Let [V2, V4] be the other edge connecting to the present vertex. If the angle
∠P (V4)P (V2)P (V1) ≤ π

2 , the new triangle is formed by the three points
V4, V2, V1.Otherwise, for the case when the angle ∠P (V4)P (V2)P (V1) > π

2 ,
the new triangle is (V1, V2, P

−1(q1, φp1(q1)).

3. Final Step. Repeat the general step iteratively, until every edge is non-expansible.
This finishes the generation of the triangle approximation for one real component
of the implicit surface.

4.2. vertex expansion approach

In this subsection, we describe an alternate (but related) scheme for constructing the
triangular approximation using vertex expansions. We find this approach is superior to
the edge expansion approach for some surfaces with point singularities. See also the
Examples section.

The approach starts from an initial point (vertex) on the surface and then expands
outward by using degree k power series expansions as a tool and an ε as a controller.
We refer to it as the (k, ε)-triangulation. For easy description of the algorithm, we again
introduce some terminology.

Expansible vertex. During the process of expansion of the triangular polygon, a vertex is
called expansible if it is a smooth point of the surface f = 0, and it is in the interior
of the given boundary box and it is on the boundary of the present constructed
polygon.

Binary partition process.
For a given point p on the surface, consider its (p, k, ε)-circle and two points q1
and q2 on the circle, and let pi = (qi, φp(qi)). The binary partition process is to
produce a series of triangles by the following process.
(a) If angle ∠p1pp2 ≥ π, then choose a point q3 in the middle of q1 and q2 and
on the circle. If the point p3 is outside the given bounding box, then set it on the
boundary. Repeat this step till the angle is less than π.
(b) If ∠p1pp2 ≤ π, then if p2 is in the (p1, k, ε)-sphere and p1 is in the (p2, k, ε)-
sphere, then [p1, p2] is a new edge and a new triangle [p1, p2, p] is formed. Otherwise,
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a new point q3 is taken on the (p, k, ε)-circle and in the middle of q1 and q2. If p3 is
outside the given bounding box, then set it on the boundary. This step is repeated
until the (p, k, ε)-sphere of every vertex p contains its neighboring vertices. The
connection of all the points whose projection on the edges with p form triangles.

Algorithm 2

1. Initial Step. For a given smooth point p0 on one component of the surface f(x, y, z) =
0, first compute the P -expression Z = φp0,k(X,Y ). On the P -plane, then find the
(p0, k, ε)-circle with center P (p0) = (0, 0). Take three equally distributed points
qi, i = 1, . . . , 3 on the circle and let pi = (qi, φp0,k(qi)). For each pair of points pi
and pi+1, a binary partition process is conducted. In this initial case, all the boundary
vertices are expandible except those that are not inside the given box. Compute
the angle at each boundary vertex of the triangle.

2. General Step. Suppose we have constructed several space triangles that form one or
more than one connected mesh. For each mesh, we keep the boundary information
such as incident edges, vertices with angles, etc. Assume now that at least one of
the boundary vertices is expandible. Then the general step is to construct more
triangles that join the original ones and enlarge the mesh. We try to keep the mesh
as convex as possible, so we always expand around the vertex that has the sharpest
angle.
Find an expandible vertex, say p0, on the present boundary such that the angle at p0

is minimal. Let the two related boundary edges be [p1, p0] and [p0, p2], Compute
the P -expression Z = φp0,k(X,Y ) and with (p0, k, ε)-radius r(p0, k, ε). Let [q′1, q

′
0]

and [q′0, q
′
2] be the projection of [p1, p0] and [p0, p2] on the P -plane and q1 and q2 be

the intersection of rays [q′0, q
′
1〉 and [q′0, q

′
2〉 with the (p0, k, ε)-circle. Next, perform

the binary partition process for q1 and q2. If the line segment [qi, q0] intersects a
previous edge’s projection on the P -plane and the point T−1(qi, φ(qi)) lies on a
previous surface patch, then the new vertex becomes non-expandible. Here a local
re-triangulation is needed.

3. Final Step. Repeat the general step iteratively, until every vertex is non-expandible.
This finishes the generation of the triangulation for one connected component of
the real surface.

5. Constructions of Curvilinear Wire Frames

For each edge of the triangulation, we shall construct a parametric space curve and
a normal function (for G1 smoothness) such that the curve interpolates the vertices of
the edge and the normal function along the curve interpolates the given vertex normals
and is orthogonal to the tangent of the curve. The normals at vertices are defined by
the original surface normals. However, at the singular points of the surface, the normals
are not uniquely defined. Hence the parametric space curve and the normal function
will not have normal conditions there and will be G0 continuous. In the following, the
construction of the wire frame on an edge is considered in different cases according to
having two normals, one normal and no normal:

Problem 1. Given an edge [p0, p1] and two vertex normals n0, n1 (i) find a parametric
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space curve C(t) = [X(t), Y (t), Z(t)]T such that

C(0) = p0, C(1) = p1 (5.1)
nT

0 C
′(0) = 0, nT

1 C
′(1) = 0 (5.2)

and (ii) find a normal function n(t) on C(t) such that

n(0) = n0, n(1) = n1 (5.3)
nT(t)C ′(t) ≡ 0, t ∈ [0, 1] . (5.4)

Problem 1 is the general case that occurs on smooth (non-singular) regions of the
surface.

Problem 2. Given an edge [p0, p1] and one vertex normal n0 or n1, (i) find a parametric
space curve C(t) = [X(t), Y (t), Z(t)]T such that (5.1) holds and

nT
0 C
′(0) = 0, or nT

1 C
′(1) = 0 (5.5)

and (ii) find a normal function n(t) on C(t) such that

n(0) = n0, or n(1) = n1 (5.6)

and (5.4) holds.
Problem 2 arises when an edge has one smooth vertex and one singular vertex.

Problem 3. Given an edge [p0, p1], (i) find a parametric space curve C(t) = [X(t), Y (t),
Z(t)]T such that (5.1) holds and (ii) find a normal function n(t) on C(t) such that (5.4)
holds.

Problem 3 occurs when an edge has two singular end-points.

5.1. degree two parametric space curve with minimum bending energy

Solution of Problem 1(i). Let C(t) = At2 + Bt + C, with A, B, C ∈ R3. Then
by (5.1), we have C = p0, A = p1 − p0 −B. From (5.2), it follows that

[n0, n1]TB =
[

0
2nT

1 (p1 − p0)

]
(5.7)

A. If n0, n1 are linearly dependent, we must have

nT
1 (p1 − p0) = 0, (5.8)

otherwise, equation (5.7) has no solution. If (5.8) is true, we take A = 0, B = p1 − p0,
and thus equations (5.1)–(5.2) are satisfied.

B. If n0, n1 are linearly independent, then equation (5.7) has many solutions. Let
n2 = n0 × n1/‖n0 × n1‖, where × denotes cross product and ‖ · ‖ denotes the Euclidean
norm. Then B can be expressed as B = αn2 + [n0, n1]β, β ∈ R2. From equation (5.7),
we have

[n0, n1]T [n0, n1]β =
[

0
2nT

1 (p1 − p0)

]
. (5.9)

That is, β is determined uniquely by (5.9) and α is arbitrary. For simplicity, denote

B = n3 + αn2 with n3 = [n0, n1]β
A = p1 − p0 −B = n4 − αn2 .
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Now we take α, such that the bending strain energy
∫ 1

0
‖C ′(t)‖2 dt = min of the curve

C(t) is minimized. Since C ′(t) = 2At+B,∫ 1

0

‖C ′(t)‖2 dt =
4
3
ATA+ 2ATB +BTB

=
1
3
nT

2 n2α
2 − 2

3
nT

4 n2α+
4
3
nT

4 n4 + 2nT
4 n3 + nT

3 n3 .

From d
dα

∫ 1

0
‖C ′(t)‖2 dt = 0, we get the α that minimizes the bending energy: α = nT

4 n2 =
(p1 − p0)Tn2. Therefore

B = [n0, n1]β + n2(p1 − p0)Tn2 .

Lemma 5.1. If n0, n1 are linearly independent, the parametric space curve interpolation
problem 1(i) has a unique minimum bending energy solution.

Solution of Problem 2(i). Suppose we are given a single normal n0 at p0, we shall
construct C(t) = At2 + Bt + C such that the curve is in the plane span(n0, p1 − p0)
spanned by n0 and p1 − p0.

If nT0 (p1−p0) 6= 0, then as before, C = p0, A = p1−p0−B and nT
0B = 0. Furthermore,

B is in the plane span(n0, p1 − p0). These requirements lead to

B = αn2, with n2 = n0(p1 − p0)Tn0 − (p1 − p0)nT
0 n0

where α is parameter that is determined by minimizing the bending energy of the curve.
This results in α = (p1 − p0)Tn2/n

T
2 n2. If nT

0 (p1 − p0) = 0, we take A = 0, B = p1 − p0,
C = p0.

Similarly, if we are given a normal n1 at p1, then if nT
1 (p1 − p0) 6= 0, we have

B = 2(p1 − p0) + αn2, C = p0, A = p1 − p0 −B

with

α = (p0 − p1)Tn2/n
T
2 n2, n2 = n1(p0 − p1)Tn1 − (p0 − p1)nT

1 n1 .

Again, if nT
1 (p1 − p0) = 0, we take A = 0, B = p1 − p0, C = p0.

Therefore, problem 2(i) always has a degree two solution.

Solution of Problem 3(i). Now we simply take C(t) to be a linear curve. That is
A = 0, B = p1 − p0, C = p0, Therefore, problem 3(i) always has a linear solution.

5.2. normal function on degree two parametric space curve

Solution of Problem 1(ii). Let

n(t) = (Dt+ E)/(1 + wt),

be the normal function, where D, E ∈ R3, w ∈ R. Then by (5.3) we have

E = n0, D = n1 − n0 + wn1 .

Since the numerator of nT(t)C ′(t) is a polynomial of degree 2 in t and nT(t)C ′(t) = 0
when t = 0 and t = 1, (5.4) holds if there is another point in [0,1] such that (5.4) holds.
Take t = 1

2 then by nT( 1
2 )C ′( 1

2 ) = 0, we have 1 + w = −n
T
0 C
′(1)

nT
1 C
′(0)

. Since C ′(0) = B,
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n0 n0n1 n1

p
0

p
0

p
1

p
1
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Figure 2. The normal pattern.

C ′(1) = 2A+B = 2(p1 − p0)−B, it follows from (5.7) that

1 + w = −n
T
0 (p1 − p0)
nT

1 (p1 − p0)
.

The good w should make 1 + w > 0, i.e., n(t) has no pole in [0,1]. This requires that
nT

0 (p1 − p0) and nT
1 (p1 − p0) have opposite signs (see Figure 2).

Lemma 5.2. If nT
0 (p1 − p0)/nT

1 (p1 − p0) < 0, there exists a unique linear rational normal
function n(t) on C(t) such that (5.3) and (5.4) are satisfied.

Solution of Problem 2(ii). Now we are given only one normal, say, n0 at p0. We
specify a normal n1 at p1 by taking n1 to be the normal of C(t) at p1 such that n1

lies in the plane defined by span(n0, p1 − p0) and points to the same side of the edge
[p0, p1] as n0. This normal is uniquely defined and the condition in Lemma 2 is satisfied
if nT

0 (p1− p0) 6= 0. Hence the above results can be used. If nT
0 (p1− p0) = 0, the constant

normal function n(t) = n0 satisfies the required condition.

Solution of Problem 3(ii). This case occurs when the edge is on a singular curve. Now
we cannot expect that the constructed surface is G1 smooth. Since an edge on singular
curve of the original surface will be shared by several triangles, the normal function will
be defined once for each triangle. For a specified triangle that contains the edge, we take
the normals at the vertices of the edge to be the other edge curve’s normal defined at
the corresponding vertices. The normal function along the singular edge is defined to be
the linear function that has the two normals at its end points. However, the space curve
on this edge is defined uniquely and the surface constructed here is continuous (G0), but
not G1 smooth.

5.3. cubic parametric space curve with minimum bending energy

Since a conic space curve does not always exist for problem 1, we may use cubic space
curves instead. Let C(t) = At3 +Bt2 +Ct+D. We determine A,B,C,D ∈ R3 such that

C(0) = p0, C(1) = p1, C(1/2) = p2, (5.10)
nT

0 C
′(0) = 0, nT

1 C
′(1) = 0 . (5.11)

From (5.10)

D = p0, A = p1 − p0 −B − C, B = 8(p2 − p0)− (p1 − p0)− 3C

and hence we need to determine C. It follows from (5.11) that

[n0, n1]TC =
[

0
4nT

1 (2p2 − p1 − p0)

]
. (5.12)
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A. If n0, n1 are linearly dependent, we must choose p2 such that

nT
1 p2 =

1
2
nT

1 (p1 + p0) . (5.13)

Let n3, n4 satisfy nT
0 n3 = nT

0 n4 = nT
3 n4 = 0 and ‖n3‖ = ‖n4‖ = 1. The solution

of (5.12) can be expressed as C = αn3 + βn4. It is not difficult to calculate that when
α = (4p2− p1− 3p0)Tn3, β = (4p2− p1− 3p0)Tn4, the energy

∫ 1

0
‖C ′(t)‖2 dt of the curve

C(t) is minimum. We can take

n4 = (2p2 − p1 − p0)/‖2p2 − p1 − p0‖, n3 = n1 × n4 .

Then

α = (p1 − p0)Tn3, β = 2‖2p2 − p1 − p0‖+ (p1 − p0)Tn4 .

Theorem 5.3. If n0, n1 are linearly dependent, then if p2 satisfies (5.13) and

(p2 − p0)Tn1 6= 0, det[p2 − p1, p2 − p0, n1] 6= 0

then the matrix [A,B,C] is non-singular.

Proof. Since nT
1 n3 = nT

0 n4 = nT
3 n4 = 0, we have α = (p1 − p0)Tn3 6= 0. Otherwise we

are lead to (p2 − p0)Tn3 = 0 and then [p2 − p1, p2 − p0, n1]Tn3 = 0. This contradicts the
non-singularity of [p2−p1, p2−p0, n1] and n3 6= 0. Hence [A,B,C] ∼= [p2−p1, p2−p0, C] ∼=
[n4, p2 − p0, n3]. Since n4, p2 − p0 and n1 are linearly independent by the assumption of
the theorem, n3 can be expressed as n3 = an4 + b(p2 − p0) + cn1. By multiplying n3 on
this equality we know that b 6= 0 and by multiplying n1 on the same equality we get
c 6= 0. Therefore the matrix [n4, p2 − p0, n3] is non-singular. 2

B. If n0, n1 are linearly independent, then equation (5.12) has many solutions. Let
n2 = n0 × n1, ‖n2‖ = 1. Then C can be expressed as C = αn2 + [n0, n1]β, β ∈ R2

where β is determined uniquely by [n0, n1]T[n0, n1]β =
[

0
4nT

1 (2p2−p1−p0)

]
, and α, which

makes the energy of the curve C(t) to be minimum, is α = (4p2 − p1 − 3p0)Tn2.

5.4. normal function on cubic parametric space curve

Let the normal function n(t) be in the form n(t) = Et2 + Ft+G that satisfies

n(0) = n0, n(1) = n1, nT(t)C ′(t) ≡ 0, t ∈ [0, 1] . (5.14)

Since nT(t)C ′(t) is a polynomial of degree 4 and it vanishes at t = 0 and t = 1, we
need to choose three points, say t = 1/4, 1/2, 3/4, such that (5.14) holds. Since G = n0,
E = n1 − n0 − F , we have, for unknown vector F , the following equationsC ′(1/4)T(1/16(n1 − n0 − F ) + 1/4F + n0) = 0

C ′(1/2)T(1/4(n1 − n0 − F ) + 1/2F + n0) = 0
C ′(3/4)T(9/16(n1 − n0 − F ) + 3/4F + n0) = 0 .

The coefficient matrix of this equation is equivalent to the matrix [A,B,C]. Hence the
equation has a unique solution iff the matrix [A,B,C] is invertible. If the matrix is
singular, one can solve the equation by least-squares approximation.
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6. Interpolation with Parametric Surface Patches

Suppose we are given a triangular wire frame Ci(t), i = 0, 1, 2 with vertices Vi, i =
1, 2, 3 and furthermore normal functions ni(t), i = 0, 1, 2, such that p1 = C0(0) = C2(1),
p2 = C0(1) = C1(0), p3 = C1(1) = C2(0), and CT

i (t)ni(t) = 0. We wish to construct
a parametric patch X(u, v) = [x(u, v) y(u, v) z(u, v)]. that covers the given wire frame
(for G0 continuity) and further has the given normal (for G1 continuity) on the wire
frame, where u, v, w are barycentric coordinate systems with w = 1− u− v.

6.1. G0
interpolation

Covering conic wire frames
Since the degree of the space curve is 2, we choose one more point on each edge of

the triangle in addition to the vertices. Let pi+4 = Ci( 1
2 ), i = 0, 1, 2 yielding totally six

points (pi, i = 1, . . . , 6). Now find a polynomial P2 of degree 2 such that

P2(Vi) = pi, i = 1, 2, 3

P2

(
V1 + V2

2

)
= p4

P2

(
V2 + V3

2

)
= p5

P2

(
V3 + V1

2

)
= p6 .

(6.1)

The coefficient matrix of (6.1) 
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 1

4
1
2

1
4

1
4 0 1

2 0 0 1
4

1
4

1
2 0 1

4 0 0


is non-singular, hence equation (6.1) has a unique solution.

Covering cubic wire frames
Since the degree of the space curve now is 3, we need to choose two more points on

each edge of the triangle in addition to the vertices. Let pi+4 = Ci( 1
3 ), pi+7 = Ci( 2

3 ),
i = 0, 1, 2. Then we have nine points (pi, i = 1, . . . , 9). Now find a polynomial P3 of
degree 3 such that

P3(Vi) = pi, i = 1, 2, 3

P3

(
V1 + 2V2

3

)
= p4, P3

(
2V1 + V2

3

)
= p7

P3

(
V2 + 2V3

3

)
= p5, P3

(
2V2 + V3

3

)
= p8

P3

(
V3 + 2V1

3

)
= p6, P3

(
2V3 + V1

3

)
= p9 .

Since P3 has 10 coefficients, one more equation P3(V ) = p is needed, where V = (u, v, w)
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Figure 3. The split triangular wireframe.

is any given point inside the triangle and p ∈ R3 that can be used to control the shape
of the patch.

It is easy to check that the resulting system of linear equations has a non-singular
coefficient matrix for any V inside the triangle.

6.2. G1
interpolation

We now wish to construct a G1 surface patch interpolating the given normal functions
on the curvilinear wire frame.

Covering conic wire frame
The patch is defined in the following form

P (u, v, w) = P2(u, v, w) + uvwP1(u, v, w)

where P2 is a BB-form (Bernstein–Bézier) polynomial of degree 2 that covers the conic
wire frame. P1 is a rational function in the form of

P1(u, v, w) =
uvPw + uwPv + vwPu

uv + uw + vw
(6.2)

and Pu, Pv and Pw are constants (polynomial of degree 0) to be determined such that G1

continuity is guaranteed. Since variable t in Ci(t) and ni(t) can be changed into (1− t),
we may assume, without loss of generality, that t is increased from 0 to 1 when point
goes from (0, 1, 0) to (0, 0, 1), from (0, 0, 1) to (1, 0, 0) and from (1, 0, 0) to (0, 1, 0) (see
Figure 3). Hence the variable of C0 and n0 is w, C1 and n1 is u, C2 and n2 is v. Now we
determine P1 such that tangent plane determined by the span of (∂P∂u ,

∂P
∂v ) are orthogonal

to normal functions ni(t) on Ci(t)

A. when u = 0
∂P

∂u
=
∂P2

∂u
− ∂P2

∂w
+ vwP1 (6.3)

∂P

∂v
=
∂P2

∂v
− ∂P2

∂w
=

d

dw
(P2(0, 1− w,w) = −C ′0(w) (6.4)

B. when v = 0
∂P

∂u
=
∂P2

∂u
− ∂P2

∂w
=

d

du
P2(u, 0, 1− u) = C ′1(u) (6.5)

∂P

∂v
=
∂P2

∂v
− ∂P2

∂w
+ uwP1 (6.6)
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C. when w = 0
∂P

∂u
=
∂P2

∂u
− ∂P2

∂w
− uvP1 (6.7)

∂P

∂v
=
∂P2

∂v
− ∂P2

∂w
− uvP1 (6.8)

and further
∂P

∂v
− ∂P

∂u
=
∂P2

∂v
− ∂P2

∂u
=

d

dv
(P2(1− v, v, 0)) = C ′2(v) . (6.9)

By the definition of ni(t), we have C ′i(t)
Tni(t) = 0, so we need to have by (6.3), (6.6)

and (6.7) (
∂P2

∂u
− ∂P2

∂w
+ (1− w)wPu

)T

n0(w) = 0 u = 0 (6.10)(
∂P2

∂v
− ∂P2

∂w
+ u(1− u)Pv

)T

n1(u) = 0 v = 0 (6.11)(
∂P2

∂u
− ∂P2

∂w
− (1− v)vPw

)T

n2(v) = 0 w = 0 (6.12)

Consider first the left-hand side of equation (6.10). Since

(i) for u = w = 0, v = 1, it follows from (6.4) and (6.9) that

∂P2

∂u
− ∂P2

∂w
=

(
∂P2

∂v
− ∂P2

∂w

)
−

(
∂P2

∂v
− ∂P2

∂u

)
= −C ′0(0)− C ′2(1)

(ii) for u = v = 0, w = 1 it follows from (6.5) that ∂P2
∂u −

∂P2
∂w = C ′1(0), (6.10) holds for

w = 0 and w = 1. Similarly, we can show that (6.11) and (6.12) hold for end points
of the unit interval.

Therefore, (6.10)–(6.12) is equivalent toPu(t)Tn0(t) = a
Pv(t)Tn1(t) = b
Pw(t)Tn2(t) = c

(6.13)

where a, b, and c are constants. The left-hand side of (6.13) are polynomials of degree 1.
At point u = v = w = 1

3 , we specify a vector p of P1 that controls the shape of the patch.
We have the following system of equations.

nT
0 (0)
nT

0 (1)
nT

1 (0)
nT

1 (1)
nT

2 (0)
nT

2 (1)
I I I


 Pu
Pv
Pw

 =



a
a
b
b
c
c
3p


.

In order to study the singularity of the coefficient matrix, we assume nT
0 (1) = nT

1 (0),
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.

(a) (b) (c)

Figure 4. Spline approximation of a circular cone: (a) shows the surface triangulation; (b) shows the
different triangular rational Bezier G1 patches; (c) partly shaded display.

nT
1 (1) = nT

2 (0), nT
1 (1) = nT

0 (0). By simple elimination we know that the coefficient
matrix is non-singular if the matrix [n0, n1, n2] is non-singular. Therefore we have

Lemma 6.1. If [n0, n1, n2] is non-singular, the G1 interpolation problem with one free
(control) point has a unique solution.

Note. One way to choose the control value p at the middle point is to take p = 0.
The condition that the matrix [n0, n1, n2] is non-singular in Lemma 4.1 can be relaxed

since the vectors n0, n1 and n2 are pairwise independent. In this case, equation (6.13)
can be solved separately with one degree of freedom left that can be used to control the
shape at point u = v = w = 1

3 in the least-squares sense.

Covering cubic wire frame
The patch is now defined in the following form

P (u, v, w) = P3(u, v, w) + uvwP1(u, v, w)

where P3 is a BB-form polynomial of degree 3 that covers the cubic wire frame. P1 is a
rational function in the same form as (6.2).

Parallel to the case of smoothly covering a conic wire frame, we are lead to a system
(see (6.13)) of equations PT

u n0(t) = a(t)
PT
v n1(t) = b(t)
PT
w n2(t) = c(t)

where the normal functions ni(t) and a(t), b(t), and c(t) are polynomials of degree 2.
In fact, this system can be solved separately for Pu, Pv and Pw. Each equation has a
unique solution iff the coefficient vectors of the corresponding normal function are linearly
independent. In practice, we solve these equations by least-squares approximation.

6.3. examples

We present some non-trivial examples of piecewise rational approximations of implicit
algebraic surfaces, implemented in GANITH, .(Bajaj and Royappa, 1990), an X11 based
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(a) (b)

Figure 5. Spline approximation of the Cartan umbrella surface: (a) shows the top lobe with triangular
rational Bezier G1 patches and the bottom lobe is Gouraud shaded; (b) both lobes are shown with

triangular rational Bezier G1 patches.

(a) (b) (c)

Figure 6. Spline approximation of a portion of the Steiner surface: (a), (b) and (c) show different
views of the triangular rational Bezier G1 patches.

interactive algebraic geometry toolkit, using Common Lisp for the symbolic computation
(resultants) and C for all other numeric and graphical computations.

The examples shown in Figures 6.3, 6.3 and 6.3, are handled by the vertex expansion
approach.

1. f = x2 + y2 − z2.
The conical surface f = 0 in Figure 6.3 has a singular point (0, 0, 0). The ratio-
nal parametric spline approximation (shown by approximately 190 multi-colored
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(a) (b) (c)

Figure 7. Spline approximation of a toroidal surface: (a) shows the surface triangulation; (b) shows
the different triangular rational Bezier G1 patches; (c) shaded display.

patches) and the shaded display are within a bounding box [−3, 3,−3, 3,−2, 2].
The triangulation algorithm is started with a seed point (1, 0, 1).

2. f = x2 − y ∗ z2.

The Cartan umbrella surface f = 0 in Figure 6.3 has a singular point (0, 0, 0)
and a singular line (x = 0, z = 0). The rational parametric spline approximation
(shown by 280 multi-colored patches) and the shaded display are within a bounding
box [−3, 3,−3, 3,−2, 2]. The triangulation algorithm is started with a seed point
(1, 0, 1).

3. f = x2 ∗ y2 + y2 ∗ z2 + x2 ∗ z2 − 4 ∗ x ∗ y ∗ z.
The Steiner surface f = 0 (a portion shown in Figure 6.3) has singular curves (lines)
on the x-axis, y-axis, and z-axis and a triple point at the origin. The rational para-
metric spline approximation (shown by 370 multi-colored patches) and the shaded
display are shown within a bounding box [−3, 3,−3, 3,−2, 2]. The triangulation al-
gorithm is started with seed points (1, 1, 1), (−1,−1, 1), (−1, 1,−1) and (1,−1,−1).
Here, one needs to reduce the triangulation error considerably and stitch distance
close to the origin to allow the edges to stitch through the singular origin.

4. f = (y2 + z2 − x2 + 0.5 ∗ x3 − 4)2 − 16 ∗ x2 + 8 ∗ x3.

The toroidal-like surface of revolution f = 0 in Figure 6.3 has a singular curve y2 +
z2 = 2. The rational parametric spline approximation (shown by 540 multi-colored
patches) and the shaded display are within a bounding box [−1.2, 4,−4, 4,−4, 4].
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Heckbert, P., ed., Graphics Gems IV, pp. 256–260. New York, Academic Press.

.—.—Bajaj, C., Xu, G. (1994b). NURBS approximation of surface–surface intersection curves. Advances in
Computational Mathematics, 2:1–21.

.—.—Blinn, J.F. (1982). A generalization of algebraic surface drawing. ACM Transactions on Graphics,
11(3):235–256.

.—.—Bloomenthal, J. (1988). Polygonization of implicit surfaces. Computer Aided Geometric Design,
5(00):341–355.

.—.—Canny, J. (1988). The Complexity of Robot Motion Planning.

.—.—Hall, M., Warren, J. (1990). Adaptive polygonalization of implicitly defined surfaces. IEEE Computer
Graphics and Applications, pp. 33–42.

.—.—Hanrahan, P. (1983). Ray tracing algebraic surfaces. Computer Graphics, 17(3):83–90.

.—.—Herron, G. (1985a). A characterization of certain C1 discrete triangular interpolation. SIAM J. Numer.
Anal., 22(4):811–819.

.—.—Herron, G. (1985b). Smooth closed surfaces with discrete triangular interpolants. Computer Aided Geo-
metric Design, 2(4):297–306.

.—.—Kalra, D., Barr, A. (1989). Guaranteed ray intersections with implicit surfaces. Proc. of the ACM Siggraph
Computer Graphics, SIGGRAPH 89, 23(3):297–306.

.—.—Kolb, A., Pottmann, H., Seidel, H.-P. (1995). Surface reconstruction based upon minimum norm networks.
In Daehlen, M., Schumaker, L.L., eds, Mathematical Methods in Curves and Surfaces, pp. 293–304.
Nashville, Vanderbilt University Press.

.—.—Macaulay, F. (1916). The Algebraic Theory of Modular Systems.

.—.—Mann, S., Loop, C., Lounsberry, M., Meyers, D., Painter, J., DeRose, T., Sloan, K. (1992). A survey
of parametric scattered data fitting using triangular interpolants. In Hagen, H., ed., Curve and
Surface Design, pp. 145–172. Philadelphia, PA, SIAM.

.—.—Nasri, A. (1991). Surface interpolation on irregular networks with normal conditions. Computer Aided
Geometric Design, 8:89–96.

.—.—Peters, J. (1990). Local cubic and bicubic C1 surface interpolation with linearly varying boundary normal.
Computer Aided Geometric Design, 7:499–516.

.—.—Peterson, C.S. (1984). Adaptive contouring of three dimensional surfaces. Computer Aided Geometric
Design, 1(00):61–74.

.—.—Pratt, V. (1987). Direct least squares fitting of algebraic surfaces. Computer Graphics, 21(3):145–152.

.—.—Sederberg, T., Zundel, A. (1989). Scan line display of algebraic surfaces. Computer Graphics, 23(3):147–
156.

.—.—Wyvill, B., McPheeters, C., Wyvill, G. (1986). Animating soft objects. The Visual Computer, 2:235–242.


