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Abstract 

Scalar fields arise in every scientific application. Existing scalar 
visualization techniques require that the user infer the global 
scalar structure from what is frequently an insufficient display 
of information. We present a visualization technique which nu- 
merically detects the structure at all scales, removing from the 
user the responsibility of extracting information implicit in the 
data, and presenting the structure explicitly for analysis. We 
further demonstrate how scalar topology detection proves use- 
ful for correct visualization and image processing applications 
such as image co-registxation, isocontouring, and mesh com- 
pression. 
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1 Introduction 

Visualization of scalar fields is common across all scientific dis- 
ciplines, including geographic data such as altitude and temper- 
ature, medical applications with CT and MRI values, and pres- 
sure and vorticity magniinde in computational fluid dynamics. 
The purpose of the visualization is to aid the user in understand- 
ing the structure of the ditta[29]. 

Common methods for visualizing scalar 
fields can be grouped into two broad classes. First are methods 
whose aim is to detect smicture and present a display to the user 
which communicates this structure. Critical to these methods is 
the definition of structure:, and how well the definition matches 
the visualization users’ need. Second are those methods which 
attempt to display the entire scalar field simultaneously, leav- 
ing interpretation of the display to the user. Combinations of 
the two methods serve to reinforce the information provided by 
each visualization. We aril1 use for comparison one technique 
from each of these categories, isocontouring and colormapping. 

Isocontours, or constant valued curves and surfaces from 
continuous 2D and 3D s d a r  fields, are a common visualiza- 
tion technique for displaying scalar field structure[2 11. By their 
definition, isocontours represent the data only at discrete lev- 
els, and as such are an ef€ective technique for determining the 

“shape” of objects in the scalar field. Shape extraction as de- 
fined by isocontours is well understood and appreciated in many 
applications, such as Medical Imaging, as isocontours in a den- 
sityfield may result in realistic models of skeletal structure, skin 
surface, or various organs[22]. Also implicit in their definition 
is the fact that isocontours are an incomplete representation of 
the scalar field, as one can only infer from an isocontour that 
the data to one side is above the isovalue, and the data to the 
other side is below the isovalue. With multiple isocontours, the 
scalar field effectively becomes segmented into a finite number 
of ranges, within which the structure remains unknown. The 
same claim of incompleteness can be made of any technique 
which only displays a portion of the field. Moreover it is not 
obvious which isovalues one should select and how namy of 
them [4]. 

Colormapping of scalar data defines a discrete or continuous 
range of colors onto which the scalar values are mapped. Use 
of color, though proven to be useful in many visualization tech- 
niques, introduces complications due of perceptual issues, such 
as colorblindness. Colormaps may also mislead the user, for ex- 
ample when small-scale structure in the data is washed out due 
to the large range of values taken on by the variable. 

Scientific data which is time-varying in nature intensifies the 
problems with the methods described above. In the typical case, 
a scalar variable may take on a wide range of values over the 
course of a simulation, however at certain times during the sim- 
ulation the range may be much smaller. With both isocontours 
and colormapped display, it is desirable to use the same isoval- 
ues and colormap for each time-step being displayed in order 
to reduce the possibility of introducing artifacts which may be 
misinterpreted as features. This requirement complicates the 
task of choosing a good colormap or selection of isovalues for 
a time-varying visualization. 

In this paper we present a complementary scalar structure 
visualization technique which does not depend on the user to 
determine structure from the graphical display, but instead de- 
fines, computes, and displays the structure of a scalar field di- 
rectly. Through detection of all critical points (saddles, m a -  
ima, and minima), we construct an embedded graph by com- 
puting integral curves in the gradient field fiom saddle points 
to an attached critical point, as illustrated in figure 1. Curves in 
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Figure 1: Isocontours (dotted) ofpart of a scalar field along with 
the critical points and integral curves 

this topological graph are always perpendicular to isocontours 
ofthe scalar field[23], and we will demonstrate that these curves 
contain complementary information to that provided by display 
of isocontours or colormapped scalar fields, providing a method 
which is both useful in its own right and which also enhances 
the commonly used techniques for visualizing scalar fields. We 
further indicate that the definition of structure which is provided 
by the scalar topology proves useful in several additional visu- 
alization and image processing applications. 

2 Related Work 
Much of the work in enhancing colormapped visualization 
of scalar fields has dealt with determining “good” colormaps 
which effectively display the data. Bergman, et. al., define 
rules based on perception, user goals, and data characteristics 
to automatically select a colormap which will meet the user 
requirements[6]. Histogram equalization is a technique which 
spreads the data evenly over the range of colors, using the avail- 
able color space to it’s fullest[28]. The result is that each color 
in the colormap is used an equal number of times. Gershon[ 141 
uses “Generalized Animation” to display otherwise static scalar 
data in a dynamic way, taking advantage of the ability of the 
visual system to detect dynamic changes. Animation draws at- 
tention to fuzzy details in the data which may not be detected 
in the static representation. 

There has been several papers in detecting isocontours in 2d 
and 3d scalar data[2l, 301. Additional work concentrates on 
handling problems in regions containing saddle points which 
cause difficulty in determining the topological structure of the 
surface contained in the region [25,3 1,261. The problem ofde- 
tecting ridges and valleys in digital terrain has been treated in 
several papers[ 121. McCormack, et. al. consider the problem 
of detecting drainage pattems in geographic terrain[24]. Inter- 
rante, et. al. have used ridge and valley detection on 3d surfaces 
to enhance the shape of transparently rendered surfaces[ 191. 
Extrema graphs were used by Itoh and Koyamada to speed iso- 
contour extraction[20]. A graph containing extreme points and 
boundary points of a scalar field can be guaranteed to intersect 

every isocontour at least once, allowing seed points to be gener- 
ated by searching only the cells contained in the extrema graph. 

Helman and Hesselink detect vector field topology by clas- 
sifying the zeros of a vector field and performing particle trac- 
ing from saddle points[ 171. The resulting partitioning consists 
of regions which are topologically equivalent to uniform flow. 
Globus, et. al. describe a software system for 3d vector topol- 
ogy and briefly note that the technique may also be applied to 
the gradient of a scalar field in order to identify maxima and 
minima[ 151. Bader et. al. and Collard et. al. examine the gra- 
dient field of the charge density in a molecular system[2, 1, lo]. 
The topology of this scalar field represents the bonds linking to- 
gether the atoms of the molecule. Bader goes on to show how 
features higher level structures in the topologyrepresent chains, 
rings, an cages in the molecule. Bader’s example is a defin- 
ing motivation for developing the automatic extraction and vi- 
sualization of topology from a scalar field. In many situations, 
topology provides a more intuitive and physically meaningful 
visualization. Grosse [ 161 also presents methods of approxi- 
mating the scalar topology of the electron density function of 
proteins. One of his methods uses tensor product B-spline fits 
while the other scales Fourier coefficients of the electron den- 
sity function. 

3 Scalar Topology 
Previous techniques for enhancing scalar field visualization at- 
tempt to address the inability of colormapping and isocontour- 
ing to capture and directlyrepresent features in the data. We ad- 
dress this problem not through feature enhancement using ex- 
isting visualization techniques, but through direct feature detec- 
tion and display. For our purpose of detection and display, we 
define the topology of a scalar field S defined with domain D 
to consist of the following: 

1. The local maxima of S 

2. The local minima of S 

3. The saddle points of S 

4. Selected integral curves joining each of the above 

Integral curves are defined as curves which are everywhere 
tangent to the gradient field of S. Intuitively, these curves rep- 
resent the path followed by a heat-seeking particle in a temper- 
ature field, or the path followed by a ball rolling down a hill in a 
field of elevation values. In vector field topology, the curves ad- 
vected in the flow field segment the field into regions which are 
topologically equivalent to uniform flow. In the case of scalar 
topology, integral curves segment the field into regions in which 
the gradient flow is uniform, or in other words, the scalar func- 
tion is monotonic. Such a segmentation>of the scalar field into 
regions of simple behavior reveals the structure of the scalar 
field for the visualization user. 

We outline the procedure for visualization of scalar topology 
as follows: 
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1. Detect stationary (critical) points in S. 

2. Classify stationary points. 

3. Integrate selected integral curves in gradient field. 

In the following subsections, we will define our model of 
a continuous scalar field and look at each of the steps defined 
above. 

3.1 Scalar Field Model 

In typical scientific applications, data is represented at the nodes 
of a mesh of elements and interpolated linearly across the inte- 
rior of the elements. Such a data model is CO continuous and 
has a discontinuous gradient field, making it unsuitable for our 
purpose of tracing integral curves in the gradient field. We seek 
to construct a data model such that: 

1. The original nodal <data is interpolated. 

2. The gradient at the boundaries is CO continuous. 

3. Critical points in the scalar field are not removed, and the 
number introduced is kept small. 

i 

I 
Figure 2: Artificial extreme points introduced by central differ- 
encing 

We could satisfy the first two properties by computing 
derivatives by a method such as central differencing, which 
would uniquely define a C1 continuous bi-cubic scalar inter- 
polant [3]. However, such a choice of interpolant is likely to 
violate our third requirement by introducing critical points, as 
illustrated for the I-D case in figure 2. 

To address this problem, we use a “damped” central differ- 
encing scheme as described in the following sections. The re- 
sulting scalar field will n:main a piecewise C1 continuous bi- 
cubic function, which we :represent in Bernstein-B6zier form as: 

where 

As a result, the derivatives of the scalar field can be repre- 
sented as: 

-- - d2S 
dxdy 

n n  

Having computed the damped partial derivatives and mixed 
partials for each vertex, the weights w i j  are computed accord- 
ing to the above equations. For (x, y) = (0,O) , we get: 

w0,o = s 0 , o  

W 0 , l  = s 0 , o  + -- 1 dS 
3 a x  
1 a s  

w1,o = s0,o + -- 
3 dY 

1as  1dS 1 d2S 
W 1 , l  = S0,O + -- + -- + -- 3 a x  3 a y  g a x a y  

Similar equations follow for the other three vertices of a cell 
in2D. The method presented for computing damped central dif- 
ferences in the following sections is based on the above equa- 
tions for the weights of the surface S,  and is developed with the 
goal of satisfying our scalar model criteria defined above. 

For fbrther information on smooth surface representations 
and for modeling scalar fields, see for example [ 18, 31. There 
is also a sparse body of literature concerning curve and sur- 
face interpolation which retains shape, where shape is generally 
thought of in terms of monotonicity or convexity. [8, 9, 5, 13, 
Ill.  

3.1.1 One-dimensional derivatives 

Consider the one-dimensional case of three points along a line, 
as pictured in figure 3. We compute the derivative at x 1 as fol- 
lows: 

0 If y1 > yo and y1 > y2, assign d S / d x  = 0. Thus we pre- 
serve that a maximum in the linear field remains a critical 
point in the interpolated field. 

Likewise, if yl < yo and y1 < y2, assign dS/dz = 0. 
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Figure 3: Damped central differences maintain critical points 

0 Otherwise, the point data at 20, 21, and 22 are monotonic, 
and we dampen the central difference as follows: 

where sign(x1)  = -1 if the data is monotonically de- 
creasing at a:1 and sign(x1)  = l if the data is monotoni- 
cally increasing. 

The first two conditions guarantee that extreme points of the 
linear line segments remain critical points in the cubic inter- 
polant. The third condition is motivated by the control polygon 
of the resulting cubic curve. As illustrated in figure 3, damp- 
ing the central difference by a multiple of the one sided differ- 
ence guarantees that the control points between a: 1 and 2 2  will 
liewithinthe ranges [ Y I ,  (YI + ~ 2 ) / 2 ]  and [(YI + ~ 2 ) / 2 ,  YZ], re- 
spectively. Thus, we assure that the control points within each 
segment will be monotonic, and guarantee that the derivative 
in this segment will not vanish, as illustrated in the closeup in 
figure 4 

Figure 4: Closeup of segment from figure 2 illustrating guaran- 
tee of monotonicity 

3.1.2 Two and higher dimensional derivatives 

In two dimensions, the first partials a S / d x  and dS/dy are han- 
dled as in the one-dimensional case, with one minor exception. 
Rather than scaling each component of the gradient, the central 
difference is taken in both directions, and the result is damped 
by the minimum of the scaling factors in either direction. In 
other words, in higher dimensions we dampen not each com- 
ponent of the gradient, but the magnitude of the gradient, leav- 
ing the direction the same as that computed Erom central dif- 
ferences. This simple extension of the one-dimensional case 
is sufficient to guarantee that critical points are not introduced 
along the edges in two dimensions, edges and faces in three di- 
mensions, and so on. 

I 
0 =original vertex weight 

0 =weight determined by 
first partial derivatives 

0 =weight determined by 
mixed partial 

...... ... ... . .. = eight linear monotonicity 

constraints to be satisfied 

by mixed partial 

I 

Figure 5 :  Constraints on the mixed partial derivative for 2D 

What remains in the 2D case is to compute the mixed par- 
tial d 2 S / d x d g .  For this, we again resort to the equations for 
computing the weights wi,j. Having computed the first par- 
tials, our weights are fixed along all edges of the mesh, as il- 
lustrated in figure 5 .  We would like to constrain the mixed par- 
tial at each vertex such that the four interior weights adjacent to 
the vertex are guaranteed to satisfy the monotonicity condition 
in both directions, which is effectively equivalent to eight one- 
dimensional constraints. This is clearly overconstrained, and 
examples for which d2S/dzdy cannot meet all constraints are 
easy to construct. We compute the eight linear constraints and 
examine them to see if there exists a simultaneous solution. If 
there is not, then we set d2S/dzdy = 0 in order to minimize 
the twist on the resulting patch[ 111. We point out the fact that 
we maintain monotonicity along the edges to guarantee that a 
bi-linear cell which contains a saddle point will contain a sad- 
dle in the shape preserving interpolated field. 

resolved for the higher order partials in 3D and higher, as illus- 
trated in figure 6. 

similar sets of linear constraint equations are examined and 

3.2 Computing Critical Points 
Critical points of a scalar fbnction are defined as points at which 
the gradient vanishes[23]. For a bicubic hnction (2D) or tricu- 
bic fbnction (3D), computing the positions of critical points 
amounts to solving a non-linear system of equations. How- 
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/ I  
,? = Original vertex weight 

0 = Weight determined by fist order 
partial derivatives 

I. , 
~ I: j , 

0 

A= Weight detewined b third order 

Weight determined by second order 
partial derivatives in two variables 

partial denvative In txree vanables 

Figure 6: Constraints on the mixed partial derivatives for 3D 

ever, due to the special coiistruction of our interpolant, we have 
knowledge about where the critical points will occur, and can 
compute them quite efficiently. 

Critical points which occur at the vertices of the mesh will 
be preserved, and can be computed from the bilinear or trilin- 
ear field respectively, with the guarantee that they exist as well 
in the higher order shape preserving interpolant. Critical points 
interior to a cell will occur in locations at which the monotonic- 
ity constraint could not bl: met. In smooth parts of the field, 
there will be no problem computing a monotone field, which 
will guarantee the absence: of critical points. In cells at which 
constraints were violated, we perform subdivision of the cell in 
order to locate the critical points, followed by Newton-Rhapson 
iteration to refine the posifions of the zeroes. Saddles from the 
initial bilinear or trilinear mesh can be approximated by com- 
puting the position of the bilinear or trilinear saddle analyti- 
cally, followed by iteration in the bi-cubic or tri-cubic field, re- 
spectively. 

3.3 Classification o f  Critical Points 
Qualitative information about the behavior of the gradient field 
near a critical point is obtained by analysis of the Hessian of S, 
given for 2D: 

The eigenvalues and eigenvectors of the above matrix de- 
termine the behavior of the gradient field and hence the scalar 
field near the critical point, much the same as for the behav- 
ior of a general vector field[7, 171. One difference to note is 
that for a gradient field, the matrix of derivatives is symmetric 
(d2S/dzdy = d2S/dydz), and therefore the eigenvalues will 
all be real. This is intuitivdy expected, as imaginary eigenval- 
ues indicate rotation about the critical point, and a gradient field 

plify the classification of critical points as depicted in figure 7. 
A positive eigenvalue corresponds to gradient flow away 

from the critical point, while a negative eigenvalue indicates 

is an irrotational vector field. This observation allows us to sim- 

Maxima Minima Regular Saddle 

[ Degenerate Saddle Constant 

~ ~ _ _  ~~ 

Figure 7: Some of the scalar critical points 

gradient flow toward the critical point. In the case of a sad- 
dle point, there is gradient flow toward and away from the crit- 
ical point, distinguishing it from the field behavior near other 
critical points. In this case, the eigenvectors corresponding to 
the positive and negative eigenvalues define the principal direc- 
tions of the flow toward and away from the saddle, respectively. 
It is this property that will be used in the next section to compute 
critical curves in the gradient field. 

3.4 Tracing Integral Curves 
Having computed and classified the critical points, the final step 
for computing the scalar topology is the tracing of selected crit- 
ical curves between the detected points. Even for three and 
higher dimensional scalar fields we restrict our focus to only 
computing critical curves, and ignore critical surfaces and hy- 
persurfaces and other degeneracies in the field, 

Saddle points have the property that the eigenvectors of the 
Hessian are the separatrices of the saddle. A particle following 
the gradient field along the these directions will come to rest at 
the saddle point, while particles slightlyto either side ofthe sep- 
aratrices will diverge rapidly near the point. It is for this reason 
that saddle points and the critical curves associated with their 
separatrices are useful in determining the structure of a scalar 
field. The number of critical curves emanating from saddles 
along separatrices is twice the field dimension. In 2D, four crit- 
ical curves are computed for each saddle point, two in the di- 
rection corresponding to the positive eigenvalue, and two in the 
direction corresponding to the negative eigenvalue. In 3D, the 
number is six, and so on. 

Integral curves are computed using the following 4th order 
adaptive step Runge Kutta integration in the gradient field[27], 
where At is the time step which adapts per iteration, and IC', is 
a field point : 

1. ic'1 = Ai%(&) 

2. ic', = L M ( &  + k, 
3. & = At;(& + %) 
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4. i* = AtC(Zz.’, + Z3) 
5. snfl = zn + 9 + + + 5 + 5 + o ( ~ t 5 )  

. . &  

The initial position for the iterative stepping is placed a small 
distance from the saddle point along the appropriate eigenvec- 
tor. The steps are bounded such that we take no less than 5 steps 
per cell, maintaining a high level of accuracy. Computation of 
the critical curve ends when we reach the vicinity of another 
critical point within a certain E ,  in which case the curve termi- 
nates at that point. Other curves may end at the boundaries of 
the mesh. 

4 Quality Comparison 
Here we compare the qualities of scalar topology visualization 
with those of isocontours and colormapping. 

Integral curves are everywhere orthogonal to isocontours. 
The two techniques arise from an orthogonal definition of 
“structure” for a scalar variable. Contours are an attempt to 
compute and display the exact shape of an object in a scalar 
field, while the topology graph attempts to show the relations 
among all such objects in the field, without giving the details of 
shapes of particular objects. Note that scalar field topology is 
invariant under translation and uniform scaling. This quality is 
very similar to colormapping of scalar variables, in which the 
entire range of variables is mapped into a color space. Transla- 
tion and scaling of the scalar variables changes only the map- 
ping function, not the result. 

5 Examples 
Figures 8, 9, 10 and the top two pictures of the Color Plate, 
demonstrate the use of scalar topology along with both isocon- 
tours and colormapped visualizations of density in an off-axis 
pion collision. Figure 8 uses a simple greyscale colormap, and 
it is clear that much of the area of interest in the center is washed 
out. Figure 9 uses a hue-based colormap and adds isocontours 
of three isovalues to reveal more of the structure and aid the per- 
ception. In figure 10, we show the scalar topology of density. 
This image clearly brings out the detail of the structure of the 
variable. The top figures of the Color Plate show a closeup of 
the interesting topological regions, as well as shows a combi- 
nation of all three visualization techniques. 

While small scale structure is important in many scientific 
applications, in some circumstances the visualizationuser is in- 
terested only in large scale structure. For this situation, we ap- 
ply a filter to smooth the data before applying the topology de- 
tection algorithm. Figures l l ,  12 show two visualizations of 
topology in a scalar field representing wind speed. In figure 
11, the unfiltered scalar field topology reveals some noise in the 
data. Figure 12 shows the topology for the same data after a 
Gaussian filter has been applied. 

The middle figures of the color plate shows an example of 
scalar topology applied to a mathematically defined surface. In 

the left figure the scalar topology is displayed. In the right fig- 
ure both topology and four isocontours are displayed. Notice 
that even with four isolevels displayed, there are critical points 
withincontour regions which are not revealed like the two max- 
ima on the bottom left that are not separated by any isocontour. 

The bottom figures of the color plate show an example of 
scalar topology applied to a 3D scalar fields (the wave function 
computed for a high potential iron protein). 

6 Other Applications 
Computation of scalar topology has the potential to serve many 
other visualization and image processing applications. We 
mention only a few here: 

Data Correlation - Due in part to the invariance under trans- 
lation and scaling, scalar topology is usefbl in visually de- 
termining linear correlation between multiple scalar vari- 
ables. 

Image Co-registration - Scalar topology in adjacent planes 
provides a “1D skeleton” which may be used to align the 
planes. 

Warping/Morphing - Editing of the scalar backbone may be 
used to apply a warping effect to an image, or to warp be- 
tween the backbones of two similar images. 

Mesh Reduction - The scalar topology may serve as a guide to 
aid in computation of reduced resolution meshes. 

Suvface Triangulation - Adaptive triangulation of arbitrary 
mathematical surfaces by decomposition into monotonic 
patches which may be subdivided to an arbitrary precision. 

7 Conclusions 
Existing scalar visualization techniques lack the ability to ex- 
plicitly present the structure of a scalar field to the user. We 
have presented a definition of scalar structure and a straight- 
forward algorithm for computing and displaying the structure. 
For typical scientific data, the scalar data model remains true to 
the original linear data, minimizing introduction of false critical 
points, and also simplifying the detection of critical points. 

The resulting topology visualization serves to both provide 
information which is not available in commonly used scalar 
visualization techniques, as well as reinforcing or enhancing 
the information provided by common visualization techniques. 
Furthermore, computation of scalar topology offers promise to- 
ward improving several visualization and image processing ap- 
plications. 
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Figure 8: Visualization of density in apion collision simulation: 
Greyscale colormapping 

Figure o: Visualization of density in a pion collision simula- 
tion: Topology overlayed on hue based colormapping 

Figure9: Visualization of density in a pion collision simulatic 
Isocontours overlayed on hue based colormapping 

3n: 

Figure 11: Visualization of wind speed from a climate model: 
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Figure 12: Visualization of wind speed from a climate model: 
After applying a Gaussian filter 
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