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The recent growth in the size and availability of large tri- 
angular surface models has generated interest in compact 
multi-resolution progressive representation and data trans- 
mission. An ongoing challenge is to design an efficient data 
structure that encompasses both compactness of geometric 
representations and visual quality of progressive represen- 
tations. 

In this paper we introduce a topological layering based 
data-structure and an encoding scheme to build a compact 
progressive representation of an arbitrary triangular mesh (a 
2D simplicial complex in 3D) with attached attribute data. 
This compact representation is composed of multiple lev- 
els of detail that can be progressively transmitted and dis- 
played. The global topology, which is the number of holes 
and connected components, can be flexibly changed among 
successive levels while still achieving guaranteed size of the 
coarsest level mesh for very complex models. The flexibil- 
ity in our encoding scheme also allows topology preserving 
progressivity. 

1 Introduction 

The design of compact progressive representations for trian- 
gular surface models has been a fundamental topic of recent 
research because of the continual growth of intemetworked 
3D graphics. High resolution scanning devices for object 
reconstruction or simulations on supercomputers have re- 
sulted in ever increasing generation and use of large surface 
models in scientific visualization. Geometry compression is 
currently being worked into the MPEG 4 3D coding stan- 
dard by the MPEG-SNHC working committee [ 191. 

The primary difficulty in designing an effective progres- 
sive and compact encoding scheme is to meet constraining 
requirements like progressivity, compression capability and 
visual efficacy. Such schemes are therefore evaluated by 
their trade-offs and flexibility in prioritizing the different 
properties or adaptation to the needs of the particular vi- 
sualization applications. 
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Representation Power. Representation power is the class 
of domain models that a scheme can correctly handle. Dif- 
ferent schemes can represent different surfaces that could 
be open or closed, simple or high-genus, orientable or non- 
orientable, manifold or non-manifold. For instance, isosur- 
faces of physical hnctions generated by a scientific simu- 
lation can be high genus and non-manifold. Analytic math- 
ematical Surfaces can be non-orientable, like the Mobius 
strip or Klein bottle. Increasingly 3D CAD modeling sys- 
tems include the creation and processing of non-manifold 
geometries. 
Compression, The representation of large surfaces for 
storage or network transmission needs be space efficient. 
Compressed representation can make effective use of disk 
space and network bandwidth as well as substantially re- 
duces network transfer time. 
Progressivity. A progressive representation has several ad- 
vantages. First, it enhances high performance interactivity 
with large remotely archived models because compressed 
data can be incrementally transmitted and displayed. Sec- 
ond, the embedded bit stream can be truncated at any point 
by the decoder to create an error-bounded approximation of 
the model with exact bit rate control. 
Topology Constraints. A topology constrained scheme 
does not change the genus or number of connected com- 
ponents of input surfaces. Strict constraints definitely limit 
the size of the coarsest mesh it can produce. For high genus 
objects or surfaces with many components this limitation 
can make the scheme impractical because substantial sim- 
plification can only be obtained by removing holes and/or 
merging components. On the other hand, topology preserv- 
ing lossy compression can be essential for certain applica- 
tions where small geometry error is tolerable, but topology 
features should be preserved. Ideally, a multiresolution rep- 
resentation should have the flexibility of trading off topol- 
ogy preserving and non-preserving strategies. 
Multilevel Mapping. In a multi-resolution representation 
scheme the correspondence between geometry and asso- 
ciated attributes (like color, textures and normals) is best 
maintained by constructing continuous maps between dif- 
ferent levels of resolution. 

In this paper we introduce a new compact multiresolu- 
tion representation scheme which has the above criteria and 
provides the flexibility of trading visual quality and adapt- 
ability for storage complexity and topology. Priority can 
be chosen according to the requirements of a particular ap- 
plication. This scheme is able to express arbitrary triangu- 
lar meshes. That is, it can be used to compactly encode 
and progressively retrieve any set of triangles without any 
constraint on the topological type, orientability or manifold 
characterization. The non-manifold mesh in Figure 1 has 
sixteen components, with the adjacent two sharing a non- 
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V=l6,400, F=32,768 V=l6,400, F=32,768 V=4,112, F=8,192 V=l,040, F=2,048 

Figure 1: A multiresolution representation of a non-manifold mesh model of a pearl necklace based on topological layering. 
The last three pictures show enlarged local details of three intermediate simplified mesh levels in this multiresolution 
schema, V = vertices, F = triangle faces. 

manifold vertex. Input objects can also have attached prop- 
erties such as colors, normals or texture coordinates. Our 
scheme is comparable in several aspects to prior published 
methods [ 10, 2 I ,  23, 141 and improves on a few important 
criteria [ 1, 251. 

The rest of this paper is as follows. Section 2 discusses 
prior published work on compact multiresolution represen- 
tations, including tradeoffs to our aforementioned crite- 
ria. Section 3 details our multiresolution topological lay- 
ering scheme. Section 4 describes the flexibility of topol- 
ogy preservindnon-preserving simplification. Section 5 ex- 
plains our geometric encoding of both mesh vertex coordi- 
nates as well as attached attribute data. Section 6 provides 
compression performance analysis of our scheme as well as 
several examples. 

2 Prior Work on Multiresolution Rep- 
resentations 

Zorin, Schroder and Sweldens use subdivision to connect 
and unify patches and polygonal meshes in order to produce 
an interactive tool for mesh manipulation [26]. Their algo- 
rithms are designed for interactive multiresolution editing 
over meshes of arbitrary topology. However compression 
and progressive transmission are only suggested as possible 
future research objectives . Recursive subdivision schemes 
(e.g. [20, 161 represent a polygonal mesh as a low resolu- 
tion base mesh and an ordered sequence of details which 
are actual subdivision steps. Connectivity refinement and 
geometry smoothing are two operations in each such step. 
However, these schemes only provide progressive represen- 
tation for a narrow class of meshes which possess recursive 
subdivision connectivity. Eck et a1.[4] use a mesh with re- 
cursive subdivision connectivity to first approximate a mesh 
of arbitrary topology. Wavelets are then introduced for mul- 
tiresolution analysis of meshes with this connectivity prop- 
erty. This wavelet based scheme does not support lossless 
compression because most meshes do not have subdivision 
connectivity. Also, extension to meshes of high genus or 
arbitrary simplicial complexes could be problematic. 

The adaptive-refinement Progressive Mesh (PM) scheme 
[ 101 introduced by Hoppe stores a manifold mesh as a low 
resolution coarse mesh together with an ordered sequence 
of details that can be used to refine the coarse mesh. There 
are two basic operations in this PM scheme: edge collapse 
and vertex split. Each vertex split operation adds a new 

vertex and two new triangles and locally refines the coarse 
mesh. O(nlog(n)) bits are needed to double the size of 
a mesh with n vertices. This degrades compression per- 
formance, especially for very large models. Popovic and 
Hoppe[2 I ]  propose a lossy connectivity compression tech- 
nique which outputs progressively transmittable bit streams. 
They express the original simplicial mesh at different reso- 
lutions through successive edge collapse and merge opera- 
tions [ 1 I] .  While not an efficient coding method, its funda- 
mental contribution is its support for progressive transmis- 
sion. This compression method is improved by Li et al [ 151 
by integrating the bit stream and the attribute data stream 
under certain optimized criteria. 

Progressive Forest Split (PFS) of Taubin et. al. is a com- 
pact multiresolution representation for any manifold mesh 
[23]. PFS decomposes a given mesh by a low resolution 
level-of-detail and a sequence of forest split operations. The 
forest split operation is specified by a forest in the graph of 
vertices and edges of the mesh, a sequence of simple poly- 
gons, and a sequence of vertex displacements. Lee et al. 
[ 141 construct smooth parameterizations of irregular con- 
nectivity triangulation of genus 2-manifolds. A hierarchical 
simplification technique is used so that a parameterization 
of the original mesh over a coarse base mesh is obtained. To 
get an approximation with a specified error bound, the base 
mesh is hierarchically subdivided by the Loop method [ 161. 
This multiresolution adaptive parameterization and remesh- 
ing technique can be used for progressive transmission of 
polygonal meshes in applications that do not require perfect 
connectivity recovery. 

Kobbelt et al provide an interactive multiresolution mod- 
eling approach by building a hierarchy of nested spaces for 
unstructured data [13]. De Floriani et al. propose a gen- 
eral framework for multiresolution hierarchical representa- 
tion [6] where the refinement step is the replacement of a 
portion of the mesh. Due to the high storage cost they exper- 
iment with a variation of their data-structure that improves 
storage efficiency and allows progressive transmission [ 5 ] .  

In this paper, progressive connectivity transmission is 
based on the construction of multiresolution surfaces for ar- 
bitrary triangular meshes, including non-manifold and high 
genus. For an arbitrary given mesh, its geometry and con- 
nectivity information is first organized by a layering struc- 
ture. In this structure, vertices are further grouped into 
contours while triangles are merged into strips or fans. 
Through operations on these basic geometric primitives, 
multiresolution surfaces can be constructed with flexibility 
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on topology preservatiodnon-preservation. Triangle con- 
tractions without any constraints are the fundamental op- 
erations. The coarsest mesh can be as small as the single 
vertex mesh. Our progressive scheme compares favorably 
with PM [IO, 11, 211 for its visual efficacy and matches 
the compactness of PFS 1231. It holds a much larger input 
mesh domain than PFS and has the flexibility of topological 
preservinghon-preserving progressive meshes. 

Our multiresolution surfaces are constructed in two 
phases: the first phase represents mesh topology and details 
in a compact way; the second phase provides flexible reso- 
lution degree and may change the mesh topology while the 
base mesh and details are still expressed in an economical 
way. 
Topological Layering 

Our topological layering structure [ I ,  251 is inspired by 
the layering scheme that is used to construct vertex spanning 
trees for manifold meshes in [24]. 

The topological layering structure based on vertex neigh- 
borhood is used to encode the connectivity information of 
arbitrary triangular meshes as well as to index and estab- 
lish local neighborhood and the second order of predic- 
tor/corrector geometry encoding scheme. The input meshes 
are partitioned into two basic kinds of layers: vertex lay- 
ers and triangle layers. The Oth vertex layer is a randomly 
chosen vertex (could be a chain of vertices) of the mesh. 
The kth vertex layer (with k > 0) includes a vertex V if V 
is not included in any previous vertex layer and there exists 
an edge E = (V, V ’ )  where V’ is included in the ( k  - l ) th  
vertex layer. The kth triangle layer (with k 2 0) includes 
a triangle T if T has one vertex in kth  vertex layer and T 
is not included in any previous triangle layer. This decom- 
position of the input triangular mesh provides a “Morse en- 
coding” [ 171 capturing the branching and extreme points of 
edge cycles boundary holes and components. We use this 
effectively for generating both topological preserving and 
non-preserving simplifications. 

The topological layering structure has the property that 
any mesh edge and thus any triangle can only span two 
vertex layers. Therefore all edges are classified into two 
categories: transversals and chords. A chord is an edge 
that connects two vertices in different vertex layers while 
a transversal is an edge that connects two vertices in the 
same vertex layer. 
Geometric Primitives 

There are four geometric primitives: contours, branching 
points, triangle strips, and triangle fans (see Figure 2). 

A contour is an ordered chain of vertices 
{uo,u1,. .. ,U,}  in a vertex layer where each vertex 
pair ( U % ,  wZ+1)  is connected by a transversal edge and every 
intermediate vertex U ,  (0 < i < n) is incident on exactly 
two transversal edges. In a closed contour uo is coincident 
with U,, and if n is 0 the contour degenerates to an isolated 
point. Contours are built in a greedy fashion by connecting 
vertices with transversal edges. A branching point is a 
vertex of a vertex layer which is incident to more than two 
transversal edges. By this definition, a branching point is 
contained in more than one contour and thus it can only be 
either the starting or the ending vertex of a contour. 

A triangle strip is an ordered sequence of triangles in 
a triangle layer where each pair of consecutive triangles 
share a common edge which is a chord. All the vertices 
of a strip belong to exactly two contours in two adjacent 
vertex-layers. Triangle strips are constructed using a greedy 
approach by merging triangles that share chords. 

A triangle fan is an ordered sequence of triangles in a 

BRANCHING POIN1 

Figure 2: Contour, branching point, triangular strip and 
fan. 

single triangle layer where all triangles have a common ver- 
tex, each pair of consecutive triangles share a common edge, 
and no edge is shared by more than two triangles. Once all 
the triangle strips are collected in a triangle layer, the re- 
maining triangles are grouped into triangle fans again in a 
greedy approach to create longer fans. 

We claim here a simple yet fundamental result that advo- 
cates the use of the layering structure as a general purpose 
representation for compact storage and transmission of tri- 
angle meshes. 

Lemma 2.1 (Complete Representation Power) 
Any collection of triangles can be represented by the topo- 
logical layering structure. 

Proof. The breadth-first mesh traversal guarantees vis- 
itation of all the mesh edges and hence classifies vertices 
and triangles into layers. By representing each vertex with 
a separate contour and each triangle as a separate fan, one 
can represent a mesh consisting of any set of triangles. o 

The mesh to be expressed could be non-manifold or one 
that does not form a simplicial complex or that needs to 
be repaired. Thus this layering scheme is general enough 
to represent any set of triangles. Its other advantage is the 
automatic avoidance of the so-called crack problem which 
occurs when a non-manifold mesh is converted into several 
manifold components by duplicating non-manifold features 
such as vertices, edges and faces [9]. 

3 Mu Iti resol ut ion Topological Con- 
touring 

The topological layering structure [ I ,  251 is first extended 
to a multiresolution representation. 

3.1 Mesh Simplification and 
Progressive Reconstruction 

The multiresolution layering representation is composed 
of a coarse mesh MI, along with a sequence of details 
Dk, &-I, . . . , D1. The mesh simplification procedure 
starts with the finest mesh MO and decomposes it into detail 
D1 and a coarser mesh M I .  Iteratively, the procedure gener- 
ates the details D1, D2, . . . , Dk and the base level coarsest 
mesh Mk. We allow for flexible topology preserving and 
non-preserving multiresolution representation. 

(i) Topological layering based simplification that simpli- 
fies the mesh while preserving the layering structure 
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Figure 3: Progressive transmission of a triangular mesh. The topology of this model changes between the third and fourth 
pictures. 

Figure 4: Progressive transmission of the extracted "foot" isosurface from the visible human female data. This sequence 
of non-consecutive intermediate simplified models consist of I ,  1,285, 3,328, 8,366, 12,380, 16,392 and 40,432 
triangles. 

of the input mesh M with a very compact represen- 
tation. In this stage the topology of the mesh is not 
modified. 

(ii) Topological non-preserving simplification which is 
based on a generalized triangle contraction primi- 
tive [8]. The details generated at this stage are rela- 
tively expensive to express in the encoded bit stream. 
However it produces better quality simplification and 
guarantees the progress of the simplification. For this 
reason this second stage is applied only to generate the 
coarser levels especially when storage needs become 
progressively negligible 

3.2 Topological Layering Based Simplifica- 
tion 

The layering based simplification uses two basic decimation 
operations: the intra-layer simplification that removes ver- 
tices within a contour without changing the topology; and 
the inter-layer simplification that removes an entire contour. 

3.2.1 Intra-layer Simplification 

In the intra-layer simplification a local vertex removal is 
performed with retriangulation and it maintains the layer- 
ing structure. 

Figure 5 shows the transition of a simple strip when some 
vertices in its child and parent contours are removed. One 
obvious characteristic of this simplification is that the sim- 
plified strip still has the same parent and child vertex con- 
tours. 

The selection of the vertices to be removed in one contour 
is based on three sufficient criteria to guarantee topology 
preservation and the compact encoding of the details. First, 
there are at least three vertices remaining in the contour of 
the candidate vertex. Second, the starting vertex and the 
ending vertex of a contour cannot be decimated. Finally, 

two consecutive vertices in a contour cannot be decimated 
in the same mesh transition. 
Connectivity Details. Figure 6 shows the decimation pro- 
cedure of a contour with connectivity details. The solid ver- 
tices are decimated while the gray ones remain. One bit is 
associated with each remaining vertex: the value of this bit 
is 1 if its successor is decimated and is 0 otherwise. 

Figure 6: Connectivity details for two transition steps in the 
intra-layer simplification where the first vertex of 
the contour is marked with an arrow. 

Connectivity reconstruction of a contour is straightfor- 
ward. Starting from a bit string encoding the contour detail, 
one bit is associated with each edge in the contour. If the bit 
value of an edge is 1, it is split into two edges. Otherwise, 
the edge is not split. 

The remaining information necessary for the encoding 
is related to the modification of triangle strips incident on 
the decimated contour. Figure 7 (left) shows a star polygon 
around the vertex U to be removed. Vertices uL, u R  lie on 
the same contour as v. u l ,  u2 and u3 are chord-connected in 
the previous vertex layer. The remaining vertices are chord- 
connected to the next layer. To preserve the layering struc- 
ture after the decimation a new transversal edge must be 
added to connect uL to uR.  The first half, approximated 
for excess, of the vertices in the previous and next layer are 
connected to uL. The second half, approximated for defect, 
of the vertices in the previous and next layer are connected 
to vR.  The middle vertices of the previous and next layer 
are connected to both V L  and uR. With this fixed retrian- 
gulation rule, the details, sufficient to recover the original 
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Figure 5: Intra-layer simplification: retriangulation of a simple triangle strip after the solid vertices are removed from its 
bottom and top contours. 

triangulation, are the numbers of vertices in the previous 
and next layer that are connected to v. 

“ 2  

. Figure 7: Constrained retriangulation and detail extraction 
for one transition of intra-layer simplification. 

Simplification Order The order of the simplification proce- 
dure goes as follows. For a single component, it goes from 
the first vertex layer to the last one; for each vertex-layer, it 
goes from the first contour to the last one; for each contour, 
it goes from the starting vertex to the ending vertex. If mul- 
tiple simplification steps are performed, the above proce- 
dure executes multiple times. The reconstruction procedure 
follows the exact reverse order. 

3.2.2 Inter-layer Simplification 

In the inter-layer simplification stage the decimation oper- 
ation is the removal of a contour. Consequently, the gap 
left between the two adjacent contours of the removed one 
must be retriangulated. There are three conditions on the 
decimation of an entire contour. 

0 Its two adjacent contours in the previous and next ver- 
tex layers do not contain branching points; 

The error introduced by the contour decimation does 
not exceed a given tolerance. 

0 The gap left must be triangulatable. 

Connectivity Detail The detail necessary to reconstruct the 
topology needs to include the configuration of the removed 
contour and the modification of the triangulation induced by 
the decimation. 

The contour itself is simply characterized by the number 
of its vertices plus one bit set to 1 if it is an open contour or 
0 if it is closed. For example, in Figure 8 an open contour 
of eight vertices is being decimated with the detail (0,8). 

For retriangulation, the two strips sharing the removed 
contour are replaced by a single strip using [2]. This new 
strip is confined to have a chord, called constraining chord, 
that is corresponding to every pair of triangles having a 
common edge on the removed contour. The middle picture 
of Figure 8 shows this correspondence in dotted lines. Fig- 
ure 8 also displays the final retriangulation. To reconstruct 
a fine triangulation from the coarse strip it is sufficient to 
know which edges are constraining chords. We express the 
details as an ordered sequence of small integers. Each inte- 
ger stands for the number of triangles in the coarse strip that 

lie between two consecutive constraining chords. The start- 
ing edge o f a  coarse strip is always a constraining chord. 

In the reconstruction procedure, the bit stream of the de- 
tails, are used to locate all the constraining chords. Every 
chord is then turned into a pair of triangles. By connecting 
the sequence of edges shared by the pairs of triangles, a new 
contour (the removed one in the simplification procedure) is 
formed. Any vertex in the two contours of the coarse strip 
that is not chord-connected to the new contour is connected 
to the same vertex as its predecessor. 

4 Topology Non-preserving Simplifi- 
cation 

Since the intra-layer and inter-layer simplifications are con- 
strained to be topology preserving, there is a limit on the 
level of simplification that can be achieved. To guarantee 
the progress of mesh simplification process it is sometimes 
necessary to change the topology of the input mesh [22, 71. 
We introduce a topology non-preserving generalization of 
our scheme based on the triangle contraction primitive in- 
troduced in [8]. 

In our scheme the input mesh to the topology non- 
preserving simplification is the coarsest mesh generated by 
the layering based simplification of section 3 after several 
intra-Layer and inter-Layer simplification rounds. 
Generalized Triangle Contraction When a triangle t is 
contracted, all its vertices are merged into a single point p.  
The index used for p after the contraction is the the smallest 
among the indices of the vertices of t .  

As shown in [8] p is chosen to be the best local shape 
fit to achieve its high visual quality. The downside of this 
approach is high storage cost that arises from storing both p 
and the three vertices o f t .  For lower storage overhead we 
choose p to be a fixed linear combination of the vertices of 
t so that we only store as detail p and two vertices o f t .  The 
third vertex o f t  is recovered by inverting the linear con- 
straint between p and t. In our implementation we choose p 
to be the barycenter of t .  

Every triangle incident to t is classified into three cate- 
gories: 

0 type I: one vertex in common with t 

0 type 11: two vertices in common with t 

0 type 111: three vertices in common with t 

In most cases, there are no triangles of type 111. But if 
there are such triangles, the details can still be efficiently 
coded First, a small number is used to indicate the number 
of all type I11 triangles. Then for each such triangle, a bit is 
used to specify its orientation with respect to the contracted 
triangle. 

Figure 9 shows the procedure of one triangle contrac- 
tion and the corresponding triangle classification. The con- 
tracted triangle t is black-colored. After the contraction, the 
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Figure 8: Inter-layer simplification. (left) Fine level being decimated. (center) Constraining chords drawn on the correspond- 
ing triangle pairs. (right) Coarse level and connectivity detail. 

non-manifold edge of the original mesh is removed and the 
topology is changed. 

Figure 9: Topology non-preserving simplification by trian- 
gle contraction. 

Connectivity Detail Before starting the triangle contraction 
procedure we encode the topological layering structure of 
the mesh which implicitly induces the vertex numbering to 
be used later. The index order of the vertices is key informa- 
tion that the decoder requires to correctly reconstruct subse- 
quent layers. 

For each decimation operation, one bit is spent to indicate 
if t is actually a triangle of the mesh or a triangular hole. 
Type I triangles remain after each contraction operation, but 
the indices of their coincident vertices may change. The 
detail of the triangle contraction needs to record this change. 
Let the vertex indices o f t  be ‘UO,  w1 and 212, with the indices 
W O  < WI, W O  < VZ. One bit is used to report if the index of 
the common vertex with type I triangle is vo or not. If this is 
the case no more information is needed. Otherwise, another 
bit is used to report if the common vertex is either ‘ ~ 1  or VZ. 
Type I triangles are sorted by the two index values of the 
non-common vertices and then, in this order, their details 
are stored. 

Type I1 triangles degenerate into edges. The index of the 
vertex that is not common with t must be reported in detail. 
Moreover three bits are used to distinguish which edge they 
share with t. Isolated vertices may appear after a triangle 
contraction because of the degeneration of type I1 triangles. 
We record the indices and geometry (possibly, with other 
attributes) of such isolated vertices when they occur. 
Decimation Priority Two parameters are used to prioritize 
the order of the triangle contractions. The first parameter is 
the area A( t )  of the contracted triangle t .  Small size trian- 
gles are considered first since they affect the overall mesh 
shape the least. The second parameter is a measure used to 
avoid producing sliver triangles. We define the sliver factor 
S( t )  of a triangle t to be the ratio between the perimeter 
P( t )  o f t  and the maximum perimeter of its adjacent trian- 
gles: 

where Adj( t )  is the set of triangles adjacent to t .  The topol- 

ogy non-preserving simplification procedure creates a pri- 
ority queue with all the triangles of the mesh. The priority 
key associated with each triangle t is the product of its area 
by the sliver factor A ( t ) S ( t ) .  The triangle with smallest 
key is selected for contraction. After the contraction, the 
removed triangle and its degenerate neighbors are removed 
from the queue. Other affected triangles have their key val- 
ues updated and the priority queue is adjusted correspond- 
ingly. Unless a stopping criterion is set the procedure makes 
progress until the mesh becomes empty. 

Figures 3 and 4 exhibit the reconstruction of simple 
“eight” and “foot” models. All the three simplification op- 
erations are used. As can be seen, the displayed coarsest 
mesh only consists of one triangle. It is obvious that trian- 
gle contraction changes topology. 

5 Geometry Encoding 

Geometry data may affect progressive transmission dramat- 
ically because it usually takes more space to encode. The 
main problem is its need to efficiently represent in the bit 
stream the positions of removed vertices. Linear prediction 
is often used to predict the position of a vertex from encoded 
positions of its adjacent vertices. In the following, we will 
describe how second order predictive and entropy coding is 
used in our multiresolution representation. 
Intra-layer Decomposition The geometry detail of a dec- 
imated vertex is the difference between its predicted posi- 
tion and its actual position of a vertex. A simple predictive 
coding would take the center of the segment that the vertex 
splits. An alternative and potentially more accurate way is 
to build a quadratic BBzier curve that interpolates the coarse 
contour and to take the midpoints of the curvilinear sides in- 
stead of the straight lines of the original contour. Prediction 
in this way produces correction vectors with less variation 
and are thus more suitable for entropy coding. 
Inter-layer Decomposition For a contour removed in the 
inter-layer decomposition procedure, vertex positions are 
encoded in the same way as the single-resolution geome- 
try coding. Linear [3], high-order [24], and parallelogram 
predictors [ 151 can also be used. We use a second-order pre- 
dictor to encode the geometry (similarly for attached prop- 
erties). The basic idea is as follows. First, linear prediction 
is used to get a set of correction vectors which are parame- 
terized and quantized using spherical coordinates ( T ,  4,8). 
With the observation that the code difference of two suc- 
cessive correction vectors has small variation, the second- 
order prediction is then performed in the code space. The 
geometric error is bounded by the maximum quantization 
distortion. The coding scheme is also designed so that er- 
ror propagation is prevented[ 1,251. In our implementation, 
classical entropy codings such as Huffman coding [ 121 and 
Arithmetric coding [ 181 are used to further improve space 
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efficiency. 
Topology Non-preserving Decomposition 

For each decimation operation, the three vertices of the 
contracted triangle are merged into a single point. The re- 
maining vertex of the triangle takes the center of the tri- 
angle as its geometry position. The positions of all re- 
moved vertices during this operation are encoded by predic- 
tions on this central position. In the reconstruction process, 
the remaining vertex, which is recovered at earlier stage, is 
pushed back to its true position when the other two vertices 
are recovered. 

6 Performance Analysis and Results 
Storage Analysis of Connectivity Details Vertex order- 
ing is crucial for efficient storage of the details. Hoppe's 
progressive mesh (PM) needs log(n) bits to specify the ver- 
tex from which a new vertex is split. Thus the overall con- 
nectivity cost ofPM is (nZog(n)+5). Our scheme squeezes 
off the O(log(n))  factor by taking advantage of the locality 
property of the layering structure. The space efficient rep- 
resentation is gained through the local indexing technique. 
Intra-layer Decomposition With the constraints on the se- 
lection of vertices, at most one half of vertices in a contour 
can be removed in an intra-layer decomposition run. Prac- 
tice shows that nearly one-half of vertices in a contour can 
be removed in each decomposition run. On average, 4.5am 
bits are used to express details if am (0 5 a 5 0.5) ver- 
tices are removed with m being the number of vertices be- 
fore decomposition. 
Inter-layer Decomposition Suppose that three involved 
contours have no, nl and n2 vertices, respectively. Then 
the two strips totally contain about n o  + 2721 + n2 trian- 
gles. Assume that number is n o  + 2721 + 7 ~ 2 .  The cost of 
coding the bit march string for the coarse level strip is about 
n o  +nz bits since there exists that number of triangles in the 
coarse level strip. From the way the details are expressed, 
their coding bits are equal to the summation of the triangle 
number of the coarse level strip and the cost of coding the 
n 1  separators. That is, the detail coding needs no + n 1 +  n2 

bits. 
Topology Non-preserving Decomposition 

According to the analysis above, the coding cost in bits 
is linearly proportional to the number of removed vertices 
with a small linear factor. No vertex indices are needed to 
be encoded and thus no Zog(n) factor. For topology non- 
preserving decomposition, the logarithmic factor comes 
back but with a much smaller n because topology non- 
preserving decomposition are usually performed on a much 
coarser mesh obtained after several steps of the topological 
layering simplification. 
Geomorph. 

For intra-layer simplification, the transition from one 
level to the next can be performed by continuous deforma- 
tion using two vertex splits followed by one edge contrac- 
tion. Figure 10 shows the reconstruction process where the 
vertices vL and vR are temporarily split into (vL, vL*) and 
(vR*,vR).  Then the edge (vL*,vR*) contracts into the 
vertex U .  For inter-layer simplification, the transformation 
from one level to the next can be performed by continu- 
ous deformation. For example, the geomorph from a coarse 
level to a finer one is performed by inserting a vertex at the 
midpoint of each chord edge in the coarse. The midpoints 
are connected by a sequence of dummy edges which split 
the strip triangles into coplanar triangles so that the surface 
geometry is not altered yet. Then, while the midpoint of the 

R 
u r  

Figure 10: Geomorph for the reconstruction from an Intra- 
Layer detail. 

constraining chords are split to reconstruct the contour c the 
dummy edges are contracted. This continuously deforms 
the coarse strip into the two of the finer level. 
Mapping For each intra-layer decomposition we construct 
an isomorphism between adjacent levels in the multireso- 
lution hierarchy. In particular both the fine and coarse tri- 
angulation are mapped to the same rectangular region R as 
in Figure 11 using piecewise affine mapping from each tri- 
angle to its image on R. Two points at the two levels of 
resolution are in correspondence if they map to the same 
point in R. 

Note that if v l  is coincident with v2 then the top part of 
R becomes a triangle. The same holds for the bottom part. 

"2 "2 

Figure 11: Mapping between adjacent levels of resolution 
for Intra-Layer Simplification. 

Similarly for the case of intra layer simplification, we can 
map both the fine and the coarse triangulation to a common 
rectangle R.  The two triangulations of R corresponding to 
fine and coarse levels induce a bijective mapping between 
points at different levels of resolution. 

For topology non-preserving operations, the mapping be- 
tween adjacent levels of resolution is implemented in a way 
similar to [ 141 by overlapping the local retriangulations gen- 
erated by the triangle decimation primitive. This can be 
accomplished directly when the topology is not changed. 
Hence we stop building the multilevel map as soon as the 
topology non-preserving mode is selected. 
Results 

For geometry encoding, 12 bits are used to code each 
coordinate of correction vectors of vertices decimated in 
the topology non-preserving phase, while 10 bits for cor- 
rection vectors of vertices decimated in the topology pre- 
serving phase. The two coding-bit numbers can flexibly be 
adjusted, dependent on the fidelity requirements of the ap- 
plication. Generally, more bits should be used for coding 
vertices that appear in coarser levels (thus recovered earlier) 
because better prediction can be achieved in this way. 

7 Conclusion 
We have presented a scheme for progressive encoding and 
transmission of arbitrary collections of triangles. A succes- 
sive quantization scheme [ 1,251 is used to support progres- 
sive bit transmission. We also presented a technique to de- 
compose an arbitrary triangular surface mesh into a coarse 
mesh with additionally several levels of detail. The combi- 
nation of intra-layer and inter-layer decomposition provides 
a compact encoding of both the coarse mesh and these de- 
tails. Topology non-preserving decomposition increases the 
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resolution degree without much sacrifice of space efficiency. 
The scheme also has the flexibility for topology preserving 
simplification as well as is capable of geomorphs and the 
successive mapping property. 
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Table 1: Coding statistics of multiresolution representation. T number of triangles; C/T: connectivity cost in bits that is 
needed to recover each triangle; (G+C)/T total cost in bits to recover each triangle. G: geometry encoding cost; C: 
connecting encoding cost. 
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4,293 A, 6.1% 
16.384 bvtes 

1,260 A, 3.6% 
7.4 I 7 bvtes 

3,919 A, 2.3% 
17.589 bvtes 

1,516 A, 6.8% 
6,485 bvtes 

18,955 A, 27.2% 
49.539 bvtes 

12,701 A, 36.9% 
48.563 bvtes 

48,591s A, 29.2% 
126.133 bvtes 

5,150 A, 23.1% 
16,566 bvtes 

36,553 A, 52.6% 
90.737 bvtes 

23,272 A, 67.6% 
79.759 bvtes 

84,495 A, 50.9% 
232.476 bvtes 

13,188 A, 59.2% 
37,400 bytes 

69,473 A, 100% 
165,060 bytes 

34,404 A, 100% 
106.294 bvtes 

165,963 A, 100% 
41 5.998 bytes 

22,258 A, 100% 
58,080 bytes 

Figure 12: Compact multiresolution representation. The first numerical number at the bottom of each picture gives the number 
of triangles, the second gives the encoded byte size and the third is the percentage of object size with respect to the 
original one. 
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4,293 A, 6.1% 

1,260 A, 3.6% 
7,4 1 7 bytes 

3,919 A, 2.3% 
17.589 bvtes 

1,516 A, 6.8% 
6.485 bvtes 

18,955 A, 27.2% 
49,539 bytes 

12,701 A, 36.9% 
48,563 bytes 

48,591s A, 29.2% 
126.133 bvtes 

5,150 A, 23.1% 
16.566 bvta 

36,553 A, 52.6% 
90.73 7 bvtes 

23,272 A, 67.6% 
79,759 bytes 

84,495 A, 50.9% 
232,476 bvtes 

13,188 A, 59.2% 
37,400 bytes 

69,473 A, 100% 
165.060 bvtes 

34.404 A. 100% 

165,963 A, 100% 
415,998 bytes 

22,258 A, 100% 
58,080 bytes 

Figure 12: Compact multiresolution representation. The first numerical number at the bottom of each picture gives the number 
of triangles, the second gives the encoded byte size and the third is the percentage of object size with respect to the 
original one. 
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