
Parallel Accelerated lsocontouring for Out-of-Core Visualization 
C. L. Bajaj V. Pascucci D. Thompson X. Y.  Zhang 

Department of Computer Sciences and TICAM 
University of Texas, Austin, TX 78733 
http://www.ticam.utexas.edu/CCV 

Abstract 

In this paper we introduce a scheme for static analysis that 
allows us to partition large geometric datasets at multiple 
levels of granularity to achieve both load balancing in par- 
allel computations and minimal access to secondary mem- 
ory in out-of-core computations. The idea is illustrated and 
fully exploited for the case of isosurface extraction, but ex- 
tendible to a class of algorithms based on a small set of pa- 
rameters and for which an appropriate static analysis can be 
performed. 

1 Introduction and Related Work 

Given a Scalar Field, w ( x ) ,  defined over a d-dimensional 
bounded volume mesh (x E Rd), we often visualize the 
data by rendering a (d  - 1)-dimensional surface satisfy- 
ing w(x) =const. This visualization technique is popu- 
larly known as isocontouring. In order to obtain a good 
understanding of the volume data, isosurfaces of multiple 
representative isovalues need to be computed. To compute 
a single isosurface without preprocessing one needs to visit 
all the cells of the input. However, if you are querying for 
multiple isosurfaces, it pays to preprocess the data to avoid 
visiting cells that don’t contain any part of the current query 
isocontour. This approach has come to he known as accel- 
erated isocontouring. 

Early work has predominantly focused on algorithms for 
extracting a single isosurface from volume data [ 141. The 
same goal was addressed more recently with the particle- 
based method [7]. Several algorithms have been devel- 
oped to addressed the problem of accelerated isocontour- 
ing [21, IO, 12, 19, 13, 20, I], where the volumetric data 
is preprocessed to allow for multiple fast queries. Pa- 
pers [ I ,  5, 131 use interval, segment, or k-d trees to index 
the cells in the scalar field. The advantage of the approach 
in [I] lies in the fact the only a small set of “seed” cells is 
indexed in the search structure. A set of seed cells is a set 
of cells guaranteed to intersect every isolated portion of an 
isosurface for any isovalue. The search tree structure stores 
seed cells according to the range of values spanned by w(x)  

0-7803-5901-1/99/$10.00 Copyright 1999 IEEE 

in each cell. In this way, when an isovalue is given, the tree 
returns efficiently seed cells that intersect the desired is+ 
surface. Contour propagation is then used to generate the 
entire isosurface from the seed cells. The complexity of this 
algorithm is O(log n’ + k), where n’ is the size of the seed 
set and k is the number of cells intersecting the output iso- 
contour. This seed cell algorithm is the basis of our parallel 
accelerated isocontouring. 

As the size of the input data increases, isocontouring al- 
gorithms need to be executed out-of-core andor on paral- 
le1 machines for both efficiency and data accessibility. An 
I10 optimal implementation of the search tree was presented 
in [3]. The method has been later improved with a bet- 
ter empirical tradeoff for improving WO speed [4]. Hansen 
and Hinker describe parallel methods for isosurface genera- 
tion on SIMD machines [ I  l]. Ellsiepen describes a parallel 
isosurfacing method for FEM data by distributing working 
blocks to a number of connected workstations [9]. Shen, 
Hansen, Limat and Johnson give a sequential and paral- 
lel algorithm called isosurfacing in span space with utmost 
efficiency (ISSUE) [18]. Parker et al. present a parallel 
isosurface rendering algorithm using ray tracing [17]. Our 
approach parallelizes the accelerated isocontouring in both 
the seed set generation and isosurface extraction phases for 
multiple isocontour queries. A very important issue of par- 
allel computation is load balancing [6]  that can he achieved 
mostly with two fundamental approaches: (i) static balanc- 
ing, where the data is partitioned priori with criteria that 
should guarantee load balancing at runtime [IS], or (ii) dy- 
namic balancing, where processors are given small chunks 
of data as they become available [SI. The partitions can take 
the shape of slices, shafts, or slabs [16]. 

Moreover, data can he so large that it cannot even be 
loaded into the primary memories of a large parallel com- 
puter. For example, the entire size of visible human female 
cryogenic data is larger than 16GB. For this case we intro. 
duce a combined out-of-cordparallel computation scheme 
that scales with the number of processors and main memory 
available to take full advantage of the available hardware. In 
order to minimize secondary memory accesses in multiple 
queries we partition the data by its function value. For the 
isocontour queries in a certain range, only cells intersecting 
this range are read from secondary memory into primary 
memory. With a good partition all cells of one range may fit 
into the primary memory of parallel computer so that mul- 
tiple queries within such range can he processed without 
extra accesses to disk. 

The data partitioning is based on a static analysis that 
aims to maximize data coherency in functional space to 
achieve an efficient tradeoff between (i) load balance in 
parallel computations and (ii) minimal access to secondary 
memory in out-of-core computations. We have imple- 
mented our parallel, accelerated isocontouring algorithm for 
multiple queries of large datasets on Cray T3E. Our ap- 

97 

http://www.ticam.utexas.edu/CCV


Figure 1: Static analysis diagram of algorithm A on afixed 
dataset D with respect to the varying parameterp 
(horizontal axis). Notice that the overall diagram 
is the sum of the diagram computed for each cell 
(a,b,c,d ,... ). 

proach however can be generalized to other visualization al- 
gorithms (e.g. multiple volume rendering) which have sim- 
ilar algorithmic charactnistics 

The rest of this paper is as follows: Section 2 details our 
computational framework for achieving load balancing in 
parallel computations and minimal disk access for out-of- 
core computations. Section 3 describes the static data parti- 
tioning and reorganization specialized for the case of accel- 
erated isocontouring algorithm. Section 4 provides details 
on our parallel implementation. Section 5 provides experi- 
mental results. 

2 The Computational Framework 
Consider a dataset D and an algorithm A(D,p) that takes 
as input D and a parameter p. We consider the problem of 
optimizing multiple evaluations of A(D,p)  with a fixed D 
and different values of p. That is we allow a preprocessing 
P ( D ,  A) to produce an evaluator d D ( p )  that, for any p, 
produces the same output as A ( D , p )  but more efficiently. 
In the case of isosurface extraction, p is the value of isc- 
surface query, and d D ( p )  is the accelerated isocontouring 
algorithm. In particular we concentrate on the case where 
D is a mesh that is too large to be stored in the main mem- 
ory of a single processor computer. Hence one major op- 
timization problem is to paxtition D so that it is possible 
to achieve both (i) load balancing in parallel computations 
and (ii) minimal access to secondary memory in out-of-core 
computations. 

For example we assume that p is a real number defined in 
the range [x, 1/] and that D is a collection of small elemen- 
tary units called cells. Oar objective is to build a diagram 
as in Figure I,  by which one can estimate the cost of execu- 
tion of the algorithm A on the fixed dataset D for different 
values of p. The analysis is performed at the level of sin- 
gle cells of D so that it is possible to determine which cells 
are involved in the evaluation of A for a given parameter p. 
The diagram of D is the sum of the diagrams of its cells. In 
figure the diagrams of the cells a, b ,  e, d are added. 

2.1 Load Balancing 

The static analysis described above allows immediate eval- 
uation of the quality of a data partitioning scheme in terms 
of load balancing during parallel computations. In fact the 

ideal load balancing for k processors would be achieved if 
the analysis histogram of the data assigned to each proces- 
sor is same scaledversion ( f  times),oftheglobal histogram. 
Figure 2 shows the ideal partitioning of D in the case of 
two-processors where the cells b, e, d are assigned to the 
first processor and the cell a is assigned. to the second pro- 
cessor (and hence not summed on top of b and c). In this 
ideal data partition, each processor does the same amount 
of work for every value of the parameter p. 

The first result here is that this analysis allows to evaluate 
the quality of a data partitioning scheme by comparing its 
diagram with the ideal one. In our algorithm we will use the 
ideal diagram to derive a data partitioning that balances the 
work load. 

ONE PROCESSOR TW 0 PROCESSORS 

Figure 2: Optimal data partitioning for load balanced par- 
allel computations (two processors case). 

2.2 Minimal Secondary Memory Access 

As in the case of parallel computations one can determine 
the diagram of an ideal data partitioning for out-of-core 
computations. In order to minimize disk access at execu- 
tion of the algorithm A on multiple values of the parameter 
p, one can make use of the coherence of the parameter p. 
It's ideal that only the cells relevant to the evaluation of A 
on the current value ofp are loaded from secondary memory 
into primary memory. Therefore we reorganize the data hy 
range partitions such that we load only the cells in one par- 
tition for queries with in its range. Figure 3 shows the ideal 
partition for the case of three secondary memory blocks. 

Again the ideal diagram can be used to determine the 
quality of any given partition. We precompute the diagram 
to help the construction of an actual partition trying to min- 
imize the difference from the ideal one. We will describe 
how we do the actual partition for the isosurface wmputa- 
tion in next section. 

3 Accelerated lsocontouring Query 
Processing 

In this section we demonstrate the ideas introduced in the 
previous section by applying the scheme to the accelerated 
isocontour query processing in which the parameter p is the 
isovalue query. Similar specialization could be done for 
multiple viewpoint volume rendering @would be the vector 
of viewing parameters). 

98 



ONE BLOCK THREEBLOCKS 

Figure 3: Optimal data partitioning for minimum disk ac- 
cess in out-of-core computations (three disk- 
blocks case). 

800 

sw 

16WaI"B lbvcket ""rnta,] 

Figure 4: Static analysis histogram for a real dataset (fwt 
of the visible human). 

3.1 Static Analysis 
The static analysis of isosurface extraction can be achieved 
by computing as preprocessing the contour spectrum [2]. 
The question here is to chwse the appropriate signature 
function that represents the actual computation load. Here 
we consider the number of cells intersected with certain iso- 
surfaces of value p. This is a piecewise constant function 
that can be computed in linear time. Figure 4 shows the 
histogram for a real dataset. 

3.2 The Greedy Decomposition Algorithm 

The basic assumption we make is that the size of the disk 
blocks is much larger than the Blocklets, small sets of adja- 
cent cells that we consider ow atomic processing element. 
Moreover we assume that the disk blocks are much smaller 
than the main memory of each processor. This assumption 
is satisfied by our target machine Cray T3E. 

In our algorithm, the range partitioning of the data is per- 
formed in a preprocessing stage and each partition is saved 
in a separate file. We build the range partitions in a way 
that makes the access of disk efficient. The load balancing 

I;._.-.& 
Figure 5: A regular grid volumetric dataset, its cell and the 

atomic processing element Blocklet. 

of parallel computations is done using the unit of cell block 
(collection of blocklets) at the loading time. It can also be 
done at preprocessing stage if each processor has its own 
secondary memory. So the actual data decomposition al- 
gorithm can be described as a two-stage greedy scheme as 
follows. 

In the first stage we decide the range partitions accord- 
ing to the total main memory and the contour specbum as 
shown in Figure 4. For the blocklets of a range partition, a 
fixed number of blocklets are stored in each cell block that is 
integral multiple of disk blocks. Blocklets of similar spec- 
trum are distributed among different cell blocks. If multi- 
ple choices are available one blocklet is chosen according 
to spatial coherence to blocklets already stored in the cell 
block. AAer this preprocessing stage the out-of-core de- 
composition is achieved. 

In the second stage we aim for load balancing of paral- 
lel computation. On each processor a spectrum diagram is 
maintained for the blocks currently assigned to the proces- 
sor. One by one the cell blocks are selected and assigned 
to the processor for which the spectrum has the most im- 
provement with respect to the ideal case. Again if multiple 
choices are available we hy to keep in the same processor 
blocks that are spatially coherent. 

4 Implementation 

In this section we describe some details of our implementa- 
tion of parallel accelerated isocontouring on the Cray T3E. 
The atomic unit of data that is handled at data decomposi- 
tion is called a blocklet. A blocklet is a small rectangular 
slab of cells and an associated offset into the original data 
volume recording where the cells were taken from. Block- 
lets will be collected into cell blocks (CBs), which are sim- 
ply collections of blocklets stored on disk so that all the 
information necessary to generate isosurfaces for the cells 
is stored in one place (for fast disk access). The size of CB 
is chosen to be an integral multiple of disk block size of the 
machine. 

Because large data sets may not always fit into main 
memory, the range of function values will be partitioned 
so that cells in the interval covered may all be loaded into 
main memory at once. This is called a rangepartition (RP). 
Range partitions allow for interactive isosurface visualiza- 
tion in main memory when isovalues are limited to the in- 
terval of values covered. As described in section 3, CBs 
will be formed by adding blocklets that reduce the variance 
of the resulting spectrum among cell blocks 

99 



Figure 6: (a) An isosurface. (h) All the blocklets that are loaded in memory to compute the isosurface (two processors). (c) 
The blocklets processed by one of the processors. 

Because the sampling of w(x) is regular, the ver- 
tices may be indexed with a vector of integer coordinates 
[ mo, ml , . . . , m d  1. A range partition contains cell blocks 
which contain blocklets. Range partitions hold all the cell 
blocks necessary to cover some segment of the range of 
u ( x ) .  Cell blocks are sized to match disk blocks and filled 
with blocklets so that the spectrum of a cell block matches 
that of the range partition. Blocklets will he stored with 
offsets, [ m8, my, . . . , mi], from the global indices. This 
vector is used to perform the transform from local to global 
cell and vertex coordinates. 

A triangular matrix is constructed to help the data parti- 
tion, as shown in Figure 7. One axis of the matrix represents 
the function value over the entire domain which is divided 
into a specified number of buckets. The second axis i s  the 
number of buckets that a blocklet spans. In this way, the 
lowest function value and the number of buckets spanned 
become coordinates with which a hlocklet ID is stored in 
the array. This array lets us create cell blocks that have 
spectrum similar to the whole dataset by evenly distrihut- 
ing all of the blocklets in each entry of the matrix across all 
cell blocks. Furthermore, this matrix lets us quickly iden- 
tify all of the cells that span a given range of the function. 
This means that we may divide the matrix into a set of range 
partitions, each of which can fit entirely into main memory. 

The number of buckets that partition the entire function 
value range is set by the smallest segment of the range that 
allows user interaction. If the range segment is too small, 
only few queries will fall into such range. The overhead 
of data duplication in different range partitions may out- 
weigh the performance improvement from multiple isocon- 
tour queries. 

The blocklets are sized so that each spans only a small 
portion of the total range of the data. The cell blocks should 
be sized so that there are much more of them than there are 
PES. This is for better possible load balancing among the 
processors. Ideally, CBs would be sized so that each pro- 
cessor obtains the same number of CBs. Cell blocks should 
contain at least as many blocklets as there are entries in the 
triangular histogram matrix, so that if every entry in the ma- 
trix has many blocklets, the cell block can have a represen- 
tative sample. In the current implementation, cell blocks are 
sized to be 

b d i r k  
nBL'cs = g c d ( b s L , b d i s r )  

Figure 7: The storage structwe for blocklet IDS 

where nRLlcs is the number of blocklets per cell block, 
b d l S k  is the number of bytes in a disk block, and bBr. is 
the number of bytes used to store a blocklet. If nsL,cs 
is less than the number of entries in the histogram table, it 
is doubled until this is no longer true. This ensures that no 
disk space is wasted and that a cell block can hold at least 
one blocklet from each entry in the histogram table. 

During preprocessing, blocklets are read by scanning 
through the data. As each blocklet is read, its minimum 
and maximum values are determined. From this, we find 
the bottommost bucket of the histogram the blocklet spans, 
along with the total number of buckets that it occupies. 
These two values are used as indices to a position in the 
triangular matrix of blocklet IDS. Once this pass has been 
completed, the appropriate range partitions can be created. 

Note that the blocklets that span any given isovalue may 
now be determined by visiting each matrix entry highlighted 
in Figure I .  By increasing the size of an initial partition 
while keeping it fiuing into main memory, we can cre- 
ate range partitions that allow the largest range of isovalue 
queries. 

Each range partition contains a list of cell blocks that 
span some bucket of the range. Since the number of block- 

100 



(a) A two-dimensional analytic function 

@) Ths foot of (he visible human male. 

Figure 8: Some example triangular matrices and the resul- 
tant histograms. 

lets of a certain range partition is known, we can compute 
the number of cell blocks required for a given range parti- 
tion. By equally dividing the blocklet IDS stored at each en- 
try of the triangular histogram matrix among all cell blocks, 
we create balanced cell blocks. 

Some examples of number of blocklets stored in entries 
of the triangular matrix are shown for trial data in Figure 8. 

After the preprocessing of the data, we statically assign 
cell blocks of a range partition to multiple processors in 
such a way that minimizes the spectrum difference among 
the processors as discussed in section 3. Each processor 
computes seed set for its own blocklets using the methods 
described in [I] .  Based on the computed seed sets, proces- 
sors can process multiple isocontour queries in the range 
using the accelerated isocontouring algorithm. 

5 Experimental Results 

We tested our alrorithm on a Crav T3E of the Texas Ad- 

plication nodes). One obvious application for this machine 
is processing of large dataset. However, large data can re- 
quire even more space than this, so we must allow for out- 
of-core visualization. During each clock cycle, the CPU can 
execute 2 floating point operations. Because floating point 
operations are the strength of the DEC Alpha it seems ra- 
tional to implement an algorithm that takes real, rather than 
integral, scalar fields. 

figure 6 shows the results of running the code on a rel- 
% atively small scalar field used for testing. Blocklets are 

4 x 4 x 4 vertices (3 x 3 x 3 cells) and there are only 
two cell blocks. Because of this, the number of blocklets 
in the second cell block is smaller. One aspect worth men- 
tion is that the spatial coherence of the blocklets where large 
portions of the blocklets in the same cell block are adjacent. 
This also reduces the number of seed cells required in the 
cell block. Figure 9 shows an isosurface of the visible hu- 
man foot where each color in the final rendering highlights 
the contribution provided by each processor. 

Figure 10 Isosurface with isovalue 117 (14,360,774 trian- 
gles) of the top part of the visible human. 

Our intermediate size dataset is the top part of the visi- 
ble human body. One large isosurface enclosing the body is 
shown in Figure IO. figure 13(a-b) shows the load balance 
and throughput for 16,32 and 64 processors compared with 
the ideal case of balance (dashed lines). While the load bal- 
ance still needs improvement, it is important to note that the 
maximum deviations from the ideal balance are due to pro- 

vanccd ('lunputi& Ccntcr(.lACC,..Thc Cray T3E is  R I I I U I -  
tiplc inxiruciion niuliiplc data (MIMD)  niishinc U hich pro- 

cessors that arc under-used :ind there is no high pick 'i his 
corresponds to  the hizwarami d e x h  range paniricin Fhciwn 

c&sors are toroidallyknnected for message passing. The 
latency for message passing is approximately 100 clock cy- 
cles. Although the time required for one processing ele- 
ment (PE) to contact another PE may vary depending on the 
number of hops between the two PES, the message pass- 
ing library (MPI) hides this distance, so that data coherence 
cannot mimic spatial coherence (and thus minimize network 
traffic). 

Another strength of the hardware is the large amount of 
memory available. Since each processing element (PE) has 
128MB of main memory, there is a total of up to 7.5 GB of 
memory available in the largest configuration (with 60 ap- 

in Figure 12 in thin solid lines compared with the ideal his- 
togram drawn in thick dashed line. The consequence is that 
the total time necessary to compute an isocontour does not 
deviate too much from the time of ideal load balance be- 
cause it is the time of the last processor that terminates the 
computation. 

The speedup chart in figure 14 shows the effect of the 
combination between parallel and out-of-core computation. 
Going from 16PE to 32PE and from 32PE to 64PE, the corn- 
putation time is reduced by almost half because we have 
doubled the number of processors. The 32-processor mn is 
slightly faster than a linear speedup. This could have several 

101 



Figure 9 lsosurface of visible human male foot computed from the cryogenic image data. Color shows contribution of 
different processors. 

causes; first, since the program is run as a batch job, it must 
compete with other jobs for limited disk throughput. Also, 
it may compete with itself for disk throughput. As proces- 
sors with fewer triangles finish contouring, they write their 
vertices (maintained in an AVL tree) to a file. This slows 
down processors still writing faces out to disk. There is a 
similar computational expense for seed cells that does not 
scale linearly with the number of processors. Running with 
half the number ofprocessors does not imply that double the 
number of seed cells will he required because there will he 
more blocklets that share boundaries. Third, as the number 
of processors increases, the number of cell blocks allocated 
to each processor decreases and the slight imbalances in the 
load do not average out as well. This increases the variance 
of the output times. Fourth, the number of output vertices 
varies with the number of processors. Although the number 
of faces remains the same, when small numhers of proces- 
sors are used, more blocklets are on the same processor and 
share output vertices. This means fewer total vertices to 
write than large numbers of processors hut also means that 
more time is required to insert them because the vertex tree 
is larger. Finally, in addition to imbalance caused by less 
than ideally shaped histograms of cell blocks, some proces- 
sors have one more cell block to process than others since 
the number of cell blocks is not an integral multiple of the 
number of processors. When the total number of cell blocks 
per processor is low (as it is for high numbers of proces- 
sors), the imbalance can significantly impact the contouring 
time. 

The analysis for the entire dataset produces similar re- 
sults. Figure 15 shows a sequence of rectangles that bound 
the minimum and a maximum histograms of each partition 
(there are too many partitions to show each histogram as in 
Figure 12). Notice that even in this case large partitions tend 
not to exceed the ideal average value (small circles). 

We also test OUT algorithm on other datasets, such as the 
female ct data. Portion of an isosurface is shown in Fig- 
ure 11, where triangles are displayed with different color if 
generated by different PE in Figure 11 (b). 

(a) shaded isosurface (isavalue 1550) 

(b) isosluface colored by PES (isovalue 1550) 

6 Conclusion and Future Work 
Figure 11: lsosurface of female ct data at isowdue 1550. 

(a) Shaded isosurface (b) Different coloring of 
the surface corresponding to output generated 
by different PE. 

In this paper we have introduced a scheme for static anal- 
ysis of large datasets to address simultaneously the prob- 
lems of obtaining load balance in parallel computations and 
minimal secondary memory access in out-of-core computa- 
tions. We analyzed the histogram of the entire dataset and 

102 



(a) Load Balancing (isovalue 117) @)Throughput (isovalues 117) 

Figure 13: (a) Experimental load balancing for a single isosurface computation (isovalue 117) with 8, 16 and 32 processors 
(solid lines) compared with the ideal cases (dashed lines). (b) Throughput (number o f  triangles computed per 
second) for multiple isosurface extractions (isovalues 117). 

lsovalue 

Figure 12: Histograms of the range partitions for the top 
part of the visible human (solid thin lines) com- 
pared with the ideal case (dashed thick line). 

. .  . , , ,. ' ;'.' ? .. . . .  
. .  ' - t ,  , .  . ~ 

. . . .  " 

. . . .  ', ..: : e  
~ A ~ - : - " . " - . . * .  , , , 

'..I. . .  . 
,: . .  ... .... 

I _  -1 *R 

Numbcr of Rocsssors 

Figure 14: Speedup of the isosurface extraction (isovalue 
I 1  7) for I6,32 and 64 processors. The speedup 
is due both to the increased number of proces- 
sors and to the reduced rate o f  I/O. 

HYloyun b"& 

Figure 1 5  Envelope of the histograms o f  the range pani- 
tions for the entire visible human. The ideal 
case is marked by the small circles. 

construct cell blocks that have ruughly thc same histograms 
(scaled by the number of  ccll hlocks in the pmition) across 
311 isovalucs in a given range Even if the entire JalaJet is  
tco hrgc to t i t  in main mcmury, une range panition built in 
this way may be small enuugh. l icven d single rsnge pani- 
tion is  largcr than the main memory, then it iccII hlocks will 
be swept through, loading as many us pussible ' it  nncc. This 
avotdq loading the cell blocks that belong t o  range partitions 
that do not contribute tu tho cumpuratiun of the cunent isu. 
surface. We plan to improve this traversal by sturing the 
cells in blocks ut sitnil31 values, with ccll blocks ordered 
hy increasing value. In this manner, 35 few cells a i  pmsihle 
would be traversed when a range could not bc loaded into 
primary memory 

When the bucket s i x  for the histogram is  sinal1 3nd the 
dald is  st i l l  100 large 10 f i t  in mdin mrmory, we cdn no 
longer be mnccrnd with interactive exploration: our snlc 
13sk hecomei cxtracting an isowrface 3s etlicicntly ns pcis- 
sthle. NUR that while this may he slow, i t  is still accclerated 
sinceonlycellsinanarruw rangewill heloded A1s0,since 
ihs problem is  I 0 hound in the out-of-core case. we can im- 
prove the performance significantly if the I'Ei c m  pcrlonn 
LO in p;vallcl. 

Acknowledgments: This research 1s suppond in pan  by 

103 



grants from NSF-CCR-9732306, NSF-KDI-DMS-9873326, 
DOE-ASCI-BD-485, and NASA-NCC 2-5276. 

References 

[I] BAJAJ, C., PASCUCCI, V., AND SCHIKORE, D. Fast 
lsocontouring for Improved Interactivity. In Proceed- 
ings of I996 Symposium on Volume Visualization (San 
Francisco, CA, 1996), pp. 3946.  

[2] BAJAJ, C., PASCUCCI, V., AND SCHIKORE, D. The 
contour spectrum. In Proceedings of the 1997 IEEE 
Visualization Conference (October 1997), pp. 167- 
173. 

[3] CHIANG, Y., AND SILVA, C. T. 110 optimal isosur- 
face extraction. In IEEE Visualization 97 (Nov. 1997), 
R. Yagel and H. Hagen, Eds., IEEE, pp. 293-300. 

[4] CHIANG, Y.-J., SILVA, C. T., AND SCHROEDER, 
W. J. Interactive out-of-core isosurface extraction 
(color plate p. 530). In Proceedings of the 9th An- 
nual IEEE Conference on Visualization (VIS-98) (New 
York, Oct. 18-23 1998), ACM Press, pp. 167-174. 

[SI CIGNONI, P., MARINO, P., MONTANI, C., PUPPO, 
E., AND SCOPICNO, R. Speeding up isosurface ex- 
traction using interval trees. IEEE Transactions on Vi- 
sualization and Computer Graphics 3,2 (1997), 158- 
170. 

[6] CROCKETT, T. Parallel rendering. Tech. rep., ICASE, 
1995. 

[7] CROSSNO, P., A N D  ANGEL, E. lsosurface extraction 
using particle systems. In Ksualization '97 Proceed- 
ings (Phoenix, AZ, October 19-24 1997), R. Yagel 
and H. Hagen, Eds., pp. 495498. 

[XI ELLSIEPEN, P. Parallel isosurfacing in large unstruc- 
tured datasets. In Proceedings of the F$h Eurograph- 
ics Workrhop on Visualization in Scientific Comput- 
ing(1994), M. Gobel, H. Muller, andB. Urban, Eds., 
Springer-Verlag, pp. 9-23. 

[9] ELLSIEPEN, P. Parallel isosurfacing in large un- 
structed datasets. In Visualization in Scientilfc Com- 
puting (1995), Springer-Verlag, pp. 9-23. 

GALLAGHER, R. S. Span filtering: An efficient 
scheme for volume visualization of large finite ele- 
ment models. In Visualization '91 Proceedings (Oct. 
1991), G. M. Nielson and L. Rosenblum, Eds., pp. 68- 
75. 

HANSEN, C., AND HINKER, P. Massively parallel 
isosurface extraction. In Visualization '92 (September 
1992). 

[I31 LIVNAT, Y., SHEN, H., AND JOHNSON, C. A near 
optimal isosurface extraction algorithm for unstruc- 
tured grids. IEEE Transactions on Visualization and 
Computer Graphics 2,  I (1996), 73-84. 

[I41 LORENSEN, W. E., AND CLINE, H. E. Marching 
cubes: A high resolition 3d surface construction algo- 
rithm. Computer Graphics 21 (1987), 163-169. SIG- 
GRAPH '87 Proceedings, M. C. Stone, ed. 

[IS] MIGUET, S., AND NICOD, J.-M. A load-balanced 
parallel implementation of the marching-cub= algo- 
rithm. Tech. Rep. 95-24, Ecole Normale Supkrieure 
de Lyon, October 3 1995. 

[I61 NEUMANN, U. Comunication costs for paral- 
lel volume-rendering applications. IEEE Computer 
Graphics and Applications (July 1994), 49-58. 

[17] PARKER, S. ,  SHIRLEY, P., LIVNAT, Y. ,  HANSEN, 
C., AND SLOAN, P. Interactive ray tracing for isosur- 
face rendering. In Ksualizafion '98 (October 1998). 

[IS] SHEN, H., HANSEN, c . ,  LIVNAT, Y., AND JOHN- 
SON, C .  Isosurfacing in span space with uhnost effi- 
ciency (issue). In Visualization '96 (1996), pp. 287- 
294. 

[I91 SHEN, H., AND JOHNSON, C. Sweeping simplices: 
A fast iso-surface extraction algorithm for unstruc- 
tured grids. In Visualization '95 Proceedings (Oct. 
1995), G .  M. Nielson and D. Silver, Eds., pp. 143- 
150. 

[20] VAN KREVELD, M. Efficient methods for isoline ex- 
traction from a digital elevation model based on trian- 
gulated irregular networks. To appear: International 
Journal of Geographical Information Systems (1996). 
Also appeared as Technical Report UU-CS-1994-21, 
University of Utrecht, the Netherlands. 

[21] WILHELMS, J., AND VAN GELDER, A. Octrees for 
faster isosurface generation. ACM Transactions on 
Graphics 11, 3 (1992), 201-227. 

[I21 ITOH, T., AND KOYAMADA, K. Isosurface gener- 
ation by using extrema graphs. In Proceedings of 
Visualization '94 (Washington, DC, Ocfober 17-21, 
1994) (Oct. 1994), D. Bergeron and A. Kaufman, 
Eds., IEEE Computer Society, IEEE Computer Soci- 
ety Press, pp. 77-83. 

104 


