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1 Introduction 

We use segments of low degree algebraic curves G,, (u, V) = 
0 in tensor product Bernstein-BBzier(BB) form defined within 
a parallelogram or rectangle, to construct G’ and G2 splines. 
A tensor product BB-form polynomial G,, (u, V) = CL, 
~~=o b~B~(u)B~(v) of bi-degree (m,n) has total degree 
m + n, however, the class of G,,,,,(u, V) is a subset of poly- 
nomials of total degree m + n. G1 (resp G2) continuity 
implies curve segments share the same tangentwture) 
at join points(knots). In each of the G’ and G construc- 
tions, we develop a spline curve family whose member sat- 
isfies given interpolation conditions. Each family depends 
on one free parameter that is related linearly to coefficients 
of G,, (u, v). Compared with A-spline segments defined in 
triangular (barycentric) BB-form [2], these algebraic curve 
segments in tensor product form have the following distinct 
features: (a) They are easy to construct. The coefficients 
of the bivariate polynomial that define the curve are ex- 
plicitly given. (b) There exist convenient geometric control 
handles to locally modify the shape of the curve, essential 
for interactive curve design. (c) The spline curves, for the 
rectangle scheme, are e-error controllable where E is the pre- 
specified width of the rectangle. This feature is especially 
important for fitting to “noisy” data with uncertainty. (d) 
These splines curves have a minimal number of inflection 
points. Each curve segment of the spline curve has either 
no inflection points if the corresponding edge is convex, or 
one inflection point otherwise, and the join points of the 
curve segments are not inflection points. (e). Since the re- 
quired bi-degree (m, n) for G’ and G2 is low(in this paper, 
min{m,n} 5 2), the curve can be evaluated and displayed 
extremely fast. We explore both display via parameteri- 
zation as well as recursive subdivision techniques(see Ill]). 
(f) In the six spline families we discuss in sections 2 and 3, 
there are four cases with min{m,n} = 1. In these cases, ra- 
tional parametric expressions are easily derived. Hence, for 
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these cases, we have both the implicit form and the para- 
metric form. Such dual form curves prove useful in several 
geometric design and computer graphics applications. (g) 
In treating a non-convex edge in the triangular scheme(see 
[a]), we need to break the edge into two parts by inserting 
an artificial inflection point. In the present parallelogram 
or rectangle scheme, we need not divide the edge, and the 
inflection point occurs only when necessitated by the end 
point interpolating conditions. These features make these 
error-bounded regular algebraic spline curves promising in 
applications such as interactive font design, image contour- 
ing etc. 

Prior work on using implicit algebraic curve splines in 
data interpolation and fitting focus on using bivariate barycen- 
tric BB-form polynomials defined on plane triangleseee [l], 
PI, PI, PI, 171, PI, WI, PI, P31, P51). To get a rewl= 
curve segment in a triangle, Sederberg, in [13], specified the 
coefficients of the BB-form of an implicitly defined bivariate 
polynomial in such a way that all the coefficients increase 
(or decrease ) monotonically in the direction that is par- 
allel to an edge of the triangle. In [12], Sederberg, Zhao 
and Zundel gave another similar set of conditions which 
guarantees the single sheeted property of their TPAC by 
requiring that b;o 1 0, that bo;, b,,,--l,i < 0 and that the di- 
rectional derivative of PAC(piecewise algebraic curves) with 
respect to any direction s = (YU be non-zero within the tri- 
angle domain, here b;j denotes the B6zier coefficient. Re- 
lated papers which construct families of G’ and G2 con- 
tinuous cubic algebraic splines are given by Paluszny and 
Patterson [8, 91. They use the following reduced form of the 
cubic F (s, t, u) = us2u + bsu2 - cst2 - dt2u + estu, with 
a > 0, b > 0,c > 0, d > 0, and (s, t, u) in BB-coordinates 
over a triangle and guarantee that the segment of the curve 
inside the triangle is convex. These results were further ex- 
tended in [2] and [16]. Paper [2] provide formulation and 
construction of Gk A-spline defined in triangular BB-form. 
Paper [16] introduce the concept of a discriminating family 
of curves by which regular algebraic curve segments are iso- 
lated. Using different discriminating families, several char- 
acterizations of the BB-form of the implicitly defined real 
bivariate polynomials over the plane triangle and the paral- 
lelogram are given, so that the zero contours of the polyno- 
mials define smooth and single sheeted real algebraic (called 
regular) curve segments. In this extended abstract, we use 
two special families on rectangles and parallelograms, we call 
D3 and D4-regular curves, respectively. Let [plp2p@4] be a 
parallelogram(or a rectangle) in the plane and consider the 
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Figure 1.1: (a) D3 discriminating family(dotted line) and D3- 
regular curves(real line). (b) D4 discriminating family(dotted 
line) and D4-regular curves(real line). 

discriminating families D3 (lines) and D4 (hyperbolic) below 

D3([plP2P3P4], blP2], [p3p4]) = {W = S : S E [o, I]}, 

D4([plp2p3p4],pl,p4) = ((1 - S)U(l - V) - S(l - ‘11)2) = 0 : 

where p = (p3 - pi)‘1~ + (p2 - pr)v + pi. The Da(and D4)- 
regular curves are smooth curve families that intersect with 
each member in the corresponding discriminating family 
only once, in the interior of the parallelogram(see Fig 1.1). 

In this paper we have characterized the lowest bi-degree 
of tensor BB-form polynomial to achieve G’ and G2 contin- 
uous regular algebraic spline curves. Using the lowest bi- 
degree, we constructed explicit spline curve families whose 
members satisfied given G and G2 interpolation conditions. 
We also derived a geometric interpretation of each spline 
curve family, so that the shape of the individual curves can 
be controlled intuitively. 

The rest of the extended abstract is as follows. In sec- 
tion 2 we show how a number of data fitting problem reduce 
to interpolating or approximating a polygonal chain of line 
segments with error bounds. In section 3, we discuss the 
problem of polygonal chain approximation by G1 and G2 
D4-regular spline curves defined on parallelograms. In sec- 
tion 4, we discuss the problem of polygonal chain approxima- 
tion by G’ Ds-regular spline curves defined on rectangles. 
Examples are given in section 5. Section 6 concludes the 
paper. 

2 Polygonal Chains 

A polygonal chain is an ordered sequence of polygonal line 
segments, where any three adjacent points are not collinear. 
Several geometry processing tasks generate polygonal chains 
for shape representation in 20. Examples include shape or 
fonts design, fitting from “noisy” data, image contouring, 
snakes [5] and level set methods[l4]. In this section, we 
mention a few of them that have some attached error or 
uncertainty. 

a. Noisy vertex data. The vertex data(position) comes 
from a multi-sampling process with possible error. The error 
bound E is know in advance. Fig 2.1 show such a case. The 
white circles are repeatedly sampled points, the black dot are 
approximation of the sampled points. The approximation of 
the point can be computed as barycenters or centers of grav- 
ity or centers of bounding circular fits. The polygonal chain 
is obtained by connecting these black dots. Spline curve 
to be constructed interpolates the vertices of the polygonal 
chain. Hence the error around each vertex is bounded by E. 

b. Noisy curve data. Suppose a curve is sampled with er- 
ror bounded by E in sequence. The sampled point sequence 

Figure 2.1: Polygonal chain extracted from over-sampled 
points. 

Figure 2.2: Polygonal chain from noisy curve data and using 
adaptive “strip pasting”: The white circles are original sampled 
points with error, and the black dots are the vertices of an ex- 
tracted polygonal chain. 

{v;} could be dense. To produce a polygonal chain to the 
these points, we can use “strip pasting” technique. Choose 
the strip width to be no less than 2~. Then use the minimal 
number strip to cover the samples points(see Fig 2.2). The 
vertices of the polygonal chain are the intersection points 
of two mid-axes of the adjacent strips. A computational 
method for obtaining the minimal number strips can be 
found in [3]. A greedy method to obtain the “strip past- 
ing” uses an adaptive piecewise linear least square fitting, 
starting from one end of the data. The G’ Ds-regular curves 
developed in section 4 is very suitable to interpolate these 
polygonal chains. 

c. Contour from an image. An image could be treated as 
a piecewise Co bi-linear function interpolating the intensity 
values at each pixel. A linear isocontour of the function is a 
polygonal chain. Of course, such a polygonal chain may be 
quit dense, hence a decimation step is often used to obtain 
coarser or multiresolution representations. Fig 2.3 shows 
an image and an isocontour with two decimated polygonal 
chains. The decimation method is established based on ge- 
ometric error(Euclidean distance) control, that is, a point is 
removed if the distance of the point to the line, that inter- 
polate its two neighbor points, is less than a given E. Hence 
all original points are within an c-neighborhood of the dec- 
imated polygonal chain. Again, the G’ Da-regular curves 
defined on rectangles with rectangle-width 2e are just the 
right tools to provide smooth approximation of these polyg- 
onal chains. The two decimated polygonal chains in Fig 2.3 
are obtained by taking E to be 0.05 and 0.25, respectively. 

d. Polygonal chain to polygonal chain. One polygo- 
nal chain could be produced from another polygon chain by 
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Figure 2.3: Prom an image to polygonal chains. 

subdivision or corner cutting. Fig 2.4 shows three polyg- 
onal chains obtained by corner cutting with cutting ratios 
0.25 and 0.5, respectively. When the cutting ratios is 0.5, 
then each edge of the new polygonal chain is convez(see the 
next section for the definition of a convex edge) if the tan- 
gent,s at the vertices are taken to be the original edges. This 
kind polygonal chain is suitable for triangular A-splines[2] 
as well as our &regular curves(see section 3.1). The ver- 
tices of polygonal chain (d) are away from the original edge 
by a specified distance 6. We call this as “offset corner cut- 
ting”. The offset will make constructed Dd-regular curves go 
around the original vertices. This is suitable to approximate 
over-sampled noisy vertex data as mentioned earlier. 

Figure 2.4: (a). An input polygonal chain; (b) Corner cut with 
cutting ratio 0.25; (c) Corner cut with cutting ratio 0.5 yielding 
a convex polygon; (d) Offset corner cut with cutting ratio 0.25. 

Figure 3.1: Parallelogram chain. 

3 Polygonal Chain Approximation by D4-Regular Spline 
Curves 

The regular spline curve consists of a chain of curve seg- 
ments defined by the zero contour of a bivariate polyno- 
mial G mn(~,v) = ~~e~~=e bijBy(zl)BT(v) on a paral- 

lelogram [prpspsp4], where (u, v)’ E [0, l] x [0, l] relates to 
a pointp = (Z,Y)~ E [plP2p3p4] by the map 

P = (p3 -m)u+ (P2 -P&J +p1, (3.1) 

where pl,p~,p4,p3 are clockwise, any three of them are not 
collinear and pr + pa = ps + pa. 

Given an input polygonal chain, denoted by its vertices 
{&Lo, we use D4-regular curves to smoothly approximate 
it, by interpolating the vertices with given first(for G’ con- 
tinuity) and the second(for G2 continuity) order derivatives. 
These derivatives can be estimated from the given data by 
some known techniques, such as divided differences or lo- 
cal interpolation by parametric curve(see [2] for e.g.). Let 

the first order derivative r(l) I and the second order deriva- 

tive r!2) t at vi be given in the parametric form. Further- 

more, without loss of generality, we assume that r!‘) and 

r!2) are plane vectors and come from a parametric curve r(l) 
ai 1 = Zi. where 1 is the arc leneth. Otherwise. we transform -, 

the derivatives by ?i(‘) = rjl)/]]ri ” (1’ I], j32’ = ‘,;2)lllr;1)lp - 

(r!1’Tr~2’)r~1’/llr~1’~~4 so that f$’ and ri -;a 
I 

have the required 

Step 1. Form a parallelogram chain 
For each line segment(edge) of the polygonal chain, con- 

struct a parallelogram such that (see Fig 3.1, where the ar- 
rows are tangent vectors): (i) the line segment is one of 
the diagonals of the parallelogram; (ii) the tangent line of a 
vertex is contained in the two incident parallelograms. 

In constructing parallelograms, we distinguish between 
convex and non-convex edges. For an edge [ui-rWi]r if the 
two tangent lines at vi-1 and vi intersect at a point that lies 
in the region bounded by half-spaces (p-~)~(v; -vi-~) _< 0 
and (p-~i-r)~(~i--‘~i-r) 2 0, then the edge is called convex. 
Otherwise it is non-convez . In Fig 3.1, [vovr], [2)3214] and 
[21403] are convex edges, [vrv,] and [~2~3] are non-convex 
edges. For a convex edge, the corresponding parallelogram 
can be formed by the four points pl, w;- 1, pz, Vi, where pl is 
the intersection point of the two tangents, pz = vi-1 +vi -PI. 
For a non-convex edge, take one point on each side of the 
edge such that p2 + pl = vi-1 + v;. These two points and 
the endpoints of the edge form the parallelogram. 

Step 2. Construct &-Regular Curves 
For each parallelogram, construct a Da-regular curve, 

such that it interpolates the endpoints of the line segment 
and has the given first order or second order derivatives. Let 
G,, (u, v) = 0 be the curve defined on [plp2p4ps], where pi 
and p4 are the interpolation points. Then by the map (3.1), 
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(a) 

Figure 3.2: (a). Symmetric parallelogram about the tangent and 
the curve family for a convex edge; (b). The curve family for a 
non-convex edge 

we have [u, w]’ = [p3 -p1,pz -Ply[p-Pl] = M[p-ml. 

Suppose the curve is parameterized as r(l) and let 

rck)(l) = [p3 -Pl,PZ -Pl][ak(&Pk(l)]= 

= M-‘[ak(l),@k(l)]=. 
(3.2) 

That is, cXyk (J), ,&(l) are the decomposition coefficients of 
r(“)(l) on p3 - pl and pz -PI. 

3.1 A G1 Curve Spline Family 

A. Convex edge. Let [plpd] be a convex edge, and [plp2p3 

p4] be the parallelogram. Assume pl = r(a), p4 = r(b) 
for some a and b with a < b, and aSsume /?l(a) > LYE, 
/31(b) < al(b). Take m = n = 1. 

1. Construction Formulas. 

boo = bll = 0, blo = 1, bol = 
1-x 
q- E (-l,O), x > 1, (3.3) 

P2=xP;+(1--x)Ps, p3=(1-X)p12+Xp5, (3.4) 

where pk is the intersection point of the tangent lines of pl 
and pr(see Fig 3.2(a)), pj = pl + p4 - ph and X is a free 
parameter. Note that the parallelogram [p@@sp4] varies 
with X. 

2. Reformulation. Let p = (pk - ~1)s + (pk - pl)t + pl. 
The curve Gll(u,v) = 0 could be redefined on the smaller 
parallelogram Ip1phpjp4] as: 

Bx : [4s - (3 + q”p” - [4s - (s + t)“]x + s(1 - t) = 0. (3.5) 

3. Bounding Curves. When X = 1, the curve Gll(u,w) = 0 
degenerates to straight lines s = O(the edge [pip;]) and t = 
l(the edge [pkp4]), while X = co, the curve Gll(u,v) = 0 
degenerates to the curve B, : 4s - (s + t)” = 0. 

4. Interpolation of an Interior Point. For any given point 
p’ = (ps - pl).s* + (p: - pl)t* + pl in the interior of the 
region E1 enclosed by the curves & and B,, there exists a 
unique X E (l,oo), that is 

A=;+ 
t* - s* 

J4s’ - (s’ + t*y ’ 
(3.6) 

such that the curve G11 (u, w) = 0 interpolates the point p’. 

Theorem 3.1 For a convex edge, there exists a degree (1,l) 
(m = n = 1) D4 -regular curve family Gll(u, w) = 0, defined 
by (3.3)-(3.4), with a free parameter X E (l,cx~), in the 
region &I enclosed by the curves B1 and B,. Each curve 
in the family G’ interpolates the endpoints of the edge. For 
any given point p in the interior of El, there exists a unique 
curve, defined by (3.3)-(3.4) and (3.6), in this family that 
interpolates the point p. 

Parameterization. From Gll(u,w) = 0, we obtain the 
parameterized expression w = u--bol”~~--uj, u E [0, 11. 

B. Non-convex edge . We assume /31(a) 2 al(a), /31(b) 2 
al(b). Take m = 1,n = 2. If &(a) 5 al(a), ,&(b) 5 al(b), 
take m = 2,n = 1. 

1. Construction Formulas. 

boo = blz = 0, blo = 1, 
bol = -36 5 0, bll = +boz > 0, (3.7) 

where 6 = w, y = H and bo2 < 0 is a signed free 

parameter(see Fig 3.2(b) for the curve family). 

2. Bounding Curves. 

Lo : u(l -w) - a(1 - u)w = 0, 

L- m : (1 - u)w - yu(1 - w) = 0. 

3. Interpolation of an Interior Point. For any given point 
p = (u, w)= in the interior of the region &2 enclosed by LO 
and L-,, take 

bo2 = _ t1 - wb(l - ‘1 - ‘(’ - u)wl 
w[(l - u)w - yw(1 - w)] ’ (3.8) 

then the curve determined by bo2 interpolates the point p. 

Theorem 3.2 For a non-convex edge, there exists a degree 
(1,2)(or (&I)) D4-regular curve family, defined by (3.7) 
with a free parameter bo2 E (0, -CKI), in the region &2 en- 
closed by LO and L-,, whose members G’ interpolate the 
endpoints of the edge. For any given point p in &z, there 
exists a unique curve, defined by (3.7)-(3.8), in this family 
that interpolates the point p. 

Parameterization. Since m = 1,n = 2, the curve can be 
expressed in rational parameterized form 

b&%(w) + bozB;(w) 
u = -B;(w) + (bll - bol)B;(w) - bozB;(w) ’ ’ [” ‘I’ 

Shape Control Handles. For the given polygonal chain, 
the shape control handles are: (i) the direction of tangent 
vector at each vertex; (ii) an interpolating point p in the 
region El, for convex edges, or Es, for non-convex edges. 

3.2 A G2 Curve Spline Family 

A. Convex edge. Let [plp4] be a convex edge and [plp2p3 
p4] be the parallelogram. Again, we assume &(a) > al(a), 
/31(b) < al(b). Furthermore, we as.sume that the the paral- 
lelogram is constructed so that al(a) = PI(b) = 0. Now we 
need to take m = n = 2. 

1. Construction Formulas. 

boo = bol = b12 = b22 = 0, bo2 = -1 (3.9) 

blo = P1(a)2 - > 0, bll = -s > 0, 
a2(a) 

411 = 2blo + 2bzl + 1 - b20, 
(3.10) 

where b2o is a free parameter(see Fig 3.3(a) for the curve 
family). 

2. Interpolation of an Interior Point. Parameter b20 can be 
used to interpolate one point (u, w)= in the interior of the 
parallelogram with u < w. That is, take b2o to be 

Bo”(u)B22(w)-bloB,2(U)B,2(w)-[b21B22(~)+bllBT(U)]B~(w) 

B%+%(w) 
(3.11) 
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Figure 3.3: (a). G2 curve family for a convex edge; (b). G2 
curve family for a non-convex edge. 

3. R:eformulation. Let (~1 = 1 - v, a2 = v - U, (Ye = 
U. Represent Gzz (u, v) in the barycentric coordinate form 
($2 (or, crz, (~3) over the triangle [prpzp4]: 

e22(al,a2,(Y3) := c aijk@jI,(%,a2,a3) (3.12) 

i+j+k=3 

with 

a300 = a210 = a003 = a012 = 0, 

2b10 + 2bzl + bo2 - b2o 
all1 = 6 , 

2 2 
am = -blo, alo2 = -b21, 

3 3 
1 

(3.13) 

(3.14) 

(3.15) 

am = awl = -bo2, aoso = bo2. 
3 

(3.16) 

Theorem 3.3 For a convex edge, say Iplpa], there exists 
a degree (2,Z) convex curve family in the triangle &s = 
blpzp4], defined by (3.9)-(3.10), with b2o as a free param- 
eter. Each member in the family G2 interpolates the end- 
points of the edge. If b20 > 0, the curve is Da-regular in 
the PamlklOgram blp2p4ps]. If b2o < 0, the curve, that 
is re-defined by (3.1.%(3.16), is D1 -regular on the triangle 
[prpzp4]. For any given point p in the interior of &3, there 
exists a unique curve, defined by (3.g)-(3,11), in this family, 
that interpolates the point p. 

B. Non-convex edge. Assume &(a) > al(a), PI(b) 2 
al(b) and the parallelogram is constructed so that al (a) = 0 
or crl(b) = 0. Again, we take m = n = 2. 

1. Construction Formulas. 

boo = b22 = 0, bol = -6blo, b21 = -yb12, (3.17) 

4bll = 2(b12 + bol + blo + b21) - (bo2 + bzo), (3.18) 

ho = k{a(a) [h(a) -or(a)] [y,&(b) - az(b)] 

+ 2w(a)b(a) [L%(b) - (Yl(b)]2}b20 

-i{&(a) k%(a) -al(a)] [r&(b) - az(b)]}boz, (3.19) 

h2 = ~(ol(b)[Bl(b) -al(b)] [az(a) - U,(a)] 

+ 201(b)/%(b) [&(a) - crl(a)]2}boz 

-$(A(b)[L%@) -m(b)] [a(a) - &%(a)1 }bzo. (3.20) 

where 6 = #, y = #, A = [crz(a) - b&(a)][y/32(b)- 

az(b)], boz = -1 and bzo > 0 is a free parameter(see Fig 
3.3(b) for the curve family). 

2. Bounding Curves. Let Gzz(u,v, b02, bzo) be defined by 
(3.17)-(3.20). Then the bounding curves are Gzz(~,v, 1,0) = 
0, G22(u, v, 0,l) = 0. 
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Figure 4.1: Rectangular chain. 

Theorem 3.4 For a non-convex edge, we have a one pa- 
rameter D4-regular curve family (b20G22 (u, v, 0, l)-Gzz(u, v, 
1,0) = 0 : b2o > 0) whose members G2 interpolate the edge 
and have onl one inflection point. For any given point 
p = (u*, v*) 2 in the interior of the region &4 enclosed by 
the curves G22(u,v, 0,l) = 0 and Gzz(~,v, 1,0) = 0 in the 
parallelogram, there exists unique curve in the family with 
b2o = G22(u*, v*, 1, O)/G~~(U*, v*, 0,l) that interpolates the 
point p. 

Curve Evaluation and Display. Since Gz2(21, v) could be 
expressed as Et, Bi(V)B:(U) with go(v) < O,Bz(v) > 0 
on (0, l), the curve Gzz(u, v) = 0 can be evaluated for each 
v in (0,l) by finding the zeros of a quadratic polynomial, 
By = ~~=o bijBT(v). For the case of a convex edge, it is 
possible that the quadratic has two zeros in (0, l), and the 
correct one is such that u < v. For the non-convex edge, the 
quadratic has exactly one zero in (0,l). 

Shape Control Handles. For the given polygonal chain, 
the shape control handles of the curve are: (i) the dlrection 
of tangent vector at each vertex; (ii) the magnitude of the 
second order derivative vector (related to curvature) at each 
vertex; (iii) an interpolating point in the region Es for convex 
edges, or &4 for non-convex edges. 

4 Polygonal Chain Approximation by D3-Regular Curves 

Step 1. Form a Rectangular Chain 
For each line segment(edge) of the polygonal chain, con- 

struct a rectangle such that (see Fig 4.1, where the arrows 
are tangent vectors) the line segment is in the middle of 
the rectangle. That is, two edges are parallel to the line 
segment at an equal distance E from it, and the other two 
edges are orthogonal to the line segment and pass through 
the endpoints of the line segment. 

Step 2. Construct the Ds-regular Curves 
For each rectangle, construct a Da-regular curve, such 

that it interpolates the endpoints of the line segment and 
has given first order derivatives. Let [prpzpsp4] be a given 
rectangle, vo = (pr + p2)/2, vr = (ps + p4)/2 be the inter- 

polation points and rr),r,(‘) be the tangent vectors. Let 

4.1 A G1 Curve Spline Family 

A. Convex edge. Suppose [vcvr] be a convex edge. As 
(34, let r(l) = a1 (p3-pl)+pl (p2-PI). fiOm the COUStrUC- 

tion of the rectangular chain, we have al(a) > 0, al(b) > 0. 
NOW assume PI(a) > 0, PI(b) < 0 (the case PI(a) < 0, 
,&(b) > 0 is similar) and take m = 2, n = 1. 



I I I I 

(a) (b) 

Figure 4.2: (a). Non-convex curve; (b). Convex curves. 

(a) (b) 

Figure 4.3: (a) The case a 5 p; (b) The case a > /3 

1. Construction Formulas. 

boo = 1, bzl = -bzO, bol = -1, 

blo + bll = 2a = -2pbao, bzO = -a$-’ > 0, (4.1) 

where a = s, /3 = $$$, bll as a free parameter(see Fig 
4.2(b) for the curve family). 

2. Limitations on Free Pammeters. To make the curves 
Ds-regular and convex, we enforce 

bll < b;, :=min{JT, - f + a [l + p-‘I} . (4.2) 

Theorem 4.1 For a convex edge, let Gxl(u, v, 611) be de- 
fined by (4.1), then we have a convex Ds-regular curve fam- 
ily {Gzr(u, v, bll) = 0 : bll < b;,}, whose members G1 in- 
terpolate the endpoints of the edge. For any given point p = 
(u*, v*)~ in the region &5 enclosed by the curve G21 (u, v, bT1) 
= 0 and the line v = f there exists a unique bll satisfying 
G21 (u’, v*, bll) = 0 such that the curwe G21 (u, v, bll) = 0 
interpolates the point p. 

B. Non-convex edge. Assume /31(a) 2 0, PI(b) 2 0. Take 
m=3,n=l. 

1. Construction Formulas. 

boo = bso = 1, bol = bs1 = -1, (4.3) 
4 

blo + bll = -a, 
4 

3 
bzo + bzl = --A 

3 (4.4) 

bll + bzo = blo + b21, (4.5) 

blo = bzo + ;(a + p), b21 = bll - ;(a + p), (4.6) 

where (Y = 3, p = $$, b2a or bll is a free parame- 
ter(see Fig 4.3 for the curve family). 

2. Limitations on Free Parameters. To ensure the curves are 
Ds-regular and have only one inflection point, we require 

b20>max 
{ 

b;o,L1.-~---2aL3 P-a-W2 
3a ’ 3p 1 

7 (4.7) 

bll < min b:,, 
p - a + 2a2 CY-p+zffp 

3a ’ 3p > 
, (4.8) 

when Q > p, where b;, is the largest negative root of h(bzo) = 
0, bil is the smallest positive root of g(bll) = 0 with 

h(bzo) := 1 + 4b:o + 4bgo - 3b:,b;, - 6blobzo, 

g(bll) := 1 - 4bf1 - 4b& - 3bflb& - 6bllb21. 

9. Interpolation to a Normal. It should be noted that all 
the curves pass through the same point (u*, 4)’ with u* = 
*(see Fig 4.3). Since 

VG31 (u*, f)= 2@ 2(a3+P3) (6bzo+4P)d * 
-G-q- ((Y+Lq3 - (a+PJ2 1 ’ 

znsiigning a normal at (u*, a)T, the unique b20 is deter- 

Theorem 4.2 For a non-convex edge, there exists a Ds- 
regular curve family {Gal (u, v) = 0) that has the following 
properties: (i). Each curve in the family G’ interpolates the 
edge. (ii). Each curue passes through the point (u*, 3)‘. 
(iii). There is only one curve in that family that has the 
given normal at (u*, i)‘. (iv). The curve v = 1. and the 
curve given by bzo = b;, (if cy 5 p) or bll = bTl ?if Q > P) 
are the two limit curves of the family. 

Parameterisation. Since the curve is defined by Gmr (u, v) 
= CL”=, b;oI3r(u) + w CLo(bio - bil)By(u) = 0, it follows 
from (3.1) that 

p=(p3-Pl)~-b2-Pl) 
CL”=, h%“(u) 

Czo(bio - bil)By(u) +‘l’ 

for ‘1~ E [0, 11. 

Shape Control Handles. For the given polygonal chain, 
the shape control handles of the curve are: (i) the direction 
of the tangent vector at each vertex; (ii) an interpolating 
point in the region Es, for convex edges, or a normal at 
(u*, $)‘, for non-convex edges. 

Figure 4.4: The top figure shows the input polygon. The bottom 
shows the G1 D4-regular curves and BBzier points interpolating 
the vertices of the polygon within prescribed bounds. 
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Figure 5.1: G’ families on Figure 5.2: G2 families on 
parallelograms. parallelograms. 

Figure 5.3: G1 families on Figure 5.4: G1 families on 
rectangles with e = 1.0. The rectangles with e = 0.2. The 
width of the rectangle is 2~. width of the rectangle is 2~. 

e 1 1.5 

Note. In the six spline families we discuss in sections 3 and 
4, there are four cases with min{m,n} = 1. In these cases, 
rational parametric expressions are easily derived. Hence, 
for these cases, we have both the implicit form and the para- 
metric form. For example, the G’ Ds-regular curve could be 
transformed into parametric rational Bezier curve of degree 
4. The bottom figure of Fig 4.4 shows the Bezier points of 
G1 De-regular curve as well as the rectangle chain for the 
input polygonal chain(top figure). It is clear that the rect- 
angles more tightly enclose the curve than the convex hull of 
the Bezier points. Furthermore, the shape of curve is easier 
to control using its implicit form than using its parametric 
form, since the implicit form has one free parameter while 
the rational BCzier of degree 4 has many more degrees of 
freedom. Also, the parameter change of the rational Bezier 
form may lead the curve out of the G1 Da-regular curve 
family. 

5 Examples 

To illustrate the data fitting flexibility of the spline curves 
introduced in the last two sections, we provide several ex- 
amples. In all the examples, the input data are normalized 
into the cube [-5,5] x [-5,5] x [-5,5]. In order to illustrate 

the features for each case, we use the following regular data: 

{Vi) = {(Ll), (O,% (-1,1), (1, -11, (0, -2), C-1, -l)), 

{P) = ((0, l), C-1, O), (0, -I), (0, -I), (-LO), (0, l)h 

{m = {(-LO), (0, -I), (LO), (--LO), (-LO), (LO)). 

In each case, ten curves are plotted(see Fig 5.1-5.4) for ten 
different parameters to show the curve family. The features 
of the curves shown in the figures coincide with the analysis 
in section 2 and 3. 

For the convex edge, the G’ curves(in Fig 5.1) within a 
parallelogram are located away from the convex edge. In 
contrast, the G1 curves(Fig 5.3, 5.4) within a rectangle are 
located near the convex edge. The G2 curve family within 
a parallelogram(Fig 5.2) has both these features. 

For the non-convex edge, the G1 curves(in Fig 5.1) within 
a parallelogram tend to go directly from one vertex to the 
other. Hence the curves have sharp changes in the tan- 
gent direction at the end points for the parameters near the 
boundary of its domain, even though the curves are rather 
straight in the middle. The G2 curves within a parallel- 
ogram(Fig 5.2) do not have sharp changes in the tangent 
direction. The G1 curves(Fig 5.3, 5.4) within a rectangle 
closely follow the letter S, and additionally, all pass through 
the same point. The curves in Fig 5.4 are G’ within the rect- 
angle, but within a smaller size(width = 2e, and E = 0.2, in 
contrast with E = 1.0 in Fig 5.3) of rectangle. As one can ob- 
serve, these curves shrink towards the edges of the shrunken 
rectangle. 

In summary, Ds-regular and D*-regular curves have sev- 
eral common features and have different features as well. For 
example, both of them can be sharp(rapid change of tangent 
line) at the vertices. However, Dd-regular curves can also 
be very flat(slow change of tangent line) around vertices and 
sharp at other parts. Ds-regular curves cannot be very flat 
around vertices if E is small. These features can be utilized 
in shape design where sharp and flat features are required. 

The features of the curves introduced in this paper strongly 
suggest that these tensor-product BB-form curve families 
serve a variety of geometric design and computer graphics 
applications. Fig 5.5 and 5.6 show some fitting examples 
from real data. The polygonal chains in Fig 5.5(left) are 
decimated contours stack of a human femur. Fig 5.5 (right) 
are the results of G’ D4-regular curve approximation. The 
polygonal chains in Fig 5.6 are the decimated results of the 
polygonal chain shown in Fig 2.3. 

Figure 5.5: The figure on the left shows a stack of input polygon 
contours of a human femur. The right shows the G1 D4-regular 
curves interpolating the vertices of the contours. 
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Figure 5.6: The figures in the first row show the multiresolution representation of the input data. The geometry errors are chosen to be 
0.01, 0.05 and 0.25, respectively. The second row is the corresponding G1 D4-regular curves with a parallelogram chain. The third row 
is the corresponding G2 Da-regular curves with a parallelogram chain. The last row is the corresponding G’ &-regular curves with a 
rectangle chain, where the width of the rectangles are chosen to be 0.3. 
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6 Conclusions and Future Work 

We have characterized the lowest bi-degree of tensor BB- 
form polynomial to achieve G’ and G2 continuous regular 
algebraic spline curves. Using the lowest bi-degree, we con- 
structed explicit spline curve families whose members satis- 
fied given G’ and G2 interpolation conditions. We also de- 
rived a geometric interpretation of each spline curve family, 
so that the shape of the individual curves can be controlled 
intuitively. 

Finally, we point that the D3 and D4-regular curves used 
in this paper can be extended to 3D space curves. The 
parallelogram and the rectangle become the parallelepiped 
(see I?ig 6.1(a)) and the cubicoid (see Fig 6.1(b)) volume 
cells, respectively. The G1 and G2 regular space spline curve 
segments are now defined by the intersection of two zero 
contours of trivariate tensor product polynomial functions 
in BE!-form within each volume cell. Properties and data 
fitting schemes for these implicitly defined space curves are 
currently being researched. 

Figure 6.1: Implicitly spline curve segment defined within (a) 
parallelepiped and (b) cubicoid, using dual trivariate tensor prod- 
uct polynomial functions in BB-form. 
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