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Abstract

We provide sufficient conditions for the Bernstein–Bézier (BB) form of an implicitly defined
bivariate polynomial over a triangle, such that the zero contour of the polynomial defines a smooth
and single sheeted real algebraic curve segment. We call a piecewiseGk-continuous chain of such
real algebraic curve segments in BB-form as an A-spline (short for algebraic spline). We prove that
the degreen A-splines can achieve in generalG2n−3 continuity by local fitting and still have degrees
of freedom to achieve local data approximation. As examples, we show how to construct locally
convex cubic A-splines to interpolate and/or approximate the vertices of an arbitrary planar polygon
with up toG4 continuity, to fit discrete points and derivatives data, and approximate high degree
parametric and implicitly defined curves. Additionally, we provide computable error bounds. 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

Designing fonts with piecewise smooth curves or fitting curves to scattered data for
image reconstruction are just two of the diverse applications of spline curve constructions.
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In this paper, we generalize past curve fitting schemes with conics (Bookstein, 1979;
Farin, 1989; Pavlidis, 1983; Pottmann, 1991; Pratt, 1985; Sampson, 1982) and parametric
spline fitting (Curry and Schoenberg, 1966; Nürnberger et al., 1984; Schoenberg and
Whitney, 1953), achieving fits with fewer number of pieces or with higher order
of smoothness/continuity. We exhibit efficient techniques to deal with higher degree
implicitly defined algebraic curves,f (x, y)= 0, with f (x, y) a bivariate real polynomial.
The spline techniques of this paper simplify and extend prior approaches and applications
of algebraic curves to problems in geometric modeling (Bajaj, 1997; Bajaj and Ihm,
1992; Bajaj and Xu, 1994, 1996; Bajaj et al., 1999; Paluszny and Patterson, 1992, 1993;
Sederberg et al., 1985; Sederberg et al., 1988; Sederberg, 1984). The main advantages of
the implicitly defined algebraic spline curve over the functional and parametric curves are:
(1) the class of algebraic curves is closed under several geometric operations (intersections,
union, offset, etc.), often required in a solid modeling system. For example, the offset of
a parametric curve may not be parametric but is always algebraic and has an implicit
representation. (2) Implicit algebraic curve segments (of degreen) have more degrees
of freedom(= (n + 2)(n + 1)/2 − 1 = n(n + 3)/2) compared with rational function
(= 2n+ 1) and rational parametric (= 3n− 1) curves of the same degree. Thus, implicit
algebraic curve segments appear to be more flexible to approximate a complicated curve
with fewer number of pieces or to achieve higher order of smoothness. For example, by
local interpolation, implicit algebraic curves have the potential to achieveGk continuity
with k 6 n(n+ 3)/4− 1, while functional or parametric curve can achieveGk

′
continuity

with k′ = n − 1. Note that the degrees of freedom for the rational parametric curves are
consistent with the well known theorem that rational parametric curves are exactly the
irreducible implicit algebraic curves of genus 0 (Walker, 1978). An irreducible implicit
curve of genus 0 and degreen possesses the maximum number of singularities an
irreducible curve can have, viz.,(n−1)(n−2)/2 and this is exactly the difference between
the degrees of freedom of arbitrary implicit algebraic curves and rational parametric
algebraic curves of the same degreen. The primary drawback, however, for the widespread
use of the implicit algebraic curve is that the curve can have singularities (see Walker, 1978)
and possess several disconnected real components. For example, fitting or interpolating a
cluster of points within a triangle by an algebraic curve, the resulting curve could have
either singular points or several disconnected components (sheets). Hence it is natural in
some applications to require the curves to be smooth (no singularity) and not disconnected
(single sheeted) within the triangle considered. In this paper we show how to isolate a
nonsingular and single sheeted segment of an implicit algebraic curve and furthermore
how to stitch these segments together to form a spline with continuity as high asG2n−3

using degreen curve pieces.
In Section 3 we provide sufficient conditions for the Bernstein–Bézier (BB) form of an

implicitly defined bivariate polynomial over a triangle, such that the zero contour of the
polynomial defines a smooth and single sheeted real algebraic curve segment. We call a
piecewiseGk-continuous chain of such real algebraic curve segments in BB-form as an
A-spline (short for algebraic spline). In Section 4 we prove that the degreen A-splines
can achieve in generalG2n−3 continuity by local fitting. As examples, we show how to
construct locally convex cubic A-splines to interpolate and/or approximate the vertices of
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an arbitrary planar polygon with up toG4 continuity, to fit discrete points and derivatives
data, and approximate high degree parametric and implicitly defined curves. Additionally,
we provide computable error bounds in Section 5.

1.1. Related prior work

Considerable work on polynomial spline interpolation and approximation has been done
in the last decades(see (deBoor, 1978) for a bibliography). In general, spline interpolation
has been viewed as a global fitting problem to arbitrary scattered data (Bookstein,
1979; Curry and Schoenberg, 1966; Nürnberger et al., 1984; Pavlidis, 1983; Pratt, 1985;
Sampson, 1982; Schoenberg and Whitney, 1953). Here we consider local interpolation to
an ordered set of points, defining an arbitrary polygon. Local interpolation by polynomials
and rational functions is rather an old and simple technique that trace back to Hermite
and Cauchy (1821). However, local interpolation by the zero sets of algebraic polynomials
(implicit algebraic curves, surfaces etc.) is relatively new (Bajaj, 1997; Bajaj and Ihm,
1992; Floater, 1996; Paluszny and Patterson, 1992, 1993; Patterson, 1988; Sederberg,
1984). We lay emphasis in this paper on using connected and nonsingular real segments
of implicit algebraic curves. Towards the same goal, Sederberg, in (Sederberg, 1984), has
specified the coefficients of the BB form of an implicitly defined bivariate polynomial on
a triangle in such a way that if the coefficients on the lines that parallel to one side, say
L, of the triangle all increase (or decrease ) monotonically in the same direction, then any
line parallel toL will intersect the algebraic curve segment at most once. Our conditions
in Theorem 3.1 is more general, with Sederberg’s condition forming a special case. In
(Sederberg et al., 1988), Sederberg, Zhao and Zundel gave another similar set of conditions
which guarantees the single sheeted property of their TPAC by requiring thatbi0> 0, that
b0i, bm−1,i 6 0 and that the directional derivative of PAC (piecewise algebraic curves) with
respect to any directions = αu be nonzero within the triangle domain, herebij denotes the
Bézier coefficient. This condition is also much more restrictive than ours.

Related papers which construct families ofG1 andG2 continuous cubic algebraic
splines are given by Paluszny and Patterson (1992, 1993, 1994, 1998). They use the
following reduced form of the cubic

F (s, t, u)= as2u+ bsu2− cst2− dt2u+ estu,
with a > 0, b > 0, c > 0, d > 0, and (s, t, u) in BB-coordinates over a triangle and
guarantee that the segment of the curve inside the triangle is convex. These results are
special cases of the present paper as we consider the general implicit cubic. Our cubic
A-splines can always achieveG3-continuity, and evenG4-continuity for some special
cases.

2. Notation and preliminaries

Let f (x, y) be a bivariate polynomial of degreen with real coefficients, andp1,p2, v1
be three affine independent points in thexy-plane. Then the transform
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(a) (b)

Fig. 1. (a) AG1 polygon; (b) Bézier coefficients of cubic. xy
1

= [ p1 p2 v1
1 1 1

] α1

α2

α3

 (2.1)

mapsf (x, y) into its barycentric coordinate formF(α1, α2, α3)= f (x, y) on the triangle
[p1p2v1], where 06 αi 6 1 andα1+ α2+ α3 = 1. In the barycentric coordinate system,
F(α1, α2, α3) can be expressed in BB form (see (Farin, 1990)).

F(α1, α2, α3)=
∑

i+j+k=n
bijkB

n
ijk(α1, α2, α3), (2.2)

where

Bnijk(α1, α2, α3)= n!
i!j !k!α

i
1α
j

2α
k
3.

Let p1, v1 andp2 be three affine independent points in thexy-plane (see Fig. 1(a)). Then
we consider the two line segments[p1v1] and[v1p2] as a segment of a polygon, denoted
by p̂1v1p2. We shall considerv1 as a controller andp1 andp2 as interpolation points.
An arbitrary polygon chain(or polygon for brevity) consists of a sequence of consecutive
polygon segments denoted by{piv̂ipi+1}mi=0. A polygon {piv̂ipi+1}mi=0 is said to be of
typeG1(see Fig. 1(a)) if

(vi − pi+1)= αi(vi+1− pi+1), αi < 0, for i = 0, . . . ,m.

If p0 = pm+1, then the polygon is closed. Note that aG1 polygon can be trivially
constructed from an arbitrary polygon by inserting one vertex per edge of the polygon.

3. A sufficient condition of A-splines

Let F(α1, α2, α3) be defined as (2.2) on the triangle[p1p2v1]. Since there is constant
multiplier to the equationF(α1, α2, α3)= 0, we may assumeb00n=−1 if b00n 6= 0.

Theorem 3.1. For the given polynomialF(α1, α2, α3) defined as(2.2), if there exists an
integerK(0<K < n) such that(see Fig.1(b) for n= 3 andK = 1)

bijk > 0 for j = 0,1, . . . , n− k; k = 0,1, . . . ,K − 1, (3.1)
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bijk 6 0 for j = 0,1, . . . , n− k; k =K + 1, . . . , n, (3.2)

and
n∑
j=0

bn−j,j0> 0,
n−k∑
j=0

bn−j−k,jk < 0

for at least onek (K < k 6 n), then for anyβ that0< β < 1, the straight line

(α1, α2, α3)(t)= (1− t)(β,1− β,0)+ t (0,0,1) (3.3)

that passes throughv1 andβp1+ (1− β)p2, intersects the curveF(α1, α2, α3) = 0 one
and only one time(counting multiplicity) in the interior of the triangle[p1p2v1].

The proofs of this and other theorems are given in the Appendix A.
This theorem guarantees that there is one and only one curve segment ofF(α1, α2, α3)=

0 within the triangle under the given condition. The term “algebraic spline” or A-spline
that we use in this paper is a chain of such curve segments with fixed continuity at the join
points. We should mention that the curveF(α1, α2, α3)= 0 passes throughv1 if b00n= 0.
However, we do not use this part of the curve. In our application in Section 4, we takeb00n
to be−1.

Note 3.1. Formulas (3.3) and (A.1) could be used to evaluate the curveF(α1, α2, α3)= 0.
That is, for a given sequence of points ofβ ∈ (0,1), solve the equationBβ(t) = 0 for
t ∈ (0,1). Then substituting(β, t) into (3.3), we then obtain a sequence of points, in
terms of barycentric coordinates, on the curve. Forn6 4, a closed form for the solution of
Bβ(t)= 0 exists. Forn> 5, numerical methods have to be employed to solve the equation.
However, since the equation has a single root in(0,1), Newton iterations combined with
bisection suffice.

The next theorem goes further about the smoothness of the curveF(α1, α2, α3) = 0 and
the properties on the boundary of the triangle.

Theorem 3.2. LetF(α1, α2, α3) be defined as Theorem3.1, then
(i) The curveF(α1, α2, α3)= 0 is smooth in the interior of the triangle[p1p2v1].
(ii) If we further assumebn−k,0k = 0 for k = 0, . . . ,K, bn−(K+1),0,K+1 < 0 and

bn−1,10 > 0, then the curve in the triangle passes throughp1, tangent with the
line α2= 0 with multiplicityK + 1 atp1 and no other intersection withα2= 0 for
α1 > 0, α3 > 0. Similarly, if b0,n−k,k = 0 for k = 0, . . . ,K, b0,n−(K+1),K+1 < 0,
andb1,n−1,0 > 0, then the curve passes throughp2, tangent with the lineα1 = 0
with multiplicityK+1 atp2 and no other intersection withα1= 0 for α2> 0, α3>

0.
(iii) If bn00= bn−1,01= bn−1,10= 0, thenp1 is a singular point of the curve. Similarly,

if b0n0= b1,n−1,0= b0,n−1,1= 0, thenp2 is a singular point of the curve.

Since it is obvious that the quadratic A-spline is convex, we consider now the convexity
of the cubic spline. At present, the convexity characterization of the general case forn> 4
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degree A-spline is left as an open problem. Even for the cubic case, the convexity is not
always guaranteed. If the curve segment is tangent with the sides of the triangle atp1 and
p2, i.e., aG1 A-spline as in Theorem 3.2(ii), then it is convex. This is of course a special
case, but it is the case we most often use in this paper (see Section 4).

Theorem 3.3. The cubic A-spline defined in Theorem3.2(ii) has no inflection point inside
its reference triangle.

4. Gk A-splines

In this section, we connect the A-spline segments to form a piecewiseGk continuous
spline curve. For simplicity we assume that we are given a polygon in the plane, that is
we have an ordered point set{pi}m+1

i=0 , and additionally a vertex set{vi}mi=0 (see Fig. 1(a)),
such that the three pointspi, vi andpi+1 are affine independent (noncollinear). TheGk

continuity of an A-spline is achieved by the following steps:
(1) Form aG1 control polygon{ ̂pivipi+1}.
(2) Compute the firstk terms of the local power series expansion of the A-spline at the

join pointspi from the given data at these points.
(3) Determine the coefficients ofF such thatF = 0 has the same firstk terms of local

power series at the join points.
Several schemes exist which produce a desired polygon chain from scattered data

(Edelsbrunner et al., 1983; Fairfield, 1979; Walker, 1978). To produce aG1 polygon from
a polygonal chain is trivial and amounts to inserting a single additional vertex per polygon
edge. In Section 4.1, we first define the local power series and then compute the coefficients
of F . Then in Section 4.2 we compute the power series for three fitting problems: (a) fit to
a parametric curve; (b) fit to discrete data; (c) fit to a higher degree implicit curve.

4.1. Coefficients ofF from local power series expansion

We consider first a two segment A-spline curve

Fl(α1, α2, α3)=
∑

i+j+k=n
b
(l)
ijkB

n
ijk(α1, α2, α3)=

∑
i+j+k=n

b̃
(l)
ijkα

i
1α
j

2α
k
3 = 0

on triangles[p(l)1 p
(l)
2 v

(l)
1 ] for l = 1,2 with p(1)1 = p(2)2 as join point (see Fig. 2), where

b̃
(l)
ijk = (n!/(i!j !k!))b(l)ijk . We want to join these curve segments with the desired smoothness

atp(1)1 .

In the triangle[p(l)1 p
(l)
2 v

(l)
1 ], we require our A-spline passing throughp(1)1 and tangent

with the line[p(1)1 v
(1)
1 ] atp(1)1 . Hence we assumeb(1)n−1,1,0> 0, b(2)1,n−1,0> 0. This implies

that the curvesFl(α1, α2, α3)= 0 are regular atp(1)1 . Therefore, the curveF1(1−α2− α3,

α2, α3)= 0 can be represented as a power series atp
(1)
1

α2=
∞∑
i=0

a
(1)
i αi3=

∞∑
i=0

a
(1)
i

(
p
(1)
1

)
αi3, α1= 1− α2− α3, (4.1)
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Fig. 2. The two different cases ofG1 join polygon segments.

with a
(1)
0 = a(1)0 (p

(1)
1 ) = 0, where we relate the coefficientsa(1)i to p(1)1 to emphasize

that the expansion is performed atp(1)1 . Similarly, F2(α1,1− α1 − α3, α3) = 0 can be
represented as

α1=
∞∑
i=0

a
(2)
i αi3=

∞∑
i=0

a
(2)
i

(
p
(2)
2

)
αi3, α2= 1− α1− α3, (4.2)

at p(2)2 with a(2)0 = 0. It follows from Theorem 3.2 that the curveF1 = 0 is tangent with

[p(1)1 v
(1)
1 ] n− 2 times atp(1)1 if and only if

b
(1)
n−k,0,k = 0, for k = 0,1, . . . , n− 2, (4.3)

or if and only if a(1)k = 0, for k = 0,1, . . . , n− 2. The same is true for the curveF2= 0 at

p
(2)
2 , that is, the curve is tangent with[p(2)2 v

(2)
1 ] atp(2)2 n− 2 times if and only if

b
(2)
0,n−k,k = 0, for k = 0, . . . , n− 2. (4.4)

Now we assume (4.3) and (4.4) hold. Hence (4.1) and (4.2) become

α2=
∞∑

i=n−1

a
(1)
i αi3, α1= 1− α2− α3, (4.5)

α1=
∞∑

i=n−1

a
(2)
i αi3, α2= 1− α1− α3, (4.6)

respectively. Substitute (4.5) intoF1(1− α2− α3, α2, α3)= 0, we get

F1 (1− α2(α3)− α3, α2(α3),α3)=
∞∑

i=n−1

g
(1)
i αi3= 0.

Fromg(1)i = 0 for i = n− 1, . . . ,2n− 3, we derive

b̃
(1)
n−1,10=−

b̃
(1)
10,n−1

a
(1)
n−1

, (4.7)

b̃
(1)
n−2,11=−

−b̃(1)10n−1+ b̃(1)00n+ b̃(1)n−1,10[a(1)n − (n− 1)a(1)n−1]
a
(1)
n−1

, (4.8)
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b̃
(1)
n−i−2,1,i+1=−

∑i
j=0 b̃

(1)
n−1−j,1,j

∑n−1−j
l−0 (−1)lCln−1−j a

(1)
n+i−l−j

a
(1)
n−1

, (4.9)

for i = 1,2, . . . , n − 3, whereCkn = n!/(k!(n − k)!), a(1)j = 0 if j < n − 1. That is, the
coefficients determined by (4.7)–(4.9) will lead to the curveF1(α1, α2, α3)= 0 matching
the power series (4.5) up to the first 2n − 3 terms. It is noted that, each of the formulas
(4.7)–(4.9) determines one of the coefficientsb’s, and introduces one of the coefficients
a’s. Among all the coefficientsb’s, there is one degree of freedom.

Since b(1)n−1,10 > 0, b(1)10,n−1 < 0, (4.7) implies thata(1)n−1 > 0. The correct sign of

b
(1)
n−1−k,1k can be obtained by givinga(1)n+k−1 properly.

For the curveF2= 0 atp(2)2 , we similarly have,

F2(α1(α3),1− α1(α3)− α3, α3)=
∞∑

i=n−1

g
(2)
i αi3= 0.

From which we have

b̃
(2)
1,n−1,0=−

b̃
(2)
01,n−1

a
(2)
n−1

, (4.10)

b̃
(2)
1n−2,1=−

−b̃(2)01,n−1+ b̃(2)00n+ b̃(2)1,n−1,0[a(2)n − (n− 1)a(2)n−1]
a
(2)
n−1

, (4.11)

b̃
(2)
1,n−i−2,i+1=−

∑i
j=0 b̃

(2)
1,n−1−j,j

∑n−1−j
l=0 (−1)lCln−1−j a

(2)
n+i−l−j

a
(2)
n−1

, (4.12)

for i = 1,2, . . . , n− 3. If we further assume

a
(1)
n−1= b(1)1,0,n−1= 0, (4.13)

then similar to the discussion above, we have

b̃
(1)
n−1,1,0=−

b̃
(1)
00n

a
(1)
n

, (4.14)

b̃
(1)
n−i−1,1,i =−

1

a
(1)
n

 i−1∑
j=0

b̃
(1)
n−1−j,1,j

n−1−j∑
l=0

(−1)lCln−1−j a
(1)
n+i−l−j

 , (4.15)

for i = 1,2, . . . , n− 2. Similarly, for curveF2= 0 atp(2)2 , if we assume

a
(2)
n−1= b(2)0,1,n−1= 0, (4.16)

then

b̃
(2)
1,n−10=−

b̃
(2)
00n

a
(2)
n

, (4.17)
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b̃
(2)
1,n−i−1,i =−

1

a
(2)
n

 i−1∑
j=0

b̃
(2)
1,n−1−j,j

n−1−j∑
l=0

(−1)lCln−1−j a
(2)
n+i−l−j

 , (4.18)

for i = 1,2, . . . , n− 2.
Formulas (4.13)–(4.18) match the power series up to the first 2n− 2 terms. If we only

fit the first 2n− 3 terms,b(l)1,1,n−2 could be free. For theG3 fitting with cubics in Section
4, we choose it to be zero.

Now we explain why we consider both of the cases ofa
(l)
n−1> 0 anda(l)n−1= 0. As before,

let

p
(1)
1 v̂(1)1p

(1)
2 and p

(2)
1 v̂(2)1p

(2)
2

be two segments of a polygon. If theyG1 join atp(1)1 , then there are two join configurations

(see Fig. 2):nonconvexjoin andconvexjoin. In the nonconvex join,p(1)2 andp(2)1 lie on

different sides of the line[v(1)1 v
(2)
1 ], while in the convex join,p(1)2 andp(2)1 lie on the same

side of the line[v(1)1 v
(2)
1 ]. Since our A-splines are always contained within the triangles

considered, ifp(1)1 is of a nonconvex join, then the curve will be tangent with the line

[v(1)1 v
(2)
1 ] an odd number of times, otherwise, it will be tangent with the line[v(1)1 v

(2)
1 ] an

even number of times. Therefore,
(i) If p(1)1 is of a nonconvex join,n is an even number thena(l)n−1> 0 for l = 1,2; if n is

an odd number, thena(l)n−1= 0.

(ii) If p(1)1 is of a convex join,n is an even number, thena(l)n−1= 0 for l = 1,2; if n is an

odd number, thena(l)n−1> 0.

Theorem 4.1. The degreen A-spline can achieveG2n−3 continuity by fitting locally the
given parametric or implicit curve at the join points.

Note 4.1. If n > 3, the coefficientsbijk are free fori > 1 and j > 1. These degrees
(= (n − 2)(n − 3)/2) of freedom can be used to interpolate/approximate points in the
triangle, fairing the constructed curve, or to achieve even higher order continuity at the
joins.

Note 4.2. If n is an odd/even number and all the points are nonconvex/ convex join, then
eachb1,1,n−2 is free. This degree of freedom can be used to interpolate points in the triangle
or to achieveG2n−2 continuity (see Section 4.3).

4.2. Local power series computation

A. Fitting to a parametric curve

Suppose we are given a parametric curveX(t) = [φ(t),ψ(t)]T in the neighborhood
of p(1)1 and assumeX(0)= p(1)1 . Now we computea(1)i defined in (4.1) (a(2)i are similarly
computed). It follows from (2.1) that the curves (4.5) and (4.6) in Cartesianxy-coordinates
can be expressed as
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Y1(α3)=
[
x1(α3), y1(α3)

]T
= p(1)1 +

[
v
(1)
1 − p(1)1

]
α3+

[
p
(1)
2 − p(1)1

] ∞∑
i=n−1

a
(1)
i

(
p
(1)
1

)
αi3, (4.19)

Y2(α3)=
[
x2(α3), y2(α3)

]T
= p(2)2 +

[
v
(2)
1 −p(2)2

]
α3+

[
p
(2)
1 − p(2)2

] ∞∑
i=n−1

a
(2)
i

(
p
(2)
2

)
αi3. (4.20)

Now we need to determine the so-calledβ-matrix (see (Seidel, 1993))

C(l) =


β1

β2 β2
1

β3 3β1β2 β3
1

β4 3β2
2 + 4β1 β3 6β2

1β2 β4
1

. . . . . . . . . . . . . . .

=
[
β
(l)
ij (p

(1)
1 )

]

anda(l)i (p
(1)
1 ) for l = 1,2 andi = n− 1, . . ., so that
Y ′l (0)
Y ′′l (0)
...

Y kl (0)

=C(l)

X′(0)
X′′(0)
...

Xk(0)

 , l = 1,2. (4.21)

Eq. (4.21) is the condition ofGk continuity between two parametric curves. From (4.19)–
(4.20) and (4.21), we have

v
(l)
1 − p(1)1 = β(l)11

(
p
(1)
1

)
X′(0).

Hence

β
(l)
11

(
p
(1)
1

)= (−1)l−1‖v(l)1 − p(1)1 ‖
‖X′(0)‖ , l = 1,2.

Let

nx =
(
v
(1)
1 − p(1)1

)
/
∥∥v(1)1 − p(1)1

∥∥
andny be two unit vectors such thatnTx ny = 0 and det[nx,ny ] = 1. Let

X(i)(0)= γi
(
p
(1)
1

)
ny + δi

(
p
(1)
1

)
nx, i = 1,2, . . . . (4.22)

Then,γ1(p
(1)
1 )= 0, δ1(p

(1)
1 )= ‖X′(0)‖ and

γi
(
p
(1)
1

)= det
[
nx,X

(i)(0)
]
, δi

(
p
(1)
1

)= det
[
X(i)(0), ny

]
and
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Y
(k)
l (0)=

k∑
i=1

β
(l)
ki

(
p
(1)
1

)
X(i)(0)

=
[

k∑
i=1

β
(l)
ki

(
p
(1)
1

)
γi
(
p
(1)
1

)]
ny +

[
k∑
i=1

β
(l)
ki

(
p
(1)
1

)
δi
(
p
(1)
1

)]
nx,

whereβ(l)ki (p
(1)
1 ) are known fori = 2, . . . , k andl = 1,2. Let

p
(1)
2 − p(1)1 = s(1)nx + t(1)ny, p

(2)
1 −p(2)2 = s(2)nx + t(2)ny.

It follows from (4.19) and (4.20) that

Y
(k)
l (0)= k!a(l)k

(
p
(1)
1

)[
s(l)nx + t(l)ny

]
, k > 2, l = 1,2.

We have

β
(l)
k1

(
p
(1)
1

)= ∑k
i=2β

(l)
ki (p

(1)
1 )[s(l)γi(p(1)1 )− t(l)δi(p(1)1 )]
t(l)‖X′(0)‖ ,

a
(l)
k

(
p
(1)
1

)= 1

k!t(l)
k∑
i=2

β
(l)
ki

(
p
(1)
1

)
γi
(
p
(1)
1

)
.

B. Fitting to discrete data
Suppose we are given a set of points{pi}. Let

∆0pi = pi,

∆j+1pi = σ(∆
jpi+1−∆jpi)
||pi+1− pi || + (1− σ)(∆

jpi −∆jpi−1)

||pi − pi−1|| ,

where σ = ||pi−1 − pi || /(||pi+1p − pi || + ||pi − pi−1||). Then ∆jpi can be an
approximation ofXj (t) atpi with X(t) as an imaginary space curve.

The computation ofa(j)i fromXj (t) is the same as before.

C. Fitting to an implicit curve
Let g(x, y)= 0 be a given implicit curve to be approximated. First compute the singular

points and inflection points. These points will divide the curve into smooth and convex
segments. For each segment, form a point list by a tracing (see (Bajaj and Xu, 1997))
scheme, such that the normals at two adjacent points have angle<π/2. Then aG1 polygon
for one segment is formed by the tangent lines at the point list.

For each triangle, say[p1p2v1], the curveg(x, y) = 0 passes throughp1,p2 and is
tangent with the line[piv1] for i = 1,2. Let G(α1, α2, α3) be the barycentric form of
g(x, y) over[p1p2v1]. Let

G1(α2, α3)=G(1− α2− α3, α2, α3),

then atp1,G1(α2, α3)= 0 can be expressed as a power series

α2=
∞∑
i=0

aiα
i
3
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by the following algorithm forf (x, y)= 0. Let

f 0(x, y)= f (x, y)= y − a2x
2+ a0

0(x)+ a0
1(x)y + · · · + a0

n(x)y
n

with ord(a0
0) > 2. As a function ofx, y = y(x) has order> 2. Lety1= y− a2x

2. Then the
order ofy1= y1(x) is> 3. Let

f 1(x, y1)= f 0(x, y1+ a2x
2)= y1− a3x

3+ a1
0(x)+ a1

1(x)y1+ · · · + a1
n(x)y

n
1,

then ord(a1
0) > 3. Repeating this procedure, we geta2x

2, a3x
3, . . . . Then

∑∞
i=2aix

i is the
power series expansion.

This algorithm is simple and easy to implement. If we want to computea2x
2, a3x

3, . . .

up toakxk, then the terms inaji (x) with degree> k − (j + 2)i can be deleted during the

computation, since these terms have no contribution to
∑k
i=2aix

i . Hence the algorithm is
also space effective.

4.3. Cubic A-splines example

As an example, we describe cubic A-splines in detail. We omit the detail discussion of
quadratic A-splines, since it is easier and the conclusions arrived are similar to the ones in
the literature (Farin, 1990) and (Pratt, 1985).

Suppose we are given parametric data at the join points, that isXk , k = 1,2, . . . . We
shall determine the coefficientsbijk so thatG2n−3 continuity is achieved. Furthermore, for
the error estimation (see Section 5), we require

bijk+e3 <
bijk+e1

2
+ bijk+e2

2
. (4.23)

G3 continuity. Consider a two segments cubic A-spline as in Section 4.1. Now suppose
p1 is the join point and assume that the coefficientsb

(l)
111= 0 for both segments. There are

two cases that need to be considered:

Case1. p1 is of nonconvex join.
In this case, we have

a
(1)
2 (p1)= a(2)2 (p1)= 0, b̃

(1)
210=

1

a
(1)
3 (p1)

, a
(1)
3 (p1) > 0,

b̃
(2)
120=

1

a
(2)
3 (p1)

, a
(2)
3 (p1) > 0.

Since

a
(l)
3 =

1

6t(l)(p1)

[
β
(l)
32(p1)γ2(p1)+ β(l)33(p1)γ3(p1)

]
= 1

6t(l)(p1)

[
β
(l)
33(p1)γ3(p1)

]= 1

6t(l)(p1)

[(
β
(l)
11(p1)

)3
γ3(p1)

]
and(−1)l−1β

(1)
11 (p1) > 0, we have(−1)l−1t(l)(p1)γ3(p1) > 0. The geometric meaning is

X′′′(0) andp2− p1 are on the same side of the line〈p1v1〉.
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Case2. p1 is of convex join.
In this case, we have

b̃
(1)
210=−

b̃
(1)
102

a
(1)
2 (p1)

, b̃
(2)
120=−

b̃
(2)
012

a
(2)
2 (p1)

,

b̃
(1)
111=

b̃
(1)
102[a(1)3 (p1)− a(1)2 (p1)] + a(1)2 (p1)

[a(1)2 (p1)]2
= 0, (4.24)

b̃
(2)
111=

b̃
(2)
012[a(2)3 (p1)− a(2)2 (p1)] + a(2)2 (p1)

[a(2)2 (p1)]2
= 0. (4.25)

Sinceb̃(1)102< 0, b̃(2)012< 0, we requirea(l)2 (p1) > 0, l = 1,2. Since

a
(l)
2 = β(l)22(p1)γ2(p1)/2t(l)(p1),

we need to havet(l)(p1)γ2(p1) > 0. HenceX′′(0) points to the inside of the polygon. It
follows from (4.24) and (4.25) that

b̃
(1)
102=−

a
(1)
2 (p1)

a
(1)
3 (p1)− a(1)2 (p1)

, b̃
(2)
012=−

a
(2)
2 (p1)

a
(2)
3 (p1)− a(2)2 (p1)

.

In order to satisfy (4.23), we require

3a(l)3 (p1)− 4a(l)2 (p1)> 0, l = 1,2.

These two inequalities, which have three unknownsγ2(p1), δ2(p1), γ3(p1), will have
infinitely many solutions. Therefore, we have proved the following theorem.

Theorem 4.2. At each nonconvex join point, ifX′,X′′ and X′′′ are given such that
γ1= γ2= 0, (−1)l−1t(l)γ3> 0 and at each convex join point, ifX′,X′′ andX′′′ are given
such thatγ1 = 0, t(l)γ2 > 0 and 3a(l)3 − 4a(l)2 > 0, l = 1,2, thenG3 continuous cubic
A-splines exist that fit the given dataX′,X′′ andX′′′ (with possibly different magnitudes).

G4 continuity. In order to achieveG4 continuity, we assume each join point is a non-
convex join. Consider the curve

F =
∑

i+j+k=3

bijkB
n
ijk = 0

on the triangle[p1p2v1]. All the coefficients, exceptb111 that is free, are determined as in
theG3 continuity case. Now we use the freeb111 to achieveG4 continuity. It follows from
(4.14)–(4.18) that

b̃
(1)
111=−

a
(1)
4 (p1)− 2a(1)3 (p1)

[a(1)3 (p1)]2
=−a

(2)
4 (p2)− 2a(2)3 (p2)

[a(2)3 (p2)]2
. (4.26)

Since

a
(l)
4 (pl)=

β
(l)
43(pl)γ3(pl)+ β(l)44(pl)γ4(pl)

24t(l)(pl)
, l = 1,2,
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a
(l)
4 (pl) depend linearly onγ4(pl). Hence (4.26) can be written as

c1γ4(p1)+ c2γ4(p2)= c3. (4.27)

This system of linear equations always have solutions and has one degree of freedom.
Therefore, we have

Theorem 4.3. If each join point is a nonconvex join, and the dataX(i) (i = 1, . . . ,4) at
each join point are given such that

γ1= γ2= 0, (−1)l−1t(l)γ3> 0, l = 1,2,

and(4.27)holds, then theG4 continuous cubic A-splines exist that fits the given points and
derivative data.

5. Computable error bounds

First we define the notion of approximation error. We consider a A-spline segment
defined in a given triangle1= [p1p2v1] which approximate either a discrete points set or
a parametric polynomial curve or an implicit curve within the same triangle. Our purpose
here is to provide a computable error bound when the approximant is obtained within the
triangle. In all the cases, without loss of generality, we assume that we are given a points
setA and an A-splineS: F(α1, α2, α3)= 0. We define the error betweenA andS to be

E(A,S)= sup
x∈A

inf
y∈S ‖x − y‖.

It should be noted thatE(A,S) and E(S,A) are not equal in general. Letd =
(−1/2,−1/2,1) be a direction in the triangle1, that is parallel to the line[v1, (1/2)(p1+
p2)]. ThenE(A,S) can be bounded by (see (Sederberg et al., 1988))

supp∈A |F(p)|
infq∈1 |DdF(q)| ,

whereDd stands for the directional derivative in the directiond . Hence the problem is
how to compute supp∈A |F(p)| and infq∈1 |DdF(q)|. If A is a discrete points set then
F(p) can be computed by Casteljau algorithm. IfA is polynomial curveX(t) (assume
it is in Bézier form), then the compositiong(t) = F(X(t)) can also be computed. Hence
F(X(t)) is bounded by the Bézier coefficients ofg(t). If A is an implicit curve, that is
A: G(α1, α2, α3) = 0, then first increase the degree ofF or G so that they have same
degree. SinceF = 0 orG= 0 can have a constant multiplier, we normalizeG by a factor
α with

α =
∑

bijkcijk/
∑

c2
ijk,

wherebijk andcijk are the coefficients ofF andG. Then

sup
p∈A

∣∣F(p)∣∣6 sup
p∈1

∣∣F(p)−G(p)∣∣6max
ijk
|bijk − cijk |.
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Now we compute infq∈1 |DdF(q)|. Let

F(α1, α2, α3)=
∑

i+j+k=n
bijkB

n
ijk(α1, α2, α3).

Then

DdF(α1, α2, α3)=
∑

i+j+k=n−1

b′ijkB
n−1
ijk (α1, α2, α3)

with

b′ijk = n
(
bijk+e3 − 1

2bijk+e1 − 1
2bijk+e2

)
.

If b′ijk < 0 for i + j + k = n− 1, thenDdF(α1, α2, α3) < 0 in the triangle1. Hence

inf
q∈1 |DdF(q)|>min

ijk
|b′ijk |.

For quadratic A-splines, condition (4.23) holds. Henceb′ijk < 0 and

b′100=−b110, b′010=−b110, b′001=−2.

Therefore, infq∈1 |DdF(q)| > min{2, b110} . For cubicG3 A-splines, our construction
guarantees that

b′200< 0, b′110< 0, b′020< 0, b′1016 0, b′0116 0, b′002< 0.

It is then not difficult to show that

inf
q∈1 |DdF(q)|>−

b′200b
′
020b

′
002

b′200b
′
020+ b′020b

′
002+ b′200b

′
002
.

6. Conclusion and examples

We have presented sufficient conditions of the BB form of bivariate algebraic
polynomials such that the zero contour of the polynomials define a single sheeted real
curve segment in the given triangle. We have shown that the degreen (n > 2) A-splines
can achieve in generalG2n−3 continuity by local fitting and still have degrees of freedom
to achieve locally data approximated.

As an example, the cubic A-splines are carefully analyzed, and resulting smoothness
conditions are derived for local interpolation and approximation. Cubic A-splines canG3

approximate a polygon with one free parameterb1116 0. This parameter can be used
to control the shape of the curve, but its influence on the curve is of limited when the
derivatives at the end points are fixed. Therefore, we takeb111 to be zero. However, with a
change of derivatives at the end points, a desirable shape of the curve can be obtained (see
Fig. 3(a)). Furthermore, if the polygon is of a nonconvex join, then aG4 smooth curve can
also be constructed.

Fig. 3(a) shows theG3 cubic A-spline curve family for a given rather regular closed
polygon. Fig. 3(b) showsG4 quartic A-spline curves for several open polygons. Fig. 4 is
to useG3 cubic A-splines to fit a cluster of points with different control errors in breaking
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the points. As an application of A-splines, we show an example, in Fig. 5, of iso-contour
reconstructions of a human head from volume MRI (Magnetic Resonance Imaging) data,
usingG3 cubic A-splines. Fig. 6 showsG3 cubic A-splines approximations of degree six
and degree four algebraic plane curves:

(a)
(
x2+ y2)3− 4x2y2= 0, (b) x3− 3x − (1/9)(y4− 12y2+ 18

)
.

(a) (b)

Fig. 3. (a) Family ofG3 cubic A-splines defined for an input closed polygon (dark line) withC3

data at vertices; (b)G4 quartic A-splines defined for input polygons withC4 data at vertices. Only
the polygons on the left “wing” are shown. Note the intersecting A-splines on the right “wing” are
produced by having intersecting input polygons.

Fig. 4.G3 cubic A-splines fit of head data with different approximation errors. The picture on the
left has fewer number of pieces and has larger error than the picture on the right.
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Fig. 5.G3 cubic A-splines approximation of a stack of Magnetic Resonance Imaging volumetric
cross-sectional data.

Fig. 6. A-spline approximation of implicit algebraic curves: (a)(x2 + y2)3 − 4x2y2 = 0;
(b) x3 − 3x − (1/9)(y4 − 12y2 + 18). The curve segments between consecutive vertices (dots) are
all cubic degree and withG3 continuity at the vertices.

The break points on the curves are generated by the tracing scheme in (Bajaj and Xu,
1997).

Several open problems remain. One, the faster and robust methods of A-splines dis-
play based on subdivision or integer forward differencing need to be developed. Second,
applications of these A-splines with comparison to parametric B-splines, to problems in
image processing, computer graphics, animation and geometric modeling need to be fully
explored.
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Appendix A

Proof of Theorem 3.1. Substituting(α1, α2, α3)(t) into F(α1, α2, α3) we have

Bβ(t) : = F((1− t)β, (1− t)(1− β), t)
=

∑
i+j+k=n

bijk
n!

i!j !k! t
k(1− t)i+j βi(1− β)j

=
∑

i+j+k=n
bijkB

n
k (t)B

i+j
i (β) (A.1)

=
n∑
k=0

bk(β)B
n
k (t),

where

bk(β)=
∑

i+j=n−k
bijkB

n−k
i (β), Bnj (t)=

n!
j !(n− j)! t

j (1− t)n−j .

It follows from (3.1)–(3.2) thatb0(β) > 0, bk(β)> 0, k = 1, . . . ,K−1, bk(β)6 0, k =
K + 1, . . . , n. If l (06 l 6 n−K − 1) is the integer such thatbn(β)= · · · = bn−l+1(β)=
0; bn−l (β) < 0, thenBβ(t) can be written as

Bβ(t)= (1− t)l
n−l∑
k=0

ck(β)B
n−l
k (t),

wherec0> 0, cn−l < 0 and the sequencec0, c1, . . . , cn−l has one sign change. By variation
diminishing property (Farin, 1990), the equationBβ(t) = 0 has exactly one root in
(0,1). 2
Proof of Theorem 3.2. (i) Let (α∗1, α∗2, α∗3) be a singular point ofF(α1, α2, α3)= 0, i.e.,

∇f = [∇α1,∇α2,∇α3]∇F = 0 (A.2)

at (α∗1, α∗2, α∗3), where

∇f =
[∂f
∂x
,
∂f

∂y

]T
, ∇αi =

[∂αi
∂x
,
∂αi

∂y

]T
, ∇F =

[ ∂F
∂α1

,
∂F

∂α2
,
∂F

∂α3

]T
.

Since the rank of the matrix[∇α1,∇α2,∇α3] is two and∇α1+∇α2+∇α3= 0, we have

∂F

∂α1
= ∂F

∂α2
= ∂F

∂α3
.

ThenBβ(t)= 0 and

B ′β(t)=−
∂F

∂α1
β − ∂F

∂α2
(1− β)+ ∂F

∂α3
= 0

at (α∗1, α∗2, α∗3). That is,t is a double zero ofBβ(t) and a contradiction to Theorem 3.1.
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(ii) Sinceα2= 0 corresponds toβ = 1 in the proof of Theorem 3.1, hence in the given
case

B1(t)=
n∑
k=0

bn−k,0kBnk (t)=
n∑

k=K+1

bn−k,0kBnk (t)= tK+1G(t),

where

G(t)=
n∑

k=K+1

bn−k,0k
n!

k!(n− k)! t
k−(K+1)(1− t)n−k

has no zero on[0,1) because its coefficients have same sign and the first coefficient is
negative. That is,t = 0 is the only zero ofB1(t) on [0,1) and has multiplicityK + 1. The
second conclusion in this item can be similarly proved.

(iii) If bn00= bn−1,01= bn−1,10= 0, then

∂F

∂α1
= ∂F

∂α2
= ∂F

∂α3
= 0

at p1. Hence, by (A.2),∇f = 0. That is,p1 is a singular point of the curve. Atp2, the
same conclusion holds.2
Proof of Theorem 3.3. To prove the theorem, we first prove the following fact:

If P is an inflection point of the cubic algebraic curvef (x, y) = 0 andL∗(x, y) =
ax + by + c = 0 is the tangent line passing throughP , thenL∗ separates the curve into
two parts, one part is located in the half spaceL∗(x, y) < 0, the other part is located in
the half spaceL∗(x, y) > 0. That is,P is the only intersection point between L and the
curve.

SupposeL∗ can be written asx = ky + b andP = (x∗, y∗). Then by the definition (see
(Walker, 1978, p. 71)) of inflection point we know thaty∗ is a triple zero off (ky + b,y),
i.e.,f (ky + b,y)= a(y − y∗)3 for some nonzero constanta. This means that the curve is
located on both sides ofL∗ and the curve cannot intersect with lineL∗ at any other point
by Bezout’s theorem (Walker, 1978).

Now we prove the theorem with the aid of some geometric intuition (see Fig. 7) although
it is easy to translate it into algebra. Suppose to the contrary, there are inflection points in
the triangle[p1p2v1]. Letp∗ = (α∗1, α∗2, α∗3)= (1− t∗)(β∗, (1−β∗),0)+ t∗(0,0,1) be the

Fig. 7.L intersects with the curve four times if it has an inflection point.
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first one, i.e., itsβ-coordinate is maximal. Now the curve in the triangle is divided into two
parts by this inflection point. The first part, sayC1, corresponds to[β∗,1] and the second
part,C2, corresponds to[0, β∗]. Let L∗ be the tangent line of the curve at this inflection
point. From the fact proved above, the lineL∗ cannot intersect with both line segments
(p1, v1) and(v1,p2). Otherwise, the curve segment cannot pass through both verticesp1
andp2. The only cases are thatL∗ intersects with either(p1, v1] and[p1,p2] or (p2, v1]
and [p1,p2]. Without loss of generality, we assume thatL∗ intersects with(p1, v1] and
[p1,p2]. In this case, the lineL∗ is not parallel to[p1,p2] and(p1, v1]. It follows from
the fact above thatC1 is below the lineL∗ sincep1 is so, and similarlyC2 is above that
line. Now, letL be another line that pass throughp∗ andp2. If L coincides withL∗, then a
contradiction is obtained by Bezout’s theorem, becauseL has four intersection points with
the cubic. SoL does not coincide withL∗. By the fact that the slope ofL is smaller than
the slope ofL∗, we have thatC1 will intersect with lineL (except pointp∗). By the same
reason and the fact that[v1,p2] is tangent to the curve, we can conclude that the segment
C2 intersects withL in addition top∗ andp2. SoL intersects with our cubic algebraic
curve four times. This again contradicts with Bezout’s theorem. So the segment inside the
triangle is convex. 2
Proof of Theorem 4.1. For the given parametric curveX(t) or the implicit curve around
the join pointp(1)1 , we compute (see Section 4.2) the two local power series. We next show

that we can choose the coefficientsb(l)ijk of Fl (l = 1,2) so that the curvesFl = 0 fit the two
local power series up to the first 2n− 3 terms, respectively.

Supposen is an even number. Ifp(1)1 is of nonconvex join, then the coefficients defined
by (4.7)–(4.9) and (4.10)–(4.12) which make up the curvesF1(1− α2 − α3, α2, α3) = 0
andF2(α1,1−α1−α3, α3)= 0 fit the two given power series up to the first 2n− 3 terms.
The coefficients

b
(1)
n−k−1,1,k and b

(2)
1,n−k−1,k, k = 0,1, . . . , n− 2,

are determined froma(l)i , with b(1)1,0,n−1< 0 andb(2)0,1,n−1< 0 chosen to be free parameters.

All these coefficients, exceptb(l)1,1,n−2, are independent of the data atp(1)2 andp(2)1 .

If p(1)1 is of convex join, then

b
(1)
1,0,n−1= b(2)0,1,n−1= 0,

conditions (4.14)–(4.15) and (4.17)–(4.18) imply thatb(1)n−k−1,1,k and b(2)1,n−k−1,k, k =
0,1, . . . , n − 3, which make up the curvesF1(1− α2 − α3, α2, α3) = 0 andF2(α1,1−
α1 − α3α3) = 0 fit the given power series up to the first 2n− 3 terms, respectively. The
coefficientb(l)1,1,n−2 is not involved. The case ofn being an odd number is similar.2
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