N,

: COMPUTER
A AIDED

ﬂ GEOMETRIC
DESIGN

ELSEVIER Computer Aided Geometric Design 16 (1999) 557-57&

A-splines: local interpolation and approximation
usingG*-continuous piecewise real
algebraic curves

Chandraijit L. Bajaf**, Guoliang X1

@ Department of Computer Science,
University of Texas, Austin, TX 78712, USA
b State Key Laboratory of Scientific and Engineering Computing,
ICMSEC, Chinese Academy of Sciences, Beijing, PR China

Received January 1997; revised November 1998

Abstract

We provide sufficient conditions for the Bernstein—Bézier (BB) form of an implicitly defined
bivariate polynomial over a triangle, such that the zero contour of the polynomial defines a smooth
and single sheeted real algebraic curve segment. We call a pieagfvisentinuous chain of such
real algebraic curve segments in BB-form as an A-spline (short for algebraic spline). We prove that
the degree A-splines can achieve in genei@?*—3 continuity by local fitting and still have degrees
of freedom to achieve local data approximation. As examples, we show how to construct locally
convex cubic A-splines to interpolate and/or approximate the vertices of an arbitrary planar polygon
with up to G* continuity, to fit discrete points and derivatives data, and approximate high degree
parametric and implicitly defined curves. Additionally, we provide computable error bouri99
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1. Introduction

Designing fonts with piecewise smooth curves or fitting curves to scattered data for
image reconstruction are just two of the diverse applications of spline curve constructions.
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In this paper, we generalize past curve fitting schemes with conics (Bookstein, 1979;
Farin, 1989; Pavlidis, 1983; Pottmann, 1991; Pratt, 1985; Sampson, 1982) and parametric
spline fitting (Curry and Schoenberg, 1966; Nirnberger et al., 1984; Schoenberg and
Whitney, 1953), achieving fits with fewer number of pieces or with higher order

of smoothness/continuity. We exhibit efficient techniques to deal with higher degree
implicitly defined algebraic curved,(x, y) = 0, with f(x, y) a bivariate real polynomial.

The spline techniques of this paper simplify and extend prior approaches and applications
of algebraic curves to problems in geometric modeling (Bajaj, 1997; Bajaj and lhm,
1992; Bajaj and Xu, 1994, 1996; Bajaj et al., 1999; Paluszny and Patterson, 1992, 1993;
Sederberg et al., 1985; Sederberg et al., 1988; Sederberg, 1984). The main advantages of
the implicitly defined algebraic spline curve over the functional and parametric curves are:
(1) the class of algebraic curves is closed under several geometric operations (intersections,
union, offset, etc.), often required in a solid modeling system. For example, the offset of
a parametric curve may not be parametric but is always algebraic and has an implicit
representation. (2) Implicit algebraic curve segments (of degydeave more degrees

of freedom(= (n + 2)(n + 1)/2 — 1 = n(n + 3)/2) compared with rational function

(= 2n + 1) and rational parametrie<(3n — 1) curves of the same degree. Thus, implicit
algebraic curve segments appear to be more flexible to approximate a complicated curve
with fewer number of pieces or to achieve higher order of smoothness. For example, by
local interpolation, implicit algebraic curves have the potential to achigveontinuity

with k < n(n + 3)/4 — 1, while functional or parametric curve can achie/e continuity

with k" =n — 1. Note that the degrees of freedom for the rational parametric curves are
consistent with the well known theorem that rational parametric curves are exactly the
irreducible implicit algebraic curves of genus 0 (Walker, 1978). An irreducible implicit
curve of genus 0 and degree possesses the maximum number of singularities an
irreducible curve can have, vizn — 1)(n — 2) /2 and this is exactly the difference between

the degrees of freedom of arbitrary implicit algebraic curves and rational parametric
algebraic curves of the same degred@he primary drawback, however, for the widespread
use of the implicit algebraic curve is that the curve can have singularities (see Walker, 1978)
and possess several disconnected real components. For example, fitting or interpolating a
cluster of points within a triangle by an algebraic curve, the resulting curve could have
either singular points or several disconnected components (sheets). Hence it is natural in
some applications to require the curves to be smooth (no singularity) and not disconnected
(single sheeted) within the triangle considered. In this paper we show how to isolate a
nonsingular and single sheeted segment of an implicit algebraic curve and furthermore
how to stitch these segments together to form a spline with continuity as higi"as

using degre@ curve pieces.

In Section 3 we provide sufficient conditions for the Bernstein—Bézier (BB) form of an
implicitly defined bivariate polynomial over a triangle, such that the zero contour of the
polynomial defines a smooth and single sheeted real algebraic curve segment. We call a
piecewiseG¥-continuous chain of such real algebraic curve segments in BB-form as an
A-spline (short for algebraic spline). In Section 4 we prove that the degreesplines
can achieve in gener&?'—3 continuity by local fitting. As examples, we show how to
construct locally convex cubic A-splines to interpolate and/or approximate the vertices of
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an arbitrary planar polygon with up ©6* continuity, to fit discrete points and derivatives
data, and approximate high degree parametric and implicitly defined curves. Additionally,
we provide computable error bounds in Section 5.

1.1. Related prior work

Considerable work on polynomial spline interpolation and approximation has been done
in the last decades(see (deBoor, 1978) for a bibliography). In general, spline interpolation
has been viewed as a global fitting problem to arbitrary scattered data (Bookstein,
1979; Curry and Schoenberg, 1966; Nirnberger et al., 1984; Pavlidis, 1983; Pratt, 1985;
Sampson, 1982; Schoenberg and Whitney, 1953). Here we consider local interpolation to
an ordered set of points, defining an arbitrary polygon. Local interpolation by polynomials
and rational functions is rather an old and simple technique that trace back to Hermite
and Cauchy (1821). However, local interpolation by the zero sets of algebraic polynomials
(implicit algebraic curves, surfaces etc.) is relatively new (Bajaj, 1997; Bajaj and Ihm,
1992; Floater, 1996; Paluszny and Patterson, 1992, 1993; Patterson, 1988; Sederberg,
1984). We lay emphasis in this paper on using connected and nonsingular real segments
of implicit algebraic curves. Towards the same goal, Sederberg, in (Sederberg, 1984), has
specified the coefficients of the BB form of an implicitly defined bivariate polynomial on
a triangle in such a way that if the coefficients on the lines that parallel to one side, say
L, of the triangle all increase (or decrease ) monotonically in the same direction, then any
line parallel toL will intersect the algebraic curve segment at most once. Our conditions
in Theorem 3.1 is more general, with Sederberg’s condition forming a special case. In
(Sederberget al., 1988), Sederberg, Zhao and Zundel gave another similar set of conditions
which guarantees the single sheeted property of their TPAC by requiring;ghat0, that
boi, bm—1,; < 0 and that the directional derivative of PARi¢cewise algebraic curviwith
respect to any direction= au be nonzero within the triangle domain, hégg denotes the
Bézier coefficient. This condition is also much more restrictive than ours.

Related papers which construct families @ and G2 continuous cubic algebraic
splines are given by Paluszny and Patterson (1992, 1993, 1994, 1998). They use the
following reduced form of the cubic

F(s,t,u)= asu + bsu? — cst? — dt?u + estu,

with a > 0,b > 0,¢ > 0,d > 0, and (s,t,u) in BB-coordinates over a triangle and
guarantee that the segment of the curve inside the triangle is convex. These results are
special cases of the present paper as we consider the general implicit cubic. Our cubic
A-splines can always achiev@3-continuity, and everG4-continuity for some special
cases.

2. Notation and preliminaries

Let f(x, y) be a bivariate polynomial of degre@ewith real coefficients, angi, p2, v1
be three affine independent points in theplane. Then the transform
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(b)

Fig. 1. (a) AG polygon; (b) Bézier coefficients of cubic.

X a1
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mapsf (x, y) into its barycentric coordinate forffi(w1, a2, @3) = f(x, y) on the triangle
[p1p2v1], where 0< o; < 1 andwg + a2 + a3 = 1. In the barycentric coordinate system,
F (a1, a2, @3) can be expressed in BB form (see (Farin, 1990)).

o3

Flat,a2,03)= Y bije Bl (1, a2, a3), (2.2)
i+j+k=n
where
B (a1, a2, a3) = —— o' ad ok
ljk ) ) l‘]‘k' 123

Let p1, v1 andp2 be three affine independent points in theplane (see Fig. 1(a)). Then

we consider the two line segmernijs v1] and[v1 p2] as a segment of a polygon, denoted
by p1vip2. We shall considep; as a controller angh; and p, as interpolation points.

An arbitrary polygon chain(or polygon for brevity) consists of a sequence of consecutive
polygon segments denoted y;vip; 1}/ ,. A polygon{p;v;p; 1}, is said to be of

type G1(see Fig. 1(a)) if

(v; — pi+1) =i (Vi1 — pi+1), o; <0, for i=0,...,m.

If po = pm+1, then the polygon is closed. Note thatG polygon can be trivially
constructed from an arbitrary polygon by inserting one vertex per edge of the polygon.

3. A sufficient condition of A-splines

Let F(a1, a2, a3) be defined as (2.2) on the triandle1 pov1]. Since there is constant
multiplier to the equatiorF (a1, a2, @3) = 0, we may assumkyg, = —1 if bgg, # 0.

Theorem 3.1. For the given polynomiaF («1, a2, @3) defined ag2.2), if there exists an
integerK (0 < K < n) such that(see Fig.l(b)forn =3 andK =1)

bijx >0 forj=01,....n—k k=0,1,....K —1, (3.1)
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bijr <0 forj=0,1,....n—k; k=K+1,...,n, (3.2)

and

n n—k
an—j,jo >0, an—j—k,jk <0
j=0 j=0

for at least onek (K < k < n), then for anyg that0 < 8 < 1, the straight line
(a1, 02,03)(1) = (1 —1)(B,1—-B,0)+1(0,0,1) (3.3)

that passes throughy and 8p1 + (1 — B) p2, intersects the curvé' (a1, a2, @3) = 0 one
and only one timgcounting multiplicity in the interior of the triangld p1 p2v1].

The proofs of this and other theorems are given in the Appendix A.

This theorem guarantees that there is one and only one curve segnigat ofi2, a3) =
0 within the triangle under the given condition. The term “algebraic spline” or A-spline
that we use in this paper is a chain of such curve segments with fixed continuity at the join
points. We should mention that the curkéxs, a2, az) = 0 passes through if bog, = 0.
However, we do not use this part of the curve. In our application in Section 4, wédgke
to be—1.

Note 3.1. Formulas (3.3) and (A.1) could be used to evaluate the cHrug, a2, a3) = 0.

That is, for a given sequence of points @fe (0, 1), solve the equatioBg(r) = 0 for

t € (0,1). Then substituting 8, r) into (3.3), we then obtain a sequence of points, in
terms of barycentric coordinates, on the curve./ar4, a closed form for the solution of
Bg(t) =0 exists. Fon > 5, numerical methods have to be employed to solve the equation.
However, since the equation has a single roaiinl), Newton iterations combined with
bisection suffice.

The next theorem goes further about the smoothness of the Ee s, «z) =0 and
the properties on the boundary of the triangle.

Theorem 3.2. Let F (1, a2, a3) be defined as TheoreBnl, then

(i) The curveF (a1, a2, a3) = 0is smooth in the interior of the triangligr1 pov1].

(i) If we further assume,_xor =0 for k =0,...,K, bp—k+1),0k+1 < 0 and
b,—1,10 > 0, then the curve in the triangle passes through tangent with the
line a2 = 0 with multiplicity K + 1 at p1 and no other intersection witl, = 0 for
a1 > 0,3 > 0. Similarly, if bg ,—xx =0for k =0, ..., K, bo—(k+1).k+1 <O,
and by ,—1,0 > 0, then the curve passes through, tangent with the lineey =0
with multiplicity K + 1 at p2 and no other intersection witly = Ofor a2 > 0, a3 >
0.

(iii) If byoo=bn—1.01=>bn—-1,10=0, thenps is a singular point of the curve. Similarly,
if bono = b1.n—1.0=bo.n—1.1 =0, thenp, is a singular point of the curve.

Since it is obvious that the quadratic A-spline is convex, we consider now the convexity
of the cubic spline. At present, the convexity characterization of the general casg #r
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degree A-spline is left as an open problem. Even for the cubic case, the convexity is not
always guaranteed. If the curve segment is tangent with the sides of the triapglarad

po, i.e., aGt A-spline as in Theorem 3.2(ii), then it is convex. This is of course a special
case, but it is the case we most often use in this paper (see Section 4).

Theorem 3.3. The cubic A-spline defined in Theor@m(ii) has no inflection point inside
its reference triangle.

4. G* A-splines

In this section, we connect the A-spline segments to form a pieceWifiseontinuous
spline curve. For simplicity we assume that we are given a polygon in the plane, that is
we have an ordered point s{qil}mjgl, and additionally a vertex s¢t; }" , (see Fig. 1(a)),
such that the three poings, v; and p;,1 are affine independent (noncollinear). Taé
continuity of an A-spline is achieved by the following steps:
(1) Form aG? control polygon{ piv; piz1}.
(2) Compute the first terms of the local power series expansion of the A-spline at the
join pointsp; from the given data at these points.
(3) Determine the coefficients @f such thatF' = 0 has the same firétterms of local
power series at the join points.
Several schemes exist which produce a desired polygon chain from scattered data
(Edelsbrunner et al., 1983; Fairfield, 1979; Walker, 1978). To produ&®molygon from
a polygonal chain is trivial and amounts to inserting a single additional vertex per polygon
edge. In Section 4.1, we first define the local power series and then compute the coefficients
of F. Then in Section 4.2 we compute the power series for three fitting problems: (a) fit to
a parametric curve; (b) fit to discrete data; (c) fit to a higher degree implicit curve.

4.1. Coefficients of from local power series expansion

We consider first a two segment A-spline curve

I I
Fileq, az,a3)= Y bfﬂ{ Bt  az,03) = ) bfjialazag =0
i+j+k=n i+j+k=n
on trlangles[p(”pg)vf)] for I =1, 2 with p(l) = p;z) as join point (see Fig. 2), where
bf]’}{ =(n!/3G"j 'k‘))b<1) We want to join these curve segments with the desired smoothness
at p(l).
; @ O, (D) ; _enli ; )

In the triangle[ p;” p, v1 '], we require our A-spline passing throught” and tangent
with the Iine[pgl)vgl)] atp<l) Hence we assun’lé,l_)l’l,o >0, bfr)l—l,o > 0. This implies
that the curve$ (a1, a2, «3) = 0 are regular apgl). Therefore, the curvéy (1 —az — as,

a2, a3) = 0 can be represented as a power seriqéj:it

az—za(l) L Za(l) ek, a1=1—ap—as, (4.1)
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(2)

Fig. 2. The two different cases 6f! join polygon segments.

with ai? = a$"(p{P) = 0, where we relate the coefficienis” to p{" to emphasize

that the expansion is performed pf). Similarly, Fo(o1,1 — a1 — a3,a3) = 0 can be
represented as

al—Za(z)’ Za(z) 2 Jog, a2=1—a1—as, (4.2)

at p<2) with a(z) = 0. It follows from Theorem 3.2 that the curvg = 0 is tangent with
[pgl)vil)] — 2times atp(l) if and only if
b ox=0. fork=01....n-2, (4.3)

or if and only ifa(l) 0,fork=0,1,...,n— 2. The same is true for the curve = 0 at

pf), that is, the curve is tangent W|ﬂn§2)vf) atp<2) — 2 times if and only if

bS) =0, fork=0,....n—2. (4.4)
Now we assume (4.3) and (4.4) hold. Hence (4.1) and (4.2) become
o
wr= Y aloh, a1=1-az—as (4.5)
i=n—1
o
a1 = Z al-(z)oté, ar=1—a1—oas3, (4.6)
i=n—1

respectively. Substitute (4.5) int& (1 — a2 — a3, a2, 3) =0, we get

F1 (1—a2(ag) — a3, a2(x), a3) = Z gy =0.

i=n—1
Ffomg(l) Ofori=n-— ., 2n — 3, we derive
(1) bio 1
n—
bic110=~ o (4.7)
n 1
7 1 1 1 1
(1) _bg. -1 +bé)031 +b,(1 )1 10[015 ) —(n l)a( ) 1]
’ - (4.8)
n—2, 1= (1) s .

a1
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i 7 n—1—j Ic (l)
5O _ X020 VG a5
n—i—2,1,i+1 (l) s
a,_1

fori =1,2,...,n — 3, whereCk = n!/(k!(n — k)!), a;l) =0if j <n—1. Thatis, the
coefficients determined by (4.7)—(4.9) will lead to the cufyéu1, a2, «3) = 0 matching
the power series (4.5) up to the first 2 3 terms. It is noted that, each of the formulas
(4.7)—(4.9) determines one of the coefficieds and introduces one of the coefficients
a’s. Among all the coefficients’s, there is one degree of freedom.

Since bff_)MO > 0, bﬁn_l < 0, (4.7) implies thatalgl_)l > 0. The correct sign of

b,(ll)l x.1x Can be obtained by glvmgif:k 1 properly.

For the curvef>, =0 atpéz), we similarly have,

(4.9)

Fo(a1(e3), 1 —ag(az) — a3, a3) = Z g(2)a, _

i=n—1
From which we have
~(2) bé)zlj 1
n—
bln 1,0~ (2) ’ (4.10)
a1
b(z) +b(2) +b(2) [a(z) (n 1)61(2)]
~(2) 01,n-1 00n -1,0
by 21=— @ ) (4.12)
a, 1
i (2) n—1—j ic! 2
(2 Z lnl]jz (=n'C nl]an-i-ll/
bln i—2,i+1 = (2) ’ (4-12)
a, 1

fori=1,2,...,n— 3. If we further assume

fﬁ—” n-1=0, (4.13)
then similar to the discussion above, we have
_ 5(1)
byy10=——3, (4.14)
dn

1 i—1 n—1—j

blil)l 1ll=_w Zb(l)l J1j Z (= 1) Cn 1—-j )(1]—-431 —j | (415)
n j=0

fori=1,2,...,n— 2. Similarly, for curvef> =0 atp ) if we assume

(2) (2)

a,”1=bg1,-1=0, (4.16)
then

5@ b(z)

1Ln-10=""(2 (4.17)
an
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n—1—j
bfr)z i—1,i = (2) Zbgzli—l—j,j ( 1) Cn 1—j )g:z —j | (4'18)
ap =0
fori=21,2,....n—2.

Formulas (4.13)—(4.18) match the power series up to the first 2 terms. If we only
fit the first 22 — 3 terms,bg)l’n_2 could be free. For th&? fitting with cubics in Section
4, we choose it to be zero.

Now we explain why we consider both of the cases,(ﬁ_fl > 0anda,
let

o 2, =0.As before,

€3] D

D 2
2 v(l)ll72 (2)

and p; v(z)lpgz)

be two segments of a polygon. If théy join atp(l) then there are two join configurations
(see Fig. 2)nonconvejoin andconvexoin. In the nonconvex jOInp(l) and pf) lie on
different sides of the Im{ev(l) vf)], while in the conveXJomp2 andpf) lie on the same
side of the Ilne[vil)vf)] Since our A-splines are always contained within the triangles

considered, pr<l) is of a nonconvex join, then the curve will be tangent with the line
[vil)vf)] an odd number of times, otherwise, it will be tangent with the [wﬁé)v(z) ]an
even number of times. Therefore,

@) If p<l) is of a nonconvexjoinn is an even number theqrfll >0forli=1,2;ifnis

an odd number, thednff) 1=

(i) If p(l) is of a convex joiny is an even number, thei;illl =0forl=1,2;ifnisan
odd number, then(” 2,>0.
Theorem 4.1. The degree: A-spline can achiev&?*~2 continuity by fitting locally the
given parametric or implicit curve at the join points.

Note 4.1. If n > 3, the coefficient®;;; are free fori > 1 and j > 1. These degrees

(= (n — 2)(n — 3)/2) of freedom can be used to interpolate/approximate points in the
triangle, fairing the constructed curve, or to achieve even higher order continuity at the
joins.

Note 4.2. If n is an odd/even number and all the points are nonconvex/ convex join, then
eachby 1,—2is free. This degree of freedom can be used to interpolate points in the triangle
or to achieveG?'~2 continuity (see Section 4.3).

4.2. Local power series computation

A. Fitting to a parametric curve

Suppose we are given a parametric cuk@) = [¢ (), v ()] in the neighborhood
of p(l) and assumé& (0) = pf). Now we computezl.(l) defined in (4.1)41.(2) are similarly
computed). It follows from (2.1) that the curves (4.5) and (4.6) in Cartesiatoordinates
can be expressed as
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Y1(a3) = [x1(e3), y1(as)]"

1 1 1 1 1 1 1
=pP + v — pPles+ [p5” — P Za() p)ed, (4.19)
i=n—1

Y2(@3) = [x2(@3), y2(a3)]

00
= P2+ 2= pPas+ [P = pP] S a® (pP)ed (4.20)
i=n—1

Now we need to determine the so-callgdnatrix (see (Seidel, 1993))

B1
B2 ,3%

cV=1 g3 3682 B3 =8 (r{™]
Ba 3B5+4P1 B3 6BZB2 B

andai(”(pf)) fori=1,2andi=n—1, ..., sothat

Y/ (0) X' (0)
Y,”_(o> p x”'(O) 1o 4.21)
VA(0) x*(0)

Eq. (4.21) is the condition af* continuity between two parametric curves. From (4.19)—
(4.20) and (4.21), we have

v’ = pi” = A1 (p”)X0).
Hence
0) @
Oy i~ v = poll
=)=, [=12
P ( ) 1X"(0)|]
Let
1) (l) D D
”x—(vl )/”U — D1 ||
andn, be two unit vectors such thafny =0and defny, ny]=1. Let
XD =y (pP)ny + 8 (pP)ne, i=12,.... (4.22)
Then,y1(pi") =0,81(pi") = | X'(0)]| and

vi(p{P) = det[n., XD (©)], 8 (pi") = det{ x©(0), n,]

and
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Y(k) 0) = Zﬁ(l) @ X(t)(o)

i=1

|:Z ﬂ(l) (l) (l) :| |:Z,3(Z) (1) (l)):| ny,

whereﬂ(”(p(l)) are knownfori =2,...,kand/ =1, 2. Let

1 2 2
pé ) _ pi ) — s(l)nx + t(l)ny, pg ) _ pé ) = s(z)nx + t(z)n/V

It follows from (4.19) and (4.20) that
Y20 =kla (p°)[sOny +1Pny], k=2, 1=1,2.
We have

IB(Z)( (1)) Z 2ﬂ(1)(P(l))[S(I)Vz(P(l)) tVs; (p(l))]

D)X

(1) (1) @) (1) (1
ap \P1 k'[(l) Zﬂ Vz pl )

)

B. Fitting to discrete data
Suppose we are given a set of poifits}. Let
A%p; = pi,
AL, — o(Alpisa—Alp) | (1—0)(Alpi — Alpiy)
’ pi+1— pill |pi = pi-1ll

where o = ||pi—1 — pill /(Ilpi+1p — pill + |lpi — pi-1l)). Then A/p; can be an
approximation oY/ (r) at p; with X () as an imaginary space curve.
The computation o«fzi(/) from X/ (z) is the same as before.

C. Fitting to an implicit curve

Letg(x, y) = 0 be a given implicit curve to be approximated. First compute the singular
points and inflection points. These points will divide the curve into smooth and convex
segments. For each segment, form a point list by a tracing (see (Bajaj and Xu, 1997))
scheme, such that the normals at two adjacent points have-angl2. Then aG polygon
for one segment is formed by the tangent lines at the point list.

For each triangle, sajp1ipovi1], the curveg(x, y) = 0 passes througps, p2 and is
tangent with the lindp;v1] for i = 1, 2. Let G(a1, a2, @3) be the barycentric form of
g(x, y) over[pipov1]. Let

Gi(az,a3) = G(1— a2 — ag, a2, a3),

then atp1, G1(a2, @3) = 0 can be expressed as a power series

o
o = Zaiag
i=0
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by the following algorithm forf (x, y) = 0. Let
F2, y) = f(x,y) =y —azx® + ad(x) + af(x)y + - - +ad(x)y"

with ord(ao) > 2. As a function ofc, y = y(x) has ordet> 2. Lety; = y — apx2. Then the
order ofy; = y1(x) is > 3. Let

e,y = O, y1+a2x2)=y1—a3x3+aé(X)+ai(X)y1+---+a1(X)yZ,

then orda ) > 3. Repeating this procedure, we get?2, asx?, .. Then) 2, a;x' isthe
power series expansion.

This algorithm is simple and easy to implement. If we want to compgité, azx3,
up toagx¥, then the terms im; (x) with degree> k — (j + 2)' can be deleted during the
computation, since these terms have no contributioﬁjfg2 a;x'. Hence the algorithm is
also space effective.

4.3. Cubic A-splines example

As an example, we describe cubic A-splines in detail. We omit the detail discussion of
guadratic A-splines, since it is easier and the conclusions arrived are similar to the ones in
the literature (Farin, 1990) and (Pratt, 1985).

Suppose we are given parametric data at the join points, thél,is =1,2,... . We
shall determine the coefficiens so thatG2'—3 continuity is achieved. Furthermore, for
the error estimation (see Section 5), we require

bij bi;
bijites < —Ukz-i_el + —t/kz-i-ez . (4.23)

G® continuity. Consider a two segments cubic A-spline as in Section 4.1. Now suppose
p1 is the join point and assume that the coefficidﬁ’tﬁ: 0 for both segments. There are
two cases that need to be considered:

Casel. p1 is of nonconvex join.
In this case, we have

1 1 1 1
a5 (p) =ay?(p)) =0, bSjo= D, ag’ (p1) >0,
a3’ (p1)
~(2 1 2
bioo=—z—> a5 (p1)>0.
az (p1)
Since

1
aél) — W[ﬂég(pl)yz(m) + ﬂég(m)ys(m)]

1

&0 1)[ [(ﬂ(l)(m)) y3(p1)]

,333 (pDY3(p1)] = 6t<1)( D

and(—1)\- lﬂ(l)(pl) > 0, we hava—1)!~1rD (p1)y3(p1) > 0. The geometric meaning is
X" (0) andpg — p1 are on the same side of the lifgiv1).
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Case2. pi is of convex join.
In this case, we have

5(1) 5(2)
Eéll)oz - 1102 J ~§.22)O= - 2012 J
a3’ (py) a? (py)

o _ biodas” (p1) — ai’ (P01 + 4§’ (p)

b= S =0, (4.24)
[a; 7 (p1)]

(2 5321)2[6%2)(171) - aéz)(pl)] + af)(pl)

by = EP— =0. (4.25)
[a; " (p1)]

Sinceb{p, < 0, b2, < 0, we requiresy’ (p1) > 0,1 =1, 2. Since

ay = B (p1)va(p1) /2t P (py),

we need to have” (p1)y2(p1) > 0. HenceX” (0) points to the inside of the polygon. It
follows from (4.24) and (4.25) that

1 2
5(1) _ aé )(Pl) ~(2) aé )(Pl)
102— 012—

1 1 ’ T2 2 :
a$P (p1) —a$ (p1) a (p1) —aP (p1)

In order to satisfy (4.23), we require
34y (p1) —4ay’ (p1) =0, =12

These two inequalities, which have three unknowgépi), 82(p1), y3(p1), will have
infinitely many solutions. Therefore, we have proved the following theorem.

Theorem 4.2. At each nonconvex join point, iX’, X” and X"’ are given such that
yi=y2=0, (=113 > 0 and at each convex join point, ¥, X” and X" are given

such thaty; =0, Py, > 0 and 3a§1) - 4a§’) >0, [=1,2, thenG3 continuous cubic
A-splines exist that fit the given da¥, X” and X" (with possibly different magnitudes

G* continuity. In order to achieve5* continuity, we assume each join point is a non-
convex join. Consider the curve

F= Y bjiB} =0
i+j+k=3
on the triangld p1 pov1]. All the coefficients, excepty 11 that is free, are determined as in

the G2 continuity case. Now we use the free 1 to achieveG* continuity. It follows from
(4.14)—(4.18) that

) @ ) @
~ —2a —2a
bilﬁ: a4 (p1) 3 (p1) _ Y (p2) 3 (pz)' (4.26)

[a$” (p1)12 [a? (p2)1?

Since

,34(1[3)(171)7/3(171) + /322 (pD)ya(pr)

) l= 17 27
24D (py)

l
ay (p) =



570 C.L. Bajaj, G. Xu / Computer Aided Geometric Design 16 (1999) 557-578

ag)(p[) depend linearly o (p;). Hence (4.26) can be written as

c1y4(p1) + c2ya(p2) = c3. (4.27)

This system of linear equations always have solutions and has one degree of freedom.
Therefore, we have

Theorem 4.3. If each join point is a nonconvex join, and the d&&&’ (i = 1,...,4) at
each join point are given such that

yi=y2=0, (=14 Dy3>0 1=12

and(4.27)holds, then th&* continuous cubic A-splines exist that fits the given points and
derivative data.

5. Computable error bounds

First we define the notion of approximation error. We consider a A-spline segment
defined in a given triangl& = [ p1 p2v1] which approximate either a discrete points set or
a parametric polynomial curve or an implicit curve within the same triangle. Our purpose
here is to provide a computable error bound when the approximant is obtained within the
triangle. In all the cases, without loss of generality, we assume that we are given a points
setA and an A-splines: F(a1, a2, a3) = 0. We define the error betweenands to be

E(A, S) = supinf |x — y]|.
xeAYES
It should be noted thatE(A, S) and E(S,A) are not equal in general. Lef =
(=1/2,-1/2,1) be adirection in the triangla, that is parallel to the lingv1, (1/2)(p1 +
p2)]. ThenE (A, S) can be bounded by (see (Sederberg et al., 1988))

SUBye4 | F ()|
infqu Dy F(q)] ’

where D, stands for the directional derivative in the directidnHence the problem is
how to compute SUR A IF(p)l and inf,ea [DaF(g)|. If A is a discrete points set then
F(p) can be computed by Casteljau algorithm Alfis polynomial curveX (r) (assume
it is in Bézier form), then the compositigg(z) = F(X(¢)) can also be computed. Hence
F(X (1)) is bounded by the Bézier coefficients gft). If A is an implicit curve, that is
A: G(a1,a2,a3) = 0, then first increase the degree Bfor G so that they have same
degree. Sincé = 0 or G = 0 can have a constant multiplier, we normalédy a factor

a with

@ =) bijeijk/ Y i
whereb;jr andc;j; are the coefficients of andG. Then

sup| F (p)| < sup|F(p) — G(p)| < max|bijr — cijkl-
peA PEA ijk
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Now we compute infea |Da F(q)]. Let

F(al7a27a3): Z bl]kBZk(al9a29a3)

i+j+k=n
Then
DyF(ay,a2,03)= ) bjpBi e, az a3)
i+j+k=n—-1
with

b;/'jk =n(bijk+€3 - %bijk-i-el — %bijk+e2)-

If b; <Ofori+ j+k=n—1,thenDyF (a1, a2, @3) <0 in the triangleA. Hence
inf |DyF >min|b).,|.
qu| 1 F(q)] i 15 x|

For quadratic A-splines, condition (4.23) holds. Hehte < 0 and

blloo= —b11o, b6102 —b11o, b601= —2.

Therefore, infea |[DaF(g)| = min{2, biio}. For cubic G3 A-splines, our construction
guarantees that

/ / / / / /
bpp <0, b110<0, b0 <0, 101<0, bp11<0, b2 < 0.

It is then not difficult to show that

bo00P020P002 _
bo0cP20t Lo20P002 T P200P002

inf |DaF(q)| > —
geA

6. Conclusion and examples

We have presented sufficient conditions of the BB form of bivariate algebraic
polynomials such that the zero contour of the polynomials define a single sheeted real
curve segment in the given triangle. We have shown that the degiee: 2) A-splines
can achieve in gener&®'—3 continuity by local fitting and still have degrees of freedom
to achieve locally data approximated.

As an example, the cubic A-splines are carefully analyzed, and resulting smoothness
conditions are derived for local interpolation and approximation. Cubic A-splinegéan
approximate a polygon with one free parameigr; < 0. This parameter can be used
to control the shape of the curve, but its influence on the curve is of limited when the
derivatives at the end points are fixed. Therefore, we baketo be zero. However, with a
change of derivatives at the end points, a desirable shape of the curve can be obtained (see
Fig. 3(a)). Furthermore, if the polygon is of a nonconvex join, théi amooth curve can
also be constructed.

Fig. 3(a) shows th&® cubic A-spline curve family for a given rather regular closed
polygon. Fig. 3(b) shows&* quartic A-spline curves for several open polygons. Fig. 4 is
to useG?3 cubic A-splines to fit a cluster of points with different control errors in breaking
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the points. As an application of A-splines, we show an example, in Fig. 5, of iso-contour
reconstructions of a human head from volume MRI (Magnetic Resonance Imaging) data,
usingG? cubic A-splines. Fig. 6 shows? cubic A-splines approximations of degree six
and degree four algebraic plane curves:

€) (x2 + y2)3 —4x%y?=0, (b)x®—3x— (l/9)(y4 —12y°+ 18).

Fig. 3. (a) Family ofG3 cubic A-splines defined for an input closed polygon (dark line) with
data at vertices; (bJ5# quartic A-splines defined for input polygons wietf data at vertices. Only

the polygons on the left “wing” are shown. Note the intersecting A-splines on the right “wing” are
produced by having intersecting input polygons.

,%J*‘

¥ ‘ *
Y

i
L

N

‘k‘ﬂ\ ;“ Py 50
e

Fig. 4. G3 cubic A-splines fit of head data with different approximation errors. The picture on the
left has fewer number of pieces and has larger error than the picture on the right.
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Fig. 5. G3 cubic A-splines approximation of a stack of Magnetic Resonance Imaging volumetric
cross-sectional data.
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Fig. 6. A-spline approximation of implicit algebraic curves: (@2 + y2)3 — 4x2y2 = 0;
(b) x3—3r— 1/9(* — 12y2 + 18). The curve segments between consecutive vertices (dots) are
all cubic degree and witty3 continuity at the vertices.

The break points on the curves are generated by the tracing scheme in (Bajaj and Xu,
1997).

Several open problems remain. One, the faster and robust methods of A-splines dis-
play based on subdivision or integer forward differencing need to be developed. Second,
applications of these A-splines with comparison to parametric B-splines, to problems in
image processing, computer graphics, animation and geometric modeling need to be fully
explored.
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Appendix A

Proof of Theorem 3.1. Substituting(a1, a2, a3)(¢) into F (a1, a2, a3) we have

Bg(t): = F(L—0B, (L—1)(1—B), 1)
! S .

- ¥ bi,»ki!;?mr"<1—r>l+fﬂl(1—ﬂ>f
i+j+k=n o

= Y bipB{0OB; (B (A
i+j+k=n

=Y b(B)B(1),
k=0

where

bB)= Y bixB B, Bj() = (L=

n!
i+j=n—k (n =1

It follows from (3.1)—(3.2) thabo(B) > 0, by (B) >0, k=1,...,K—1, by(B) <0, k=
K+1,...,n.Ifl(0<I<n— K —1)istheinteger such that,(8) =---=b,_;+1(B) =
0; b,—i(B) <0, thenBg(r) can be written as

n—I

Bp(t)= (10" (BB (1),

k=0

wherecg > 0, ¢,—; < 0 and the sequenes, c1, .. ., c,—; has one sign change. By variation
diminishing property (Farin, 1990), the equatidiy(z) = 0 has exactly one root in
0,1). O

Proof of Theorem 3.2. (i) Let (o, 5, o) be a singular point of (a1, a2, @3) =0, i.e.,
Vf=[Vai, Vaz, Vaz]VF =0 (A.2)
at(aj, a3, a3), where
o oy e e
ax oyl ’ ox ayd’
Since the rank of the matriv/ a1, Vao, Vag] is two andVa1 + Va2 + Vaz = 0, we have
oF _OF _OF
dop  OJdoaz  das
ThenBg(t) =0 and

i = =

|:3F oF 8F]T
dar dao’ dazd

vi=|

oF
Lo}

TP L LT
p(1) = 8041/3 aaz( B =

at(af, a5, a3). Thatis, is a double zero oBg(¢) and a contradiction to Theorem 3.1.
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(i) Sinceaz = 0 corresponds t = 1 in the proof of Theorem 3.1, hence in the given
case

n n
Bi(t) =) baraB{(t)= Y buruBi(®)=t""G),

k=0 k=K+1
where
n
_ n! k—(K+1) n—k
G@) = Z bn—k,Okmt a-n
k=K+1

has no zero o0, 1) because its coefficients have same sign and the first coefficient is
negative. That is;, = 0 is the only zero oB1(¢) on [0, 1) and has multiplicityk + 1. The
second conclusion in this item can be similarly proved.

(i) If bpoo=bu—1,00=">by—1,10=0, then

BF_BF_BF_O
Bal_aaz_aag_

at p1. Hence, by (A.2)Vf =0. That is, p1 is a singular point of the curve. Ato, the
same conclusion holds.O

Proof of Theorem 3.3. To prove the theorem, we first prove the following fact:

If P is an inflection point of the cubic algebraic cury&x, y) =0 and L*(x, y) =
ax + by + ¢ = 0 is the tangent line passing through, thenL* separates the curve into
two parts, one part is located in the half spaté&(x, y) < 0O, the other part is located in
the half space.*(x, y) > 0. That is, P is the only intersection point between L and the
curve.

Supposd.* can be written as = ky + b and P = (x*, y*). Then by the definition (see
(Walker, 1978, p. 71)) of inflection point we know thgt is a triple zero off (ky + b, y),
i.e., f(ky +b,y)=a(y — y*)3 for some nonzero constamt This means that the curve is
located on both sides df* and the curve cannot intersect with lih& at any other point
by Bezout's theorem (Walker, 1978).

Now we prove the theorem with the aid of some geometric intuition (see Fig. 7) although
it is easy to translate it into algebra. Suppose to the contrary, there are inflection points in
the triangld p1 pov1]. Let p* = (], o3, a3) = (1—1*)(B*, (1—p*),0)+1*(0,0, 1) be the

P, \ P,

Fig. 7. L intersects with the curve four times if it has an inflection point.
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first one, i.e., itg8-coordinate is maximal. Now the curve in the triangle is divided into two
parts by this inflection point. The first part, sy, corresponds tfs8*, 1] and the second
part, C2, corresponds t¢0, 5*]. Let L* be the tangent line of the curve at this inflection
point. From the fact proved above, the lifié cannot intersect with both line segments
(p1, v1) and(v1, p2). Otherwise, the curve segment cannot pass through both veptices
and p2. The only cases are that intersects with eithe¢ps, v1] and[p1, p2] or (p2, v1]
and|[p1, p2]. Without loss of generality, we assume tHat intersects with(p1, v1] and

[p1, p2]. In this case, the liné&.* is not parallel to[ p1, p2] and(p1, v1]. It follows from

the fact above thaf'; is below the lineL* sincep; is so, and similarlyC> is above that
line. Now, letL be another line that pass throughandps. If L coincides withL*, then a
contradiction is obtained by Bezout’s theorem, becdubas four intersection points with
the cubic. S does not coincide witlL*. By the fact that the slope df is smaller than

the slope ofL*, we have thaC; will intersect with lineL (except poinip*). By the same
reason and the fact thiti, p»] is tangent to the curve, we can conclude that the segment
C2 intersects withZL in addition to p* and p». So L intersects with our cubic algebraic
curve four times. This again contradicts with Bezout's theorem. So the segment inside the
triangle is convex. O

Proof of Theorem 4.1. For the given parametric curéé(¢) or the implicit curve around

the join pointpil), we compute (see Section 4.2) the two local power series. We next show
that we can choose the coefﬁciebfj% of F; (I =1, 2) so that the curveg; = O fit the two

local power series up to the firsk 2- 3 terms, respectively.

Suppose: is an even number. Iﬁf) is of nonconvex join, then the coefficients defined
by (4.7)-(4.9) and (4.10)—(4.12) which make up the curked — a2 — a3, a2, a3) =0
andFx(a1, 1 — a1 — a3, a3) = 0 fit the two given power series up to the firat 2 3 terms.

The coefficients
(@) 2
b, k_11x and by 4 14 k=01....n-2
are determined fromi(”, with bil()),n_l <0 andbé,zi,n_l < 0 chosen to be free parameters.
All these coefficients, excebﬁ)l,n_z, are independent of the datapéf’) and pf).

If p:(l_l) is of convex join, then
D) _ 1@ —
bl,O,n—l - bO,l,n—l - 0’

conditions (4.14)—(4.15) and (4.17)—(4.18) imply thdt, ,,, andb® , ., k=
0,1,...,n — 3, which make up the curveB (1 — a2 — a3, a2, 3) = 0 and Fa(a1, 1 —
a1 — azaz) = O fit the given power series up to the first 2 3 terms, respectively. The
coel‘ficientbf’)l’n_2 is not involved. The case af being an odd number is similar.c
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