
Computational Geometry 14 (1999) 167–186

Single resolution compression of arbitrary triangular meshes with
properties✩

Chandrajit L. Bajaj∗, Valerio Pascucci1, Guozhong Zhuang2

Department of CS and TICAM, University of Texas, Austin, TX 78712, USA

Abstract

Triangular meshes are widely used as primary representation of surface models for networked gaming and
for complex interactive design in manufacturing. Accurate triangulation of a surface with sharp features (highly
varying curvatures, holes) may require an extremely large number of triangles. Fast transmission of such large
triangle meshes is critical to many applications that interactively manipulate geometric models in remote networked
environments. The need for a succinct representation is therefore not only to reduce static storage requirements,
but also to consume less network bandwidth and thus reduce the transmission time.

In this paper we address the problem of defining a space efficient encoding scheme for both lossless and error-
bounded lossy compression of triangular meshes that is robust enough to handle directly arbitrary sets of triangles
including non-orientable meshes, non-manifold meshes and even non-mesh cases. The compression is achieved
by capturing the redundant information in both the topology (connectivity) and geometry with possibly property
attributes. Example models and results are also reported. 1999 Published by Elsevier Science B.V. All rights
reserved.

1. Introduction

Polygonal meshes have been used as the primary geometric model representation for complex
interactive design in manufacturing or networked gaming. Accurate polygonal mesh approximation of
a surface with sharp features (highly varying curvatures, holes) requires an extremely large number of
triangles. Transmission of such large triangle meshes is critical to many applications that interactively
manipulate geometry models in remote networked environments. The need for succinct representation is
therefore not only to reduce static storage requirements, but also to consume less network band-width and
thus reduce the transmission time. Although geometry compression and coding is an emerging discipline,

✩ This research is supported in part by grants from NSF-CCR-9732306, NSF-KDI-DMS-9873326, DOE-ASCI-BD-485, and
NASA-NCC 2-5276.∗Corresponding author. E-mail: bajaj@cs.utexas.edu; http://www.ticam.utexas.edu/CCV

1 E-mail: pascucci@cs.utexas.edu
2 E-mail: zgz@cs.utexas.edu

0925-7721/99/$ – see front matter 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0925-7721(99)00026-7

168 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

these techniques have matured for 2D digital images into standards such as JPEG [20] and MPEG [11].
In designing efficient geometry compression schemes, one attempts to take advantage of existing 2D
image compression techniques.

1.1. Prior work

Deering [5] represents triangular mesh connectivity by generalized triangle strips. Stack operators are
used in order to reuse vertices. In this way, the total number of random accesses to all vertices of the
mesh is reduced. This method does not directly compress non-manifold meshes and its compression
ratio is not high. Chow [3] presents an algorithm which represents a mesh by several generalized
meshes. This method is optimized for real-time rendering but is not compression efficient because of the
large requirement of connectivity encoding ((logn+ 9) per vertex). Again, this method only considers
manifold meshes.

In Topological Surgery [18], vertices are organized into a spanning tree and triangles into simple
polygons which are further grouped into a series of triangle strips. The connectivity coding of this
scheme is efficient, about 2–3 bits per triangle. One of its disadvantages is its inability to directly encode
non-manifold meshes. As a preprocessing step, it splits a non-manifold object into several manifold
components, thereby duplicating all non-manifold features: vertices, edges and faces. Touma and
Gotsman present an algorithm for connectivity coding of orientable manifold meshes [19]. The efficiency
of this lossless connectivity coding is determined by the distribution of the degrees of all vertices.
Progressive transmission and embedded coding are discussed in [12–14]. Gumhold and Strasser propose
a fast compression and decompression algorithms for real time applications [8]. A compact representation
of multi-resolution surfaces that support progressive transmission is present in [1]. Rossignac introduced
recently the Edgebreaker compression scheme [17] that is the first scheme proven to require at most
2n bits to encode the connectivity of a triangular mesh withn vertices. This result being valid for
simple triangulations is extended with some additional storage to manifolds with multiple boundaries
and handles. Another relevant encoding scheme, designed more for multi-resolution representation than
for data compression, has been introduced by Popović and Hoppe [16]. This scheme, called Progressive
Simplicial Complexes, is based on the edge contraction primitive and is very general in the sense that is
capable to represent simplicial complexes of any dimension.

In this paper, we propose a new layering structure to partition an arbitrary triangular mesh (non-
manifold, arbitrary-genus and possibly vertex irregularities) into generalized triangle strips. An efficient
and flexible encoding of the connectivity, vertex coordinates and attribute data yields excellent single

Fig. 1. Block diagram of the encoder and decoder.

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 169

resolution compression (an extended abstract has already appeared in [2]). This scheme gracefully
solves the “crack” problem due to repeated vertices independently quantized and also prevents error
propagation while providing efficient prediction coding for both geometry and photometry data such as
colors, normals, and texture coordinates. Fig. 1 shows the diagram for both the encoder and decoder.

The rest of this paper is organized as follows. Section 2 introduces the layering scheme to partition
the input data. Sections 3 and 4 address the coding of connectivity (topological information) while
Section 5 provides details of the coding of geometric (numeric) data. Attribute (photometry data) coding
is discussed in Section 6. Experimental results are presented in Section 7.

2. The layering scheme

Layering is used to encode the connectivity (topological) information of input triangle mesh
collections. There are two basic kinds of layers: vertex layers and triangle layers. Assume that a triangle
mesh has vertex setV , face setF , and edge setE . A graph of the mesh is given byG = (V,E) with all
vertices being the graph nodes and edges being the graph edges. There are no restrictions on the input
triangle collection or this graphG.

Definition 2.1 (Vertex layer). The 0th vertex layer is a randomly chosen vertex of the mesh. Thekth
vertex layer (withk > 0) includes a vertexv if v is not included in any previous vertex layer and there
exists an edgee= (v, v∗) wherev∗ is included in the(k− 1)th vertex layer.

Definition 2.2 (Triangle layer). Thekth triangle layer (withk > 0) includes a trianglet if t has at least
one vertex inkth vertex layer andt is not included in any previous triangle layer.

Vertices and triangles categorized above have the following properties: any edge inE can only span
two vertex layers; any triangle inF can only span two vertex layers; all the vertex layers form a partition
of V ; all the triangle layers form a partition ofF . Based on the layering structure, a mesh edge is either

Fig. 2. The layering structure. Triangle layers are alternatively colored gray and yellow for both apple and horse.

170 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

Fig. 3. Layering of a mesh with marked onetransversal edgeand onechord edge. (b) A vertex layer whose five
branching points are marked with capital letters A–E.

a chord or a transversal(see Fig. 3). A chord is an edge that connects two vertices in different vertex
layers while a transversal is an edge that connects two vertices in the same vertex layer.

2.1. Geometry primitives

The four geometry primitives we use to encode in our single-resolution compression method are:
contours, branching points, triangle strips, and triangle fans.

Definition 2.3. A contouris an ordered sequence of vertices{v0, v1, . . . , vn} in a vertex layer where each
vertex pair(vi, vi+1) is connected by a transversal edge and every intermediate vertexvi (0< i < n) is
incident to exactly two transversal edges. Verticesv0 andvn can be the same point in which case the
contour is called closed. A contour can be a single vertex which is also called anisolatedpoint.

We callv0 the starting vertex andvn the ending vertex of the contour.

Definition 2.4. A branching point is a vertex in a vertex layer which is incident to more than two
transversal edges (see Fig. 3(b)).

By this definition, a branching point is contained in more than one contour and thus it can only be
either the starting or the ending vertex of a contour.

Definition 2.5. A triangle strip is an ordered sequence of triangles in a triangle layer where each pair of
consecutive triangles share a common edge. The set of vertices of the triangles in the strip must belong
to two contours in two separate vertex layers.

Definition 2.6. A triangle fan is an ordered sequence of triangles in a triangle layer where all triangles
have a common vertex, each pair of consecutive triangles share a common edge, and no edge is shared
by more than two triangles. It is possible that the first and last triangles share a common edge.

2.2. Layering procedure

Given a triangle mesh, vertex layers are formed by using a breadth-first traversal algorithm [4].
According to the definition, triangle layers are formed during the same traversal.

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 171

For each vertex layer, we construct the contours according to the setE of transversal edges with all
their extreme points located in this vertex layer. To form a contour, first pick up a starting edge with
the following rules: (1) if there is an edge inE with one of its extreme points being a branch point;
(2) otherwise, arbitrarily choose one inE. In the first case, we define the branching point as the starting
vertex of the contour and the other as the current vertex. In the second case, the choice can be arbitrary, in
which case the starting edge is removed fromE. The second edge of the contour is inE with the current
vertex being one of its two extreme points. Remove the newly found edge and update the current vertex.
This procedure stops if one of the following occurs: (a) there are no more edges with the current vertex
as one extreme point; (b) the current vertex is the same as the starting vertex (thus one closed contour is
constructed); (c) the new edge has one branching extreme point. Following the above procedure, contours
are repeatedly constructed until the setE is empty. Every vertex that does not lie in any contour will form
a contour of a single vertex (isolated vertex).

For each triangle layer, triangle strips are constructed according to the sequences of chords incident
to each contour. In particular a strip is formed by repeatedly gluing two triangles that share a chord.
The constraint is that each of the boundaries of a strip is located within a single contour. Triangles with
all their vertices in the same vertex layer are attached to strips as bubbles. This can improve the actual
coding efficiency. Triangle fans are formed from the remaining triangles (those that are not included in
any strip).

Claim 2.1. The layering procedure decomposes an arbitrary mesh into the four geometric primitives:
(i) contours,(ii) branching points,(iii) triangle strips and(iv) triangle fans.

Claim 2.2. Triangle meshes of any topological type can be represented by the layering scheme outlined
above(see Section 4).

This layered representation avoids the “crack” problem which occurs when a non-manifold mesh
is converted into several manifold components and non-manifold features (vertices, edge, faces) are
duplicated [7].

Vertex indexing gives each vertex a reference which is used in connectivity encoding. Vertex indexing
is directly related to coding efficiency. Three kinds of vertex indices will be used in our scheme: local
indices, global indices and relative indices. The first two are defined below while relative indexing will
be explained in the next section.

2.3. Local indexing

Local indexing is only meaningful to individual vertex layers. Every vertex in a vertex layer is assigned
a unique local index. Ifn is the total number of vertices in a vertex layer, then local indices of this vertex
layer are 0,1, . . . , n − 1. The numbering order of local indices in a vertex layer is as follows: (1) all
branching vertices are numbered first; (2) for each contour, all non-branching vertices are numbered,
from the starting vertex. It is important that all branching vertices be numbered separately because they
will be referenced by more than one contour.

172 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

2.4. Global indexing

The global index of a vertex is defined as the summation of its local index value and the total number
of vertices in all previous vertex layers. Indexing starts from the 0th vertex layer. Suppose that there are
totally V vertices in the mesh, then the smallest global index is 0 and the biggest one isV − 1. The
incidence of the reconstructed mesh is expressed with global indices. Let BC(m) be the minimal number
of bits to correctly code a non-negative integer smaller thanm. Obviously, BC(m) :=min{k | 2k > m}.
Suppose thatL is the number of vertices in a vertex layer, then the local index of each vertex in that
layer can be coded by BC(L) bits. However, any global index needs BC(V) with a total number ofV
vertices in the mesh. SinceL is generally much smaller thanV , BC(L) < BC(V), local index coding
saves BC(V)− BC(L) bits. A local index must be converted back to the global index in the decoding
process. A global indexg and a local indexl of a vertexv have the relationg = l+∑k−1

i=0 Li whereLi is
the total number of vertices in theith vertex layer and layerk is wherev is located.

3. Connectivity coding

Connectivity encoding is the central part of any 3D surface compression method. It guides both the
geometry and photometry coding. Single-resolution compression does not change the connectivity in the
sense that the decoder can perfectly recover the connectivity, modulo a permutation of the vertices and
triangles.

3.1. Outline of the scheme

Our connectivity scheme is based on the layering structure. The entire connectivity encoding procedure
is: (1) encode the total number of layers; (2) encode the layout of each vertex layer; and (3) encode all
triangle strips and fans in each triangle layer.

The layout of a vertex layer is specified by the number of branching points; the number of contours;
for each contour, the number of vertices, and the characteristics of the starting and ending vertices (one
bit each to indicate if it is a branching vertex; a branching vertex has its local index coded). A triangle
strip has two boundary contours. The one in the previous vertex layer is called theparent contour, the
other is called thechild contour.

3.2. The coding of bubbles

To improve the compression efficiency we encode in a single primitive, calledexceptional triangle
strip, a set of triangles that would be turned into an actual triangle strip (under Definition 2.5) if few
bubble triangleswere removed. Abubble triangleis just a triangle with all its vertices in the same
vertex layer (see Fig. 4). Note that an exceptional triangle strip can have bubble triangles attached only
to its parent contour. To encode an exceptional triangle strip, the following information must be coded:
local indices of the two starting vertices, the bit march string, the number of bubbles, and the bubbles
themselves. The bit march string is further encoded by an entropy coding algorithm (Huffman coding [10]
or arithmetic coding [15]). Fig. 4 shows two exceptional strips with attached bubbles. To encode a bubble
on a triangle strip, the following information is coded: location of the starting vertex involved; vertex span

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 173

(a) (b)

Fig. 4. Exceptional triangle strips where local indices are listed: (a) one bubble triangle(102,104,103), (b) two
bubble triangles(102,105,103) and(103,105,104).

which is the total number of involved vertices; number of triangles in the bubble; triangle index triples.
Bubble coding is expensive, however, not all the above values need to be put into the bit stream. We use
relative indexing to reduce the overall number of coding bits. A relative index is defined with respect to a
bubble. Suppose that a bubble spansn vertices and the local index of the starting vertex of the bubble is
X. Then the relative indices of all involved vertices are defined as 0,1, . . . , n− 1. A triangle in a bubble
is encoded by a triple of relative indices. For instance, since the relative indices of 102, 103, 104, 105 in
Fig. 4(b) are 0, 1, 2, 3, the two bubble triangles are encoded as(0,3,1) and(1,3,2). In this case, coding
a bubble triangle only costs 6 bits.

Experiments show that most bubbles appear in the form of a one-triangle bubble with a vertex span
of 3, and relative index triple fixed as(0,2,1). The efficiency of the bubble encoding can be improved
by using one bit to indicate if a bubble has only one triangle. No more information is needed if it does.

3.3. The coding of bit march strings

Once the two starting vertex positions and possible bubbles are coded, the remaining problem of coding
an exceptional strip is reduced to coding exceptional triangle strips. A simple and direct way to encode a
bit march string is to put the 0s and 1s directly into the bit stream. However, this is not efficient. Symbols
0101 and 1010 are found to appear more frequently than other symbols such as 1111 or 0000 in a typical
bit march string if every four consecutive bits are grouped into a symbol.

A static Huffman table is designed for all the sixteen symbols. Construction of this table is based on
the symbol occurrences over a number of large models. In case the length of a bit march string is not a
multiple of 4, its remaining bits are simply coded one by one. Entropy coding of bit march strings uses
about 25% less space than direct coding.

3.4. The coding of triangle fans

Triangles that do not belong to any strip are special. Their vertices usually span three contours or
two contours in the same vertex layer. A triangle fan can be expressed by a sequence of vertices
{v0, v1, . . . , vm} wherev0 is the common vertex and(v0, vi, vi+1) (i = 1, . . . ,m − 1) is a triangle. To
code a triangle fan, the following information is put into the bit stream: the numberm− 1 of triangles
in the fan; a sequence of local indices ofm+ 1 vertices with the first one as the center (the commonly
shared vertex) of the fan.

174 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

Table 1
Percentages of triangles coded in bubbles and fans. The fifth column (CC)
is the total connectivity coding cost in bytes. The sixth column (CC/t) is the
connectivity coding cost per triangle in bits.

Model Triangles Bubble Fan CC CC/t

Crocodile 34,404 626 (1.8%) 1,036 (3.0%) 13,055 3.04

Teapot 144,384 157 (0.1%) 532 (0.3%) 12,644 0.70

Honda 13,594 96 (0.7%) 290 (2.1%) 3,768 2.22

Phone 165,963 638 (0.4%) 476 (0.3%) 19,284 0.93

Engine 584,793 7,017 (1.2%) 14,619 (2.5%) 713,809 2.69

Fig. 5. Cost of the connectivity coding.

For larger models, the connectivity cost of our scheme can be as good as less than one bit per triangle.
Experiments show that connectivity coding cost is on average 3 bits per triangle for common objects (see
Fig. 5).

4. Representation power

In this section we qualify ourLayering Schemefrom the point of view of its representation power.
In particular we prove the claim that this scheme can represent any set of triangles with no constraint
on their topology. Consider a set of triangles represented by an array ofn vertices and an array ofm
triangles, where each vertex is a triple of(x, y, z) coordinates and each triangle is a triple(i, j, k) of
vertex indices in the range[0, n− 1] as in the following table:

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 175

Vertices

V1 x1 y1 z1

V2 x2 y2 z2

...
...

...
...

Vn xn yn zn

Triangles

T1 Vi1 Vj1 Vk1

T2 Vi2 Vj2 Vk2

T3 Vi3 Vj3 Vk3

...
...

...
...

Tm Vim Vjm Vkm

We call this representationIndexedTriangleSet . In VRMLterminology this is a validIn-
dexedFaceSet restricted to triangles (an invalidIndexedFaceSet would have some of the(i, j, k)
indices out of the range[0, n− 1]). It easy to see that using this scheme one can represent any set of tri-
angles with no restriction on the topology of the collection. We show that the layering scheme has the
same representation power. Note that to simplify the proof we demonstrate our claim without using any
of the efficiency consideration discussed in the previous sections. The point we are making here is that
the Layering Scheme is the first compression approach (and at this moment the only one) that is robust
enough to encode anyIndexedTriangleSet . Even a very general scheme like the progressive sim-
plicial complexes [16] cannot deal directly with non-mesh cases like the example in Fig. 6(d) that we
can encode. The reason is that the progressive simplicial complexes are based on the edge contraction
primitive. But you cannot perform a valid edge contraction between the large top triangle and one of the
saw teeth because the set of triangles in Fig. 6(d) does not form a valid simplicial complex. This example
shows in fact a set of triangles that do not form a complex and hence some preprocessing that introduces
some additional “phantom” edges (edges encoded and marked as non-existing) would be needed.

Fig. 6. (a) The vrml model of a hand saw. (b) A wireframe view that shows the decomposition of the model into
polygonal pieces. (c) One triangulation of the leftmost piece of the blade. (d) An alternative triangulation of the
same piece.

176 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

Theorem 4.1. Any IndexedTriangleSet can be encoded in the Layering Scheme as a sequence
of vertex layers and triangle layers. TheIndexedTriangleSet is recovered exactly modulo:
(i) renumbering of the vertex/triangle indices and(ii) loss of the vertices not used in any triangle.

Proof. Consider an inputIndexedTriangleSet I . We build a graphG by adding in sequence the
edges of the trianglesTi in I as follows.

For eachTi = {Vi1, Vj1, Vk1} ∈ I :
• if Vi1 /∈ G: create inG a new nodeVi1,• if Vj1 /∈ G: create inG a new nodeVj1,• if Vk1 /∈ G: create inG a new nodeVk1,• if edge(Vi1, Vj1) /∈ G: create inG a newedge(Vi1, Vj1),• if edge(Vi1, Vk1) /∈ G: create inG a newedge(Vi1, Vk1),• if edge(Vk1, Vj1) /∈ G: create inG a newedge(Vk1, Vj1).

Performing aBFT (Breadth First Traversal) ofG starting from any random point we traverse all the
vertices of a connected componentGi of G. If Gi is a single vertex then it is discarded. We repeat the
Breadth First Traversal ofG starting from an untraversed node until all its nodes are traversed. In this
way G is decomposed intok connected components{G1,G2, . . . ,Gk}. Each componentGi is encodable
separately. Note that by construction each vertex and triangle appears in only one connected component
of G so that encoding eachGi separately does not imply the use of redundant information which might
produce inconsistencies such as encoding the same vertex in two different positions.

The vertices inGi are grouped in Vertex Layers on the basis of theBFT used to buildGi . The
coordinates of each vertex are encoded once in the order induced by theBFT. This means that each vertex
of I that appears inGi is encoded exactly once independent from the number of times it is referenced in
the set of triangles.

The triangles with vertices inGi are then encoded one by one as triangle fans of one triangle each.
Note that this can be done because no adjacency information is required to be explicitly encoded. In this
way we can encode the entire set of triangle in the inputIndexedTriangleSet . To achieve better
space efficiency one tries to use strips and longer fans as much as possible, but if any additional triangle
remains to be represented one can always encode it as a fan of length one.2

The consequence of this proof is that the Layering Scheme is the firstrobustcompression method for
triangular meshes. It can be used to encode any set of triangles without need for pre-processing that alters
the input data to enforce some special properties.

Non-manifold meshes like those in Fig. 11 are encoded directly and reliably without any modification.
In several cases this gives also the opportunity to triangulate an object with many fewer triangles.
Consider, for example, the model of a saw in Fig. 6(a,b) whose blade is decomposed into several
pieces and, furthermore, each single piece is triangulated to yield a triangular mesh. Fig. 6(c) shows
one possible consistent triangulation of a piece of the blade. Since every pair of adjacent triangles have
the same common edge the number of triangles is twice the number of teeth (plus one). Fig. 6(d) shows an
alternative triangulation of the same piece of blade with number of triangles equal to the number of teeth
(plus two). This is not often considered as a consistent mesh, and hence usually discarded as “invalid
input”, since one edge of the large triangle is partially adjacent to many small triangles (the teeth of the
blade). However, using our flexible Layering Scheme one can directly encode this collection of triangles
with a near 50% savings in encoding cost.

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 177

5. Geometry coding

With the encoded connectivity information, the overall geometry encoding scheme is straightforward.
For each vertex layer, positions of all branching vertices are encoded directly in the order they are locally
indexed. For each contour, positions of all its non-branching vertices are predictively encoded.

Our geometry coding pipeline involves bounding box coding, prediction, quantization, and entropy
coding. The bounding box of an input mesh is specified by the maximum and minimum values of all the
x, y, z coordinates: Xmin, Xmax, Ymin, Ymax, Zmin and Zmax. Using these values, all vertex positions
can be normalized so that they are located in a unit cube.

5.1. Predictive geometry coding

Predictive coding has been extensively utilized in 2D image compression methods. For instance,
the JPEG standard [20] provides predictive lossless coding mode for still image compression. The
predictive technique can also be used to remove redundant information within the geometry and
attributes of a triangular mesh. A vertex position predictor combines the positions of previously encoded
neighboring vertices to form a prediction of the current vertex position. There are three commonly used
geometry predictors: linear predictors [5], high-order predictors [18], and parallelogram predictors [13].
A correction, more suitable for efficient coding, is defined as the difference between the actual vertex
position and its predicted position. Either Cartesian or spherical coordinates can be used to express a
position or a correction which is quantized into an integer code and then entropy coded.

To quantize a position or a correction vector, we first compute its spherical coordinates(r, φ, θ). Then
the three components are vector quantized to a choice of vectors chosen uniformly in a solid sphere. With
the bounding box and other prenormalization,r is in the interval[0,1], andφ andθ are in[0,2π] and
[0, π], respectively. Note that because of the difference in nature and length of the three polar coordinates
(r, φ, θ) they are usually quantized differently resulting in a number of bits per vertex which is not
necessarily multiple of three.

5.2. Codebook design

Without loss of generality, suppose that the sample space is

S = {x | ‖x‖6 1, x ∈ R3}.
Let the order setC = {y1,y2, . . . ,yN } be the codebook to be designed.N is the codebook size, which

is adjustable according to the user-specified error tolerance.Yi, i = 1,2, . . . ,N , are the code vectors.
A vector quantizerQ of dimension three and sizeN is a mapping from a vector inS to a code vector

in C. Basically, everyN -point vector quantizer has an associated partition ofS into N regions or cells,
Si (i = 1,2, . . . ,N), where theith cell is defined by

Si = {x ∈ S: Q(x)= y i
}
.

Thecode rateof the vector quantizerQ is r = (log2N)/3 which measures the number of bits that a
vector component uses to express the input vector. The code rate shows the accuracy of a vector quantizer
and depends on the goodness of the chosen codebook. Clearly, a large-size codebook gives good accuracy
but results in a large bit rate and, thus, poor compression performance.

178 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

We present here a productive vector quantizer defined by of three sub-codebooks. A vector(x, y, z) in
S can be expressed in the sphere coordinates(r, φ, θ) by the relation

r =
√
x2+ y2+ z2, 06 r 6 1,

φ = arctan
(
y

x

)
, 06 φ 6 2π,

θ = arctan
(√

x2+ y2

z

)
, 06 θ 6 π.

The three scalarr, φ andθ are encoded separately by using the following three scalar sub-codebooks:
Cr,Cφ andCθ which are of sizeNr = 2Kr , Nφ = 2Kφ andNθ = 2Kθ , respectively.

Cr = {ri | ri = (i − 1)/Nr, i = 1,2, . . . ,Nr
}
,

Cφ = {φj | φj = 2π(j − 1)/Nφ, j = 1,2, . . . ,Nφ
}
,

Cθ = {θk | θk = π(k− 1)/Nθ, k = 1,2, . . . ,Nθ
}
.

Hence a vertex will be quantized byKr +Kφ +Kθ bits. And the overall codebook is

C = {pijk := (xijk, yijk, zijk)T | i = 1,2, . . . ,Nr; j = 1,2, . . . ,Nφ; k = 1,2, . . . ,Nθ
}
,

with xijk = ri sinθk cosφj , yijk = ri sinθk sinφj , zijk = ri cosθk .

5.3. Nearest neighbor search

The Euclidean distance will be used to measure distortion

d(x, x̂)= ‖x − x̂‖.
For a given vectorx ∈ S, the task of nearest neighbor search is to search for its closest code vector in

the sense that it has minimal distortiond(x,yj) over all the code vectors in the codebookC. Naive direct
search is of O(N) time complexity. Well-designed codebook [6] can be of O(logN) time complexity.
For our codebook given above, only constant time is required for a one time nearest neighbor search.
For any vectorx ∈ S, its sphere coordinate(r, φ, θ) can first be computed in constant time. Then three
intervals[ri, ri+1], [φj ,φj+1] and[θk, θk+1] are found, within whichr, φ andθ are located respectively.
Distortions betweenx and each of the eight code vectors{pi′j ′k′, i′ = i, i+1; j ′ = j, j+1; k′ = k, k+1}
are computed. Finally, since we know that the distortion must be equal to one of eight distortions, the
code vector can be easily decided by picking out the one which has the minimal distortion. All this can
be done in constant time. We let PVQ(x) be the code vector ofx andDC(x) = d(x,PVQ(x)) be the
distortion.

5.4. Distortion upper bound

Given a user specified error toleranceε, one must decide the sizes,Nr,Nφ andNθ of the three sub-
codebooks. These three parameters should be chosen as small as possible so as to attain a small bit rate.
The following quantitative analysis shows how the error control is derived.

For any vectorx ∈ S, its associated sphere coordinates(r, φ, θ) must be located in some cube
[ri, ri+1) × [φj ,φj+1) × [θk, θk+1), so the distortion will not exceed half the length of the diagonal of

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 179

the corresponding Cartesian cube within the unit sphere. Letp0= (ri, φj , θk) andp1= (ri+1, φj+1, θk+1)

be two endpoints of a diagonal. Suppose that(x0, y0, z0) be (x1, y1, z1) are their Cartesian coordinates.
Since

|x1− x0| =
(
ri + 1

Nr

)
sin
(
θk + π

Nθ

)
cos

(
φj + 2π

Nφ

)
− ri sinθk cosφj

= ri
(

sin
(
θk + π

Nθ

)
cos

(
φj + 2π

Nφ

)
− sin

(
θk + π

Nθ

)
cosφj

+ sin
(
θk + π

Nθ

)
cosφj − sinθk cosφj

)
+ 1

Nr
sin
(
θk + π

Nθ

)
cos

(
φj + 2π

Nφ

)
= ri

(
sin
(
θk + π

Nθ

)(
− 2sin

(
φj + π

Nφ

)
sin
(
π

Nφ

))
+2cos

(
θk + π

2Nθ

)
sin
(
π

2Nθ

))
+ 1

Nr
sin
(
θk + π

Nθ

)
cos

(
φj + 2π

Nφ

)
,

we have

|x1− x0|6 ri
(

2π

Nφ
+ π

Nθ

)
+ 1

Nr
6 2π

Nφ
+ π

Nθ
+ 1

Nr
.

Similarly,

|y1− y0|6 2π

Nφ
+ π

Nθ
+ 1

Nr
, |z1− z0|6 π

Nθ
+ 1

Nr
.

Claim 5.1. If Nr,Nφ andNθ satisfy

1

Nr
+ 2π

Nφ
+ π

Nθ
<

2√
3
ε,

then for anyx ∈ S, DC(x) < ε.

5.5. Geometric encoding with error propagation prevention

Since the layering structure groups every vertex layer by a set of contours, one needs only to consider
the geometry encoding of each of these contours. We use an efficient geometric coding algorithm which
controls geometry error by confining the distortion of productive vector quantization. At the same time,
error propagation is prevented.

Let P0,P1, . . . , Pn be the vertices which form a contour in that order. Define1Pi = Pi+1 − Pi for
i = 0, . . . , n − 1. Using direct prediction, a straight way to encode all the vertex coordinates would
be (1) encodeP0 directly; (2) encode1Pi, i = 0, . . . , n − 1, by the productive vector quantization.
But there are two disadvantages with this scheme. On one hand, the error from the productive vector
quantization can be accumulated. On the other hand, redundancy still exists in this raw encoding scheme.
The accumulating error problem can be solved by taking an on-the-fly computing skill so that any vertex
after being recovered by the decoder will not deviate its original position by an Euclidean distance more
than the maximum distortion of the vector quantization. To remove the second disadvantage, we design a
intuitive and efficient scheme which is based on statistics of a general case behavior of correction vectors
1Pi in ordinary contours of the layering structure.

180 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

Fig. 7. Frequency curves for two encoding schemes: solid curves for code difference and dash lines for the direct
encoding. The symbols are sorted by frequency for comparison. These frequency curves show that in the code
difference approach most codes are accumulated around only a few symbols.

5.6. Second-order code prediction

Direct prediction removes redundancy by identifying similar bit values between coordinates of
adjacent vertices. However, it is not optimal, especially for models without many sharp features.

Suppose1Pk and1Pk+1 are two adjacent correction vectors and the two integer triples(rk, φk, θk)

and(rk+1, φk+1, θk+1) are their corresponding codes. We observe that since the angular change from1Pk
to1Pk+1 is generally small,1φk = φk+1− φk and1θk = θk+1− θk are usually small integers.

It might be helpful to stress that this second order prediction is not the same as coding difference of
differences. Our prediction has two phases. The first phase computes differences and then quantizes
them into integer codes. The second phase computes the difference of quantized difference codes.
Experimental results show that encoding correction code differences is more efficient than directly
encoding correction codes. Fig. 7 shows the frequencies of symbols of different sizes where horizontal
values are symbol values and vertical values are their corresponding frequencies. In this figure, solid
curves show the frequency of correction code differences while dash lines show the frequency of
correction codes from the direct encoding scheme. The Huffman coding method [10] is also used to
encode code differences.

6. Attribute coding

Besides vertex positions, a mesh may have attached attributes such normals, colors, and texture
coordinates which are used for enhancing shading effect. The way to bind these attributes with a
triangular mesh in VRML [9] can be either per vertex, or per face, or per corner.

The position predictors can be generalized to code normals, colors, and texture coordinates. In this
paper, we present our prediction schemes for normal coding with the “per vertex” binding. RGB color
information and(u, v) texture coordinates are handled as vectors similarly to normals.

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 181

Fig. 8. Comparison of geometry coding: no prediction, indirect prediction, and direct prediction.

Just like coding a vertex position, one can use a linear combination of encoded normals of
neighboring entities (vertices or faces) to predict a normal. This is direct prediction. However,
the normal associated with each entity usually reflects local geometry variation around the entity.
This implies that the normal can be predicted from neighboring geometry which is supposed to
be already recovered by the decoder. We call this approach indirect prediction. Several methods
to estimate vertex normals can be used in an indirect prediction approach: average of normals
of incident faces, quadratic surface fitting, and subdivision. Since indirect predictors are based on
the geometry information of the reconstructed mesh, the encoder must use the same geometry
information when it does normal prediction. The first predictor averages normals of all incident
faces and uses the average normal vector as the prediction vector. The second predictor uses
geometry information of neighboring vertices to construct a quadratic fitting surface and uses the
normal of the fitting surface at the predicated vertex as the prediction. The subdivision predictor
is similar to the first predictor but the incident faces are changed. Fig. 8 compares the efficiency
of normal coding of three different methods: no prediction, indirect prediction by averaging, and
direct prediction from the normal of a neighboring vertex. Clearly, coding normals without prediction
is least efficient. For the other two cases, the coding results are largely dependent on the input
data.

For any unit normal(n0, n1, n2), its corresponding sphere coordinates can be written as(1, φ, θ). So
direct coding (no prediction) only needs to code theφ andθ components. Any correction vector of a
normal does not need to be of unit length. However, since both the prediction normal and the true normal
are of unit length, it is sufficient to code theφ andθ components of the correction vector. Fig. 9 shows
two test cases of compressed triangulated surfaces with normal and color properties. The corresponding
coding cost is reported under each model.

182 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

Fig. 9. Compression of normals and colors. Both models (brain and skull), whose originals are shown in the last
column (GZIP sizes: 981,827 and 2,431,665 bytes), have normal and color properties. For the first three columns,
geometry quantization bits are 12, 18 and 24 per vertex; normal quantization bits are 8, 12, 16 per vertex; color
quantization bits are 12, 18 and 24 per vertex. Total storage sizes (in bytes) are reported under each model. Under
each model is also reported in bits per vertex the costs of the Geometric Coding (GC), the cost of the Normal Coding
(NC) and the Color Coding (CoC). The Connectivity Coding in bits per triangle (equal for all three compressed
models) is reported in the last column.

7. Experimental results

Table 2 compares the compression performance of our method with GZIP compression of the VRML
ASCII models shown in Fig. 10. The geometric errorE(A,B) is reported in parentheses in the last
column. Consider a modelA and its reconstructionB after lossy compression. The geometric error
E(A,B) betweenA andB is defined as

E(A,B)= 1

n

n−1∑
i=0

min
06j<n

‖Pi −Qj‖2,

wherePi (06 i < n) andQj (06 j < n) are the vertex positions ofA andB, respectively, andA is
normalized such that its bounding box diameter is 100.

Fig. 12 compares the compression results of our method with the compressed gzip files for a standard
set of 300 VRML models [9]. Each point in the plots represents one model of the set. Thex coordinate

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 183

Table 2
Comparison of compressed file sizes in bytes. The fourth column (CC) is the
connectivity coding cost. The last column is the geometry coding (GC) for
a quantization of 25 bits per vertex (bpv, or total bits for three coordinates).
The numbers in parenthesis are geometry errors.

Model Original GZIP CC GC (25 bpv)

Crocodile 1,212,767 395,849 13,055 63,127 (0.010)

Teapot 5,471,965 1,459,284 12,644 150,900 (0.007)

Honda 397,730 118,377 3,768 25,739 (0.012)

Phone 8,558,332 2,138,042 19,284 240,599 (0.008)

Engine 15,888,473 4,357,764 196,694 815,715 (0.003)

Fig. 10. Compression of triangle meshes. The first row shows the original models. The second row shows the
reconstruction after lossy compression using 25 bits per vertex (total for all three coordinates).

of the point is the number of vertices of the corresponding model. They coordinate is the compression
ratio obtained for that model. For the left plot the compression ratio is the size of the original VRML
ASCII model over the size of our compressed file. For the right plot the compression ratio is the size of
the GZIP compressed VRML file over the size of our compressed file.

Table 3 reports the compression results for the two non-manifold models shown in Fig. 11 with 40 (top
row) and 260 (bottom row) non-manifold vertices.

184 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

Table 3
Compression results:V is the number of vertices;S1 is the file size of an uncompressed model in bytes;S2 is the
file size of a compressed model in bytes. Savings are the compression results of non-manifolds over manifold. The
quantization bits are 15 per vertex in all cases. The Connectivity Coding (CC) costs are reported in bits per triangle
while the Geometric Coding (GC) costs are reported in bits per vertex.

Manifold Non-manifold

Object V S1 S2 CC GC V S1 S2 CC GC Savings

Saturn 810 47,303 2,581 2.95 14.6 770 45,728 2,130 2.86 13.2 9.7%

Brain 34,676 2,422,390 124,469 3.03 14.4 34,416 2,385,138 123,096 3.01 14.1 1.1%

Fig. 11. Compression of non-manifold meshes. The model in the top row has 40 non-manifold vertices. The model
in the top row has 260 non-manifold vertices.

8. Conclusion

We have described a space efficient encoding for both a lossless and an error-bounded lossy
compression scheme for triangular meshes. The compression is achieved by capturing the redundant
information in both the topology (connectivity) and geometry, and possibly property attributes. Error-
bounded lossy geometry (without loss of topology) is achieved by a vector predictor and corrector
encoding. Example models and results of our implementation are also provided.

C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186 185

Fig. 12. Compression ratio plotted for a lossless encoding of 300 VRML models. Thex coordinate of each point
is the number of vertices of the corresponding model. They coordinate is the compression ratio obtained for that
model with respect to the original VRML ASCII (left) and with respect to the GZIP compressed VRML file.

Our single resolution compression and coding scheme could support error resilience because of the
following locality property: (i) every triangle layer is dependent on only two adjacent vertex layers, and
(ii) every vertex layer is referenced by at most two adjacent triangle layers. This implies that geometric
primitives for each vertex layer and triangle layers can be independently encoded and thus decoded.
The only change of our single resolution coding scheme is to perform the geometry encoding and
connectivity alternatively. Our future research concentrates on taking advantage from these properties
to produce incremental and progressive encoding schemes for transmission of topology and geometry of
large models allowing for error recovery and error concealment even in one-way transmission channels.

References

[1] C.L. Bajaj, V. Pascucci, G. Zhuang, Progressive compression and transmission of arbitrary triangular meshes,
in: Proceedings of IEEE Visualization’99, San Francisco, CA, 1999, pp. 307–316.

[2] C.L. Bajaj, V. Pascucci, G. Zhuang, Single resolution compression of arbitrary triangular meshes with
properties, in: Proceedings of Data Compression Conference, 1999, pp. 247–256.

[3] M. Chow, Optimized geometry compression for real-time rendering, in: Proceedings of IEEE Visualiza-
tion’97, Phoenix, AZ, 1997, pp. 347–354.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, MA, 1991.
[5] M. Deering, Geometric compression, in: Computer Graphics, SIGGRAPH’95 Proceedings, 1995, pp. 13–20.
[6] R.M. Gray, Vector quantization, IEEE ASSP Magazine 1 (2) (1984) 4–29.
[7] A. Gueziec, G. Taubin, F. Lazarus, W. Horn, Cutting and stitching: efficient conversion of a non-manifold

polygonal surface to a manifold, Technical Report RC-20935, IBM T.J. Watson Research Center, Yorktown
Heights, NY, 1997.

186 C.L. Bajaj et al. / Computational Geometry 14 (1999) 167–186

[8] S. Gumhold, W. Strasser, Real time compression of triangle mesh connectivity, in: Computer Graphics,
SIGGRAPH’98 Proceedings, 1998, pp. 133–140.

[9] J. Hartman, J. Wernecke, The VRML 2.0 Handbook, Addison-Wesley, Reading, MA, 1996.
[10] D. Huffman, A method for the construction of minimum-redundancy codes, Proceedings of the IRE 40 (10)

(1952) 1098–1101.
[11] D. Le Gall, MPEG: A video compression standard for multimedia applications, Comm. of the ACM 34 (4)

(1991) 46–58.
[12] J. Li, C.C. Kuo, Embedded coding of mesh geometry, Technical Report, ISO/IEC JTC1/SC29/WG11

MPEG98/M3325, March 1998.
[13] J. Li, J. Li, C.C. Kuo, Progressive compression of 3D graphics models, in: IEEE Proceedings of Multimedia

Computing and Systems, Ottawa, Canada, 1997, pp. 135–142.
[14] J. Li, J. Li, C.C. Kuo, Progressive coding of 3D graphic models, in: IEEE Multimedia and Systems, 1998.
[15] A. Moffat, R.M. Neal, I.H. Witten, Arithmetic coding revisited, ACM Trans. Inform. Syst. 16 (3) (1998)

256–294.
[16] J. Popovíc, H. Hoppe, Progressive simplicial complexes, in: T. Whitted (Ed.), SIGGRAPH 97 Conference

Proceedings, Annual Conference Series, ACM SIGGRAPH, Addison-Wesley, Reading, MA, 1997, pp. 217–
224.

[17] J. Rossignac, Edgebreaker: Connectivity compression for triangle meshes, IEEE Trans. Visualization Comput.
Graphics 5 (1), 1999.

[18] G. Taubin, J. Rossignac, Geometric compression through topological surgery, ACM Trans. Graphics 17 (2)
(1996) 84–115.

[19] C. Touma, C. Gotsman, Triangle mesh compression, in: W. Davis, K. Booth, A. Fourier (Eds.), Proceedings
of the 24th Conference on Graphics Interface (GI-98), Morgan Kaufmann, San Francisco, 1998, pp. 26–34.

[20] G.K. Wallace, The JPEG still picture compression standard, Comm. of the ACM 34 (4) (1991) 30–44.

