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Abstract

In biomedicine, many three-dimensional (3D) objects are sampled in terms of slices such as computed tomography (CT), magnetic

resonance imaging (MRI), and ultrasound imaging. It is often necessary to construct surface meshes from the cross sections for vi-

sualization, and thereafter construct tetrahedra for the solid bounded by the surface meshes for the purpose of ®nite element analysis.

In Ref. [1] (C. Bajaj, E. Coyle and K. Lin, Graphical Models and Image Processing 58 (6) (1996) 524±543), we provided a solution to the

construction of a surface triangular mesh from planar -section contours. Here we provide an approach to tetrahedralize the solid

region bounded by planar contours and the surface mesh. It is a dif®cult task because the solid can be of high genus (several through

holes) as well as have complicated branching regions. We develop an algorithm to effectively reduce the solid into prismatoids, and

provide an approach to tetrahedralize the prismatoids. Our tetrahedralization approach is similar to the advancing front technique

(AFT) for its ¯exible control of mesh quality. The main criticism of AFT is that the remaining interior may be badly shaped or even

untetrahedralizable. The emphasis of our prismatoid tetrahedralization approach is on the characterization and prevention of un-

tetrahedralizable parts. Ruppert and Seidel (J. Ruppert, R. Seidel, On the dif®culty of tetrahedralizing three-dimensional non-convex

polyhedra, in: Proceedings 5th Annual ACM Symposium Comput. Geom., 1989, p. 380±392) have shown that the problem of deciding

whether a polyhedron is tetrahedralizable without adding Steiner points is NP-complete. We characterize this problem under certain

constraints, and design one rule to reduce the chance of generating untetrahedralizable shapes. The characterization also leads to the

classi®cation of two common untetrahedralizable categories which can be better processed if they do occur. Ó 1999 Elsevier Science

S.A All rights reserved.

1. Introduction

The ®nite element method (FEM) has wide applications in simulating a domain subjected to external
in¯uences. Typical examples are mechanics, ¯uid mechanics, and heat transfer. FEM requires the problem
domain to be divided into small simple elements. These are, for example, triangles or quadrilaterals in 2D,
and tetrahedra, prisms, or hexahedra in 3D. Tetrahedra can approximate complicated 3D regions just as
triangles can approximate complicated 2D regions.

Many 3D objects are sampled in terms of slices. For example, technologies such as magnetic resonance
imaging (MRI), computed tomography (CT), and ultrasound imaging obtain measurements of internal
properties of objects in a non-destructive fashion. These measurements are usually obtained one slice at a
time, where each slice is a 2D array of scalar values corresponding to measurements distributed over a plane
passing through the object.
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Once these measurement slices have been obtained, the goals are to enable a human to easily visualize, in
3D, this large collection of data, as well as to simulate physical properties of the data. This ®rst requires
triangular surface mesh construction from the slice data, and the second utilizes tetrahedral element gen-
eration of the solid domain bounded by the surface mesh. In Ref. [1] we present an algorithm to achieve
surface construction from slices. The images are automatically or manually segmented to obtain contours,
and triangular surface meshes are constructed from planar contours. This contour-based approach gen-
erates a compact number of surface elements. This paper details our approach to tetrahedralize the
polyhedron bounded by the constructed surfaces generated by our algorithm in Ref. [1].

The rest of this paper is as follows. We provide an overview of previous approaches in Section 2, then
detail our algorithm to reduce the solid domain into prismatoids in Section 3. Our approach to tetrahe-
dralize a prismatoid is presented in Section 4. We present several examples in Section 5, and conclude in
Section 6.

2. Overview of previous approaches

The construction of a 3D triangular (tetrahedral) mesh of a stack of planar cross-sections can be reduced
to the following subproblem. Given the solid bounded by two adjacent contours and surface triangular
meshes (referred to as a prismatoid as de®ned in Section 3.3), the goal is to tetrahedralize it with the ad-
ditional constraint of pre-triangulated top and bottom facets. Except for an extreme contour pair, the top
facet shall always be triangulated when it occurs as the bottom facet during the triangulation of the upper
prismatoid. For a parallel algorithm, where each region within adjacent cross-sections can be dealt with
independently, both facets must be pre-triangulated. The tetrahedralization is di�cult because the prism-
atoid can be complicated by through holes (higher genus). Furthermore, good aspect ratio tetrahedra
generation is complicated by having the contours in planar slices (i.e. multiple sets of points on a plane and
hence not in general position for three dimensions).

Extensive research has been conducted on unstructured tetrahedral mesh generation. Refs. [2,3,9,11,19]
provide a good coverage of di�erent approaches toward automatic mesh generation from a polyhedron.
These methods include octree decomposition, convex decomposition, Delaunay triangulation, and ad-
vancing front technique (AFT). Of these methods, the Delaunay-based approaches [6,5,12,26] and AFT
[18,24,8,16,19,14,13,21,22] have received much attention in recent years.

Lo [19] discusses the di�culties of the Delaunay-based 3D mesh generations. The di�culties include
degenerate tetrahedra and also tetrahedra intersecting the surface mesh. For example, Fig. 1 shows a case
where the Delaunay tetrahedron pqrs cuts across the inner surface mesh. Recent research by Weatherill and
Hassan [26] attempts a solution to this problem. Their method subdivides the tetrahedra, which cut across
the surface mesh, into sub-tetrahedra so the surface mesh is contained in the faces of new tetrahedra. This
process of producing a 3D-conforming Delaunay triangulation yields a large fragmentation with no
polynomial upper bound on the required ®nal number of subdivided tetrahedra.

Fig. 1. A Delaunay tetrahedron pqrs cuts across the surface mesh.
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We discuss prior 3D advancing front approaches in slightly greater detail because of the strong simi-
liarity to our approach. The following steps illustrate a simpli®ed advancing front approach.

Step 1: Form a control background.
Step 2: Form the initial front.
Step 3: Pick a triangular face from the front.
Step 4: Select a vertex of the front or create a point to form a tetrahedron.
Step 5: Update the front.
Step 6: If the remaining set of faces is not empty, go to Step 3.
The control background is an optional method to control the sizes and directions of formed mesh

elements and/or to prevent problems caused by joining widely varying fronts. The control background
can be a mesh [20,24], a regular grid [13], or a control line/surface scheme [14]. The desired properties
are stored with the nodes of the background grid/mesh, or they are the size of the line/surface scheme.
Linear interpolation is necessary to determine mesh parameters of the nodes of the background grid/
mesh.

The initial front of Step 2 is simply the triangular faces of an input polyhedron surface mesh.
Step 3 has three variations. The ®rst method is to choose a face sequentially from the data structure

containing boundary faces. Dannelongue and Tanguy [10] pick the root of the tree structure of boundary
faces as the next face. Lo [19] chooses the last item of the face set. The second method is to pick a face based
on certain metrics of the tetrahedron to be formed. Chae and Bathe [8] pick the next face based on the type
of operations applicable to the face. For example, the operation of removing a corner has higher priority
than extracting a tetrahedron from the solid. If two or more faces have the same highest priority operation,
other factors such as face area ratio are considered. L�ohner and Parikh [20], M�oller and Hansbo [22], and
Peraire et al. [24] pick the smallest face on the front to avoid the problem of large elements crossing over
regions of small elements. Jin and Tanner [14] also consider the positions of a face relative to its neigh-
boring faces in addition to the size criterion. The drawback of the ®rst two methods is the complexity of the
remaining part described in Step 6. Although the second method alleviates this problem by considering
certain metrics in choosing the next face, the remaining part still becomes complicated after digging op-
erations. Digging operations form a tetrahedron using a triangular face and a vertex which is not on any
adjacent face to the triangular face.

Instead of picking a facet, the third method is to construct an o�set layer toward the interior of the
object. The o�set layer is tetrahedralized, and the remaining part becomes smaller. The remaining part also
becomes simpler if the inner faces of the o�set layer have no sharp corner. This process is repeated until
there is no remaining part. This method is considered to be a special variation of AFT, and Step 4 of AFT is
no longer needed. Forming a well conditioned o�set layer in 3D is not a trivial problem. Johnston and
Sullivan [16] o�set points along vectors normal to faces. In order to avoid the problems of sharp corners,
layer self intersection, and dense/sparse node concentrations, they adjust, add, merge, or delete nodes of the
inner faces of the o�set layer. The process is done by applying four checks, distance, angle, intersection and
termination, to the layer.

Step 4 has two variations. One is that additional internal points (also called Steiner points) are created as
needed by most techniques. The other is that Steiner points are created before Step 2 is applied [18,19]. Both
variations perform tests to check that no part of a proposed tetrahedron is outside the front. In both
approaches, the selection of a node is usually based on metric calculation. Lo [19] calculates the volume to
surface area ratio of a proposed tetrahedron to choose an existing node on or inside the front for a selected
face. In the ®rst approach, the control background described in Step 1 can be used to control the size and
direction of a mesh element. This approach has more freedom to form a well formed tetrahedron by
creating a new node respective to a selected face. However, this approach faces the choice of using an
existing node or creating a new node, and then the decision of the location of a created node. Chae and
Bathe [8] attempt to form a tetrahedron using a face and an existing node subject to edge angle restrictions.
If no existing node is quali®ed for any face, Chae and Bathe create a new node after the consideration of
surrounding faces, surrounding edges, and a scaling factor. The approaches of Peraire et al. [24], L�ohner
and Parikh [20], Jin and Tanner [14], and George and Seveno [13] are basically similar. The ideal position of
a node to form a tetrahedron with a face is calculated. The position usually has equal distances to the
vertices of the face. The distance is determined from the face size and the control background, if applicable.
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Then existing nodes in proximity to the ideal position are tested to satisfy some conditions. In the case of no
quali®ed existing node, a new node is created as close to the ideal position as possible.

We believe that AFT has ¯exibility to form good tetrahedra. The ¯exibility comes from the freedom to
choose or create a node to form a tetrahedron in Step 4. On the other hand, this freedom largely contributes
to the complexity of the remaining shape. This problem does not apply to the advancing by a layer ap-
proach of Johnston and Sullivan [16]. The complex remaining shape leads to the main criticism of AFT:
there is no proof that two fronts will join correctly [13,15]. In other words, the remaining part of Step 6 may
be irregularly shaped or even untetrahedralizable. This problem has been acknowledged by [7,14,22]. The
solution of M�oller and Hansbo is to save the current state at regular intervals. Thus when AFT fails, this
technique can recover the last state and try a new path of generation.

Our problem domain of tetrahedral mesh generation of prismatoids has been studied by Cavendish et al.
[6]. They slice an arbitrary polyhedral object into a stack of prismatoids, and thereafter tetrahedralize each
individual prismatoid by 3D Delaunay triangulation. They do not address the boundary conformation
problem (Fig. 1) associated with 3D Delaunay triangulation. Furthermore a polyhedron of certain to-
pology, such as branching, cannot be sliced only into prismatoids.

Our approach consists of two parts. The ®rst part is to reduce a non-prismatoid, resulting from certain
topology such as branching, into one or more prismatoids. The second part is to tetrahedralize a prismatoid.

Although the concept of our prismatoid tetrahedralization is based on AFT, it is signi®cantly di�erent
from other AFT approaches. Instead of picking a face from the front to form one tetrahedron at a time in
Step 4, we pick a triangle from the top or bottom slice to form a group of tetrahedra. The construction of a
group of tetrahedra is chosen from among all possible tetrahedralization permutations of that group. So we
can alleviate the problem that forming a tetrahedron might later cause other faces: that is, to form ill-
shaped tetrahedra. The major di�erence is that we do not allow adding Steiner points in Step 4 because
forming a tetrahedron with a Steiner point usually complicates the remaining part. If Steiner points are
required, we can add Steiner points before Step 2 just as in Lo's [19] approach. However, before tetra-
hedralization, we break a prismatoid with Steiner points into prismatoids without any Steiner point.

Our research emphasizes the characterization and prevention of an untetrahedralizable interior, the
aspect which has been the main criticism of AFT. We characterize untetrahedralizable shapes in our
problem domain, and then provide a protection rule to reduce the chance of generating untetrahedralizable
remaining parts. The characterization also leads to the classi®cation of two common untetrahedralizable
categories so they can be better postprocessed if they do occur. For example, a Sch�onhardt prism (Fig. 2(a))
[3,25] cannot be tetrahedralized without adding any Steiner point. It can be tetrahedralized by adding a
Steiner point which is visible to all faces. Traditional AFT cannot characterize an untetrahedralizable
shape. AFT keeps generating smaller tetrahedra, and the remaining part (Fig. 2(b)) becomes too compli-
cated to be processed. Our approach will recognize untetrahedralizable shapes and leave them for post-
processing.

Fig. 2. (a) An untetrahedralizable Sch�onhardt prism; (b) AFT could result in a more irregular remaining part.
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The description of our approach and its theoretical background are presented in Section 4. The next
section details our algorithm to divide a non-prismatoid into one or more prismatoids.

3. Preprocessing

The polyhedron constructed from contours on two adjacent slices may not be a prismatoid if it develops
any untiled region during our surface construction process. It is more di�cult to tetrahedralize a non-
prismatoid than a prismatoid because of the former's more complicated shape. This section discusses how
preprocessing divides a non-prismatoid polyhedron into one or more prismatoids. We quickly review our
surface construction algorithm in Section 3.1, so we can discuss the problem domain in Section 3.2. The
reducing algorithm is presented in Ref. Section 3.3, Its appropriateness is discussed in Ref. [17]. Finally,
Section 3.4 states the applicable conditions of the reducing algorithm.

A prismatoid is de®ned by Beyer [4] as the following: ``A prismatoid is a polyhedron having for bases
two polygons in parallel planes, and for lateral faces triangles or trapezoids with one side lying in one base,
and the opposite vertex or side lying in the other base, of the polyhedron'' (page 128). In our de®nition of a
prismatoid, we limit the lateral faces to triangles. We also allow a polygon segment to exactly overlap
another polygon segment, or allow a polygon to degenerate into a point. Fig. 3 shows some examples. We
treat a degenerate polygon as a simple polygon by separating the overlapped polygon segments by an
arbitrary small distance (see Fig. 4). Hence the prismatoids based on our de®nition are still considered to be
manifold polyhedra, w hich require that any edge must be shared exactly by two polygons. In our im-
plementation, we do not really separate a pair of overlapped contour segments by a small distance. We
simply treat them as two di�erent contour segments. One or more void prismatoids could be inside one
prismatoid and form nested prismatoids such as in Fig. 5.

3.1. Sketch of our surface construction algorithm

We will quickly review our surface construction algorithm for completeness. The detailed procedure is
described in Ref. [1]. Our algorithm constructs surfaces from contours of two adjacent slices. All contours
are simple polygons which are oriented so the solid region is inside a counter-clockwise (CCW) contour and
is outside a clockwise (CW) contour. We present some de®nitions before discussing the algorithm.

Fig. 3. Some examples of prismatoids based on our de®nition.

Fig. 4. The degenerate polygons are treated as simple polygons. (a) The entire polygon degenerates into a point. (b) The entire polygon

degenerates into line segments. (c) and (d) A contour segment can exactly overlap another contour segment.
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De®nition 1. ``Planar'' means that all vertices of an object are on the same slice.

De®nition 2. Planar solid region: a region which is inside a CCW contour and is outside CW contours. The
shadow regions of Fig. 6 are examples.

De®nition 3. A top, middle, or bottom vertex is a vertex on the top, the imaginary middle, or the bottom
slice, respectively.

De®nition 4. Tiling triangle, middle triangle, and slice chord: A tiling triangle consists of exactly one
contour segment and two slice chords (see Fig. 6). A slice chord is an edge of the constructed surface and its
two end points are vertices of the top and the bottom slices. A middle triangle contains one or two middle
vertices. Its orientation is de®ned as the orientation of its projection onto one slice.

Our algorithm uses a multi-pass tiling approach followed by the postprocessing of untiled regions. Tiling
means using slice chords to triangulate the strip lying between contours of two adjacent slices into tiling
triangles. The tiling algorithm is mainly based on the constraint of single-sheeted constructed surfaces
between two slices. This constraint implies that any vertical line (perpendicular to a slice) can intersect the
constructed surface at no point, one point, or one line segment. Please note that a planar solid region does
not belong to the constructed surface, so a vertical line can have two intersections with planar solid regions
on both slices.

After the tiling passes of our surface construction algorithm, some regions might not be covered by tiling
triangles because covering them with tiling triangles would violate the single-sheeted surface criterion. An
untiled region is an oriented 3D polygon which consists of slice chords and/or unused contour segments. It
is postprocessed with tiling to its medial axis, which is placed at the imaginary middle slice. So the post-
processing covers an untiled region with middle triangles. The projections of middle triangles have the same

Fig. 6. The shaded regions are planar solid regions. The constructed surface consists of all non-planar triangles.

Fig. 5. Nested prismatoids.
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orientations (CCW or CW) as the projection of the untiled region. An untiled region occurs at a branching
region, a dissimilar portion, or an appearing/disappearing vertical feature. Figs. 7±9 show three examples.

The constructed surface consists of non-planar triangles. All triangle are oriented so their surface normals
are calculated in the CCW direction. The constructed surface is guaranteed to be single-sheeted. All vertices
of the constructed surface belong to three planes: the top slice, the bottom slice, and the middle slice.

Fig. 7. An untiled region occurs at branching region. Shaded regions shoe the tiling triangles. (a) The thick contours are on the top

slice. (b) The branching region is untiled. (c) Perspective view of the constructed surface. The untiled region is covered by middle

triangles.

Fig. 8. An untiled region occurs at a dissimilar portion of a contour. Shaded regions show the tiling triangles. (a) The thick contour is

on the top slice. (b) The dissimilar portion is untiled. (c) Perspective view of the constructed surface. The untiled region is covered by

middle triangles.

Fig. 9. An untiled region occurs at an appearing/disappearing vertical feature. Shaded regions show the tiling triangles. (a) The thick

contours are on the top slice. (b) The inner top contour is untiled. (c) Perspective view of the constructed surface. The untiled region is

covered by middle triangles.

C.L. Bajaj et al. / Comput. Methods Appl. Mech. Engrg. 179 (1999) 31±52 37



3.2. Problem domain

The problem domain is the polyhedron bounded by the planar solid regions of both slices (the shaded
regions of Fig. 6) and the constructed surface (the non-planar triangles of Fig. 6) which is generated by our
surface construction algorithm. The constructed polyhedron can have through holes. It does not have any
internal void because of the single-sheeted surface criterion.

If a constructed polyhedron has no middle triangle, it is either a prismatoid or nested prismatoids. If it
contains any middle triangle, it is usually not a prismatoid because the vertices of the polyhedron are on
three planes (the top, bottom, and middle slices). It could still be a prismatoid in the case of disappearing/
appearing vertical features when there is no top or bottom contour so that all vertices are on two planes.

3.3. The reducing algorithm

If the constructed polyhedron contains at least one middle triangle, and the vertices of the polyhedron
are on three planes, then it is not a prismatoid. This subsection will describe an algorithm to reduce the
polyhedron into one or more prismatoids. The ideal is to cut tetrahedra from the polyhedron, so the re-
maining part is a prismatoid or can be divided into prismatoids. Of course, the dissected tetrahedra are part
of the generated mesh to ensure that the union of the tetrahedral elements equals the original polyhedron.

The reducing algorithm starts with cutting tetrahedra from the constructed polyhedron. If a CCW
middle triangle has any top vertex, we form a polyhedron using the middle triangle and the projections of
its middle vertices onto the bottom slice. Fig. 10 shows all possible polyhedra. This polyhedron is a tet-
rahedron if the middle triangle has only one middle vertex (Fig. 10(a) and (b)). If the middle triangle has
two middle vertices (Fig. 10(c)), the polyhedron can be divided into two tetrahedra by triangulating the
rectangle wvv0w0. The rectangle wvv0w0 is shared twice by two polyhedra at both sides. So the triangulation
of rectangle wvv0w0 must be consistent for both polyhedra. If a CW middle triangle has any bottom vertex,
we form a polyhedron using the middle triangle and the projections of its middle vertices onto the top slice.
We cut these tetrahedra from the constructed polyhedron. The remaining part is either a prismatoid or can
be divided into prismatoids by tracing all non-planar triangles. The correctness of this algorithm is proved
in Ref. [17].

3.4. The applicable conditions for use of the reducing algorithm

The algorithm for reducing the constructed polyhedron into prismatoids is based on the property that
the projection of a middle vertex onto the appropriate slice falls into a planar solid region. The single-
sheeted surface criterion of our surface construction algorithm is a su�cient, but not a necessary, condition

Fig. 10. If a CCW middle triangle contains any top vertex, there are three possible situations to cut a tetrahedron or a polyhedron

from the constructed polyhedron. w0 and v0 are the projections of the middle vertices w and v onto the bottom slice, respectively. Muvw
has (a) two top vertices and no bottom vertex, (b) one top vertex, one middle vertex w and one bottom vertex, or (c) one top vertex and

two middle vertices w and v.
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for this property. Our reducing algorithm is guaranteed to work on the results of our surface construction
algorithm. For any given surface, if the projection of a middle vertex does not fall into a planar solid region,
our reducing algorithm does not work. Fig. 11 shows three examples of polyhedra which cannot be reduced
by our reducing algorithm. However, our surface construction algorithm will not generate these types of
polyhedra. Fig. 12 shows three other similar, yet plausible, examples where the projection of any middle
vertex onto the proper slice falls inside a planar solid region.

4. Prismatoid tetrahedralization

Our problem domain is the polyhedron bounded by two planar solid regions and the surfaces con-
structed by our surface construction algorithm. If the polyhedron is not a prismatoid, the algorithm de-
scribed in the previous section divides it into one or more prismatoids. The triangulation of both the top
and bottom facets has been prede®ned (which are 2D constrained Delaunay triangulated). A prismatoid
with Steiner points is broken into prismatoids without Steiner points. All prismatoids are further broken
into small prismatoids of ten to twenty faces each. This section ®rst presents a brief sketch of our prism-
atoid tetrahedralization approach and then discusses the e�ort to characterize untetrahedralizable prism-
atoids and one protection rule. Finally, the classi®cation of untetrahedralizable shapes is described. The
prismatoid breakdown and detailed implementation of our approach are presented in Ref. [17]. The time
complexity is O�n2�. Here, n is the number of vertices.

4.1. Tetrahedralization approach

We de®ne more terms here in addition to those de®ned in Section 3.3.

De®nition 5. Boundary triangle: a planar triangle which contains two contour segments.

De®nition 6. Type 0 or type 1 triangle: A non-planar face of a prismatoid is either a type 0 or type 1 triangle
if it contains a top or bottom contour segment, respectively.

Fig. 11. Three examples which cannot be reduced into prismatoids by our algorithm because the projections of the middle vertices

onto the bottom slice do not fall inside a planar solid region (the shaded region).

Fig. 12. Our tiling algorithm can generate these examples, and thus they can be reduced into prismatoids by our reducing algorithm.
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De®nition 7. Convex or re¯ex edge: A line segment is convex if the two triangles sharing it form a convex
angle (6p). Otherwise, it is re¯ex.

The following outlines our algorithm to tetrahedralize a non-nested prismatoid without Steiner points.
The triangulation of the top and bottom faces has been de®ned.

Step 1: For each boundary triangle on both slices, we calculate its metric.
Step 2: We pick up the boundary triangle with the best metric and form one group of tetrahedra.
Step 3: We update the front and go to Step 1.

Fig. 13. Forming tetrahedra using non-boundary triangles often makes the remaining part untetrahedralizable. (a) Two tetrahedra

formed using non-boundary triangles u2u3u5 and v0v1v5. (b) The remaining part.

Fig. 14. There are di�erent ways to form tetrahedra associated with a boundary triangle Mu1u2u3.

Fig. 15. The weight factor. (a) and (c) show forming a tetrahedron, and (b) and (d) show the their remaining part, respectively. The

weight factor of (a) is smaller than 1 and that of (c) is larger than 1.
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Fig. 16. Our group operator can avoid generating an irregular remaining part. (a) It is untetrahedralizable by our group operator. (b)

The remaining part after forming one tetrahedron. (c) The remaining part after forming two tetrahedra.

Fig. 17. Untetrahedralizable shapes de®ned in Lemma 5: (a) re¯ex u2v2; (b) re¯ex u2v1.

Fig. 18. (a) A prismatoid in which u1v2 and u4v1 are re¯ex. Mu4u1v2 is protected. (b) No tetrahedra can be formed via our operator to

cut across Mu4u1v2. (c) The protection rule prohibits the generation of this untetrahedralizable remaining part because Mu4u1v2 is cut

across by u2v4.

C.L. Bajaj et al. / Comput. Methods Appl. Mech. Engrg. 179 (1999) 31±52 41



Fig. 19. Untetrahedralizable prismatoids which have two top boundary triangles and no bottom triangle: (a) the simplest case; (b) one

variation which has non-boundary triangles between two top boundary triangles; (c) if a tetrahedron is formed using a non-boundary

triangle (e.g. the shaded triangle in (b)), the remaining part becomes very irregular.

Fig. 20. The untetrahedralizable prismatoids have one bottom triangle. (a) the simplest form which is a Sch�onhardt prism; (b) and (c)

are two variations. (b) To be untetrahedralizable, the prismatoid must be irregular enough so that both u4v2 and u3v1 are partly outside

it. (c) None of u2v3, u4v1,u6v2, u3v3, u1v2, and u5v1 is totally inside the prismatoid.

Fig. 21. This shows the tetrahedralization of a solid which contains a one-to-many branching. (a) The thick contours are on the top

slice. (b) The reconstructed surface mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visualization.
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Fig. 22. This shows the tetrahedralization of a solid which contains a many-to-many branching. (a) The thick contours are on the top

slice. (b) The reconstructed surface mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visualization. (e) and (f) are

viewed from the bottom.

Fig. 23. This shows the tetrahedralization of a solid which contains a dissimilar region (the right bottom portion of the bottom

contour). The interior of the dissimilar region is solid. (a) The thick contour is on the top slice. (b) The reconstructed surface mesh. (c)

Tetrahedralization. (d) The tetrahedra are separated for better visualization.
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Step 4: If the remaining part is untetrahedralizable, we postprocess it.
The metric of a tetrahedron is based on its volume/(edge)3 ratio as de®ned by Lo [19]. A higher metric

value implies a better tetrahedron. We do not form tetrahedra by use of non-boundary triangles because the
remaining part might become very complicated as shown in Fig. 13.

Traditional AFT forms one tetrahedron at a time. The drawback is that the formation of a tetrahedron
could later cause the neighboring faces to form ill-shaped tetrahedra. Our approach alleviates this draw-
back. Our group operator forms one group of tetrahedra at a time and achieves optimal tetrahedralization
within the group.

De®nition 8. Group operator: an operator applies to a boundary triangle to form one group of tetrahedra
at a time. The requirements are described in the following paragraph.

Fig. 24. This shows the tetrahedralization of a solid containing a dissimilar region (the inner portion of the top contour). The interior

of the dissimilar region is void. (a) The thick contour is on the top slice. (b) The reconstructed surface mesh. (c) Tetrahedralization. (d)

The tetrahedra are separated for better visualization.

Fig. 25. This shows the tetrahedralization of a solid which contains an appearing/disappearing vertical feature of a solid interior. (a)

The contour is on the bottom slice, and it has no corresponding contour on the top slice. (b) The reconstructed surface mesh. (c) The

tetrahedra are separated for better visualization.
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The group operator applies to boundary triangles on both slices. We illustrate it using a top boundary
triangle Mu1u2u3 as shown in Fig. 14(a). There can be zero or more type 1 triangles between the two type 0
triangles Mu1u2v1 and Mu2u3vm. Here, m is one plus the number of type 1 triangles. There are m permutations
to form tetrahedra containing these triangles. Fig. 14(b)(c) show two examples. The formed tetrahedra must
neither cut across nor be outside the prismatoid, and they cannot violate the protection rule described in
Section 4.2. The decision of selecting which permutation is based on the average metric as well as the worst
metric of the generated tetrahedra. The metric of a boundary triangle is the average metric of the chosen
permutation.

The metric of a boundary triangle is further multiplied by a weight factor. The weight factor intends to
increase/decrease the metric of the boundary triangle which makes the remaining shape more regular/ir-
regular, respectively. Let u1, u2 and u3 be a boundary triangle as shown in Fig. 14. Let the signed distance h
between u2 and line u1u3 be positive. We ®nd the maximum distance d among the signed distances from vi,
i � 1 to m, to line u1u3. The weight factor w is computed as the following:

w �
2�1ÿ d=h� if d 6 0:5h;

1 if 0:5h < d < h;

h=d if d P h:

8><>:
The e�ect of the weight factor is illustrated in Fig. 15. Forming a tetrahedron shown in: (a) makes

Mu1v1u3 of the remaining part (b) to form a sharp angle between the bottom slice. So the metric of boundary
Mu1u2u3 in (a) is decreased by the weight factor which is smaller than 1. On the other hand, the remaining
shape (d) is more regular than (c) because Mu1u3v2 of (d) forms a less sharp angle with the top slice than that
of Mu2u3v2 or Mu1u2v2 in (c). So the weight factor is designed to be larger than unity.

Fig. 26. This shows the tetrahedralization of a solid which contains an appearing/disappearing vertical feature (the top inner contour)

of a void interior. (a) The thick contour is on the top slice. The top inner contour has no corresponding contour on the bottom slice. (b)

The reconstructed surface mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visualization.
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Fig. 27. This shows the tetrahedralization of a solid which contains a branching, a disimilar portion (the inner portion of the top right

contour), and an appearing/disappearing vertical feature (the inner contour at the left of the top slice). (a) The thick contours are on the

top slice. (b) The reconstructed surface mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visualization. (e) and

(f) are viewed from the bottom.

Fig. 28. This shows the processing of nested prismatoids. (a) The thick contours are on the top slice. (b) The reconstructed surface

mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visualization.
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The group operator can avoid generating an irregular remaining part. For the example in Fig. 16(a),
other methods can form tetrahedra, and the remaining parts are shown in Figs. 16(b) and (c) after forming
one and two tetrahedra, respectively. The remaining parts are very irregular. Our group operator will not
form additional tetrahedra, and it will leave Fig. 16(a) for postprocessing.

Step 2 is similar to the auxiliary test of Jin and Tanner [14]. It picks up the best tetrahedra group from
among the quali®ed groups.

4.2. Protection rule

O'Rourke [23] had posed the problem of determining the complexity of deciding whether a polyhedron is
tetrahedralizable without adding any Steiner points. Ruppert and Seidel [25] showed that this problem is
NP-complete. Although a prismatoid is a simpli®ed polyhedron, determining what factors contribute to an
untetrahedralizable prismatoid is still di�cult. Our e�ort is to characterize the prismatoids, which are
untetrahedralizable by our group operator and under certain constraints. The constraints should be strict
enough to let our analysis be tractable, and loose enough to contain a large set of cases to be useful. Al-
though we are unable to prove that a prismatoid, which cannot be tetrahedralized by our group operator,
cannot be completely tetrahedralized by other operators, we never meet or construct a counter example. We
present the following lemma to characterize a condition in which our group operator cannot form any
additional tetrahedra. The lemma applies to boundary triangles on both slices, although it is illustrated
using a top boundary triangle. The proof details are in Ref. [17].

Lemma 1. Suppose a top boundary triangle Mu1u2u3 is under the constraint that no more than one type 1
triangle is between the two type 0 triangles containing the contour segments u1u2 and u2u3 as shown in Fig. 17.
Furthermore, let the bottom vertices of the two type 0 triangles be v1 and v2. Our group operator cannot apply
to Mu1u2u3 to form a tetrahedra group if and only if all the following conditions are satisfied.

Fig. 29. This shows the processing of multiply nested prismatoid. (a) The thick contours are on the top slice. (b) The reconstructed

surface mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visualization.
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1. v1v2 is exactly one contour segment.
2. One of the slice chords u2v1 and u2v2 is reflex and the other is convex.
3. Both u1v2 and u3v1 are not inside the prismatoid.

Condition 2 of Lemma 1 can be derived from Condition 3. However, we state Condition 2 so it is easier
to visualize the untetrahedralizable shapes. Fig. 17 shows the only two possible shapes which satisfy
Lemma 1. They are mirror images of each other. Note that this lemma only applies to our group operator
which does not form a tetrahedron using Mu1u2u3 and a vertex other than v1 and v2.

We de®ne one protection rule based on Lemma 1 to reduce the chance of generating untetrahedralizable
remaining parts. The rule is that a new tetrahedron cannot satisfy condition 3 of Lemma 1 with respect to
any boundary triangle which satis®es conditions 1 and 2. For example, if one boundary triangle has the
shape of Fig. 17(a) and u1v2 is totally inside the prismatoid, it is tetrahedralizable. The rule states that any
proposed tetrahedron cannot cut across Mu1u2v2.

Fig. 18 illustrates the usage of the protection rule. We asume both u1v2 and u4v1 are re¯ex. Then Mu4u1u2

and Mv4v1v2 satisfy Conditions 1 and 2, but not 3, of Lemma 1. The protection rule states that Mu4u1v2 and
Mv1v2u4 cannot be cut across by any proposed tetrahedron. Thus, after forming tetrahedra associated
with boundary triangles Mu2u3u4 and Mv2v3v4, the remaining part is shown in Fig. 18(b). The un-
tetrahedralizable region, shown in Fig. 18(c) is prohibited because at least one of Mu4u1v2 and Mv1v2u4 is cut
across by u2v4.

Fig. 30. This shows the tetrahedralization of the solid region between two slices of a human tibia. The distance between slices is

enlarged 5 times. The reconstructed shape includes a branching and a appearing/disappearing vertical feature. (a) The thick contours

are on the top slice. (b) The reconstructed surface mesh. (c) Tetrahedralization. (d) The tetrahedra are separated for better visuali-

zation; (e) and (f) are viewed from the bottom.
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4.3. Classi®cation of untetrahedralizable prismatoids

From Lemma 1, we can classify two categories of untetrahedralizable prismatoids. There are other
categories. However, these two categories are common enough to contain all our experimental un-
tetrahedralizable prismatoids.

Lemma 1 characterizes the untetrahedralizable prismatoid in terms of a boundary triangle. If the top or
bottom face of a prismatoid is a single triangle, we treat it as three boundary triangles because any two of
the single triangle's three edges satisfy the boundary triangle de®nition. Therefore, if the top or bottom face
of a prismatoid is not of zero area, the face must contain at least two boundary triangles. We will classify
the simplest cases and their variations.

The ®rst untetrahedralizable category has two boundary triangles on the top face and one line segment
on the bottom face. Based on Lemma 1, each boundary triangle of an untetrahedralizable prismatoid re-
quires a type 1 triangle. So the bottom face of the simplest shape with two top boundary triangles is a line
segment which can provide two type 1 triangles. The simplest shape is illustrated in Fig. 19(a). Fig. 19(b)
shows one variation in which there are non-boundary triangles between two boundary triangles. No ad-
ditional tetrahedra can be formed by our operator. Although some tetrahedra could be formed using non-
boundary triangles, the remaining part (Fig. 19(c)) becomes very irregular. Our algorithm leaves Fig. 19(b),
rather than Fig. 19(c), for postprocessing.

The second category has one bottom triangle which is treated as three boundary triangles. Thus it re-
quires three type 0 triangles which can be provided by one top triangle. The simplest case, which is in
Fig. 20(a), is a Sch�onhardt prism. Figs. 20(b) and (c) show two variations.

Although Figs. 19(a) and 20(a) are isomorphic (Mv1u3u2 and Mv2u4u1 of Fig. 19(a) map to Mu1u2u3 and
Mv1v2v3 of Fig. 20(a), respectively), we consider them to be di�erent categories because their variations are
di�erent. Some other categories can be derived from Lemma 1; however, these seldom occur.

Fig. 31. A knee joint consisting of the lower femur, the upper tibia and ®bula and the patella: (a) Gouraud shaded; (b) the tetra-

hedralization.
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The untetrahedralizable part is postprocessed by forming tetrahedra using a Steiner point between two
slices as the apex and each face as the base. The Steiner point must be visible to all vertices. The classi®-
cation of untetrahedralizable parts helps in locating a quali®ed Steiner point. Suggestions to postprocess
the untetrahedralization parts are described in Ref. [17].

5. Results

From the analysis in Section 3.1, if the reconstructed polyhedron is not a prismatoid, it develops untiled
regions during the tiling process. Our reducing algorithm treats the constructed polyhedra in the same manner.
We do not classify the untiled regions as di�erent cases in our reducing algorithm. We present the results of
applying our uni®ed reducing algorithm to those polyhedra which develop di�erent kinds of untiled regions.

An untiled region corresponds to a branching region, a dissimilar portion, or an appearing/disappearing
vertical feature as described in Section 3.1. The cases of dissimilar portion and appearing/disappearing
vertical features have two situations: a void interior or a solid interior. The branching region does not form
an interior because it is similar to a saddle surface.

Figs. 21 and 22 show the cases of one-to-many branching and many-to-many branching. Figs. 23 and 24
show two examples of dissimilar contours with a solid interior and a void interior, respectively. Figs. 25 and
26 show two examples of appearing/disappearing vertical features with a solid interior and a void interior,
respectively. Fig. 27 shows a solid which contains all three cases. These ®gures verify the correctness of our
reducing algorithm.

As the results of our prismatoid tetrahedralization approach, Figs. 28 and 29 show single-nested and
multiply nested prismatoids. The 3D Delaunay triangulation without boundary conformation cannot
process Fig. 28. Our approach works ®ne in this situation. Fig. 31 shows a knee joint and its tetrahe-
dralization. Fig. 30 shows the tetrahedralization of two sample slices of the tibia. Fig. 32 shows a hip joint
and its tetrahedralization. Tables 1 and 2 detail the results. The CPU time is based on a SGI Indigo2
workstation with IMPACT graphics.

Fig. 32. A hip joint consisting of the upper femur and the pelvic joint: (a) Gouraud shaded; (b) the tetrahedralization.
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The protection rule described in 4.2 works very well to reduce the chance of generating un-
tetrahedralizable parts. When this rule is disabled, 15 untetrahedralizable remaining parts do occur during
the process of the knee and hip joints. We ®nd nine di�erent classes of Sch�onhardt prisms. Three are as
shown in 19(a). The others belong to the two classi®ed categories, but are not simple shapes. With the
protection rule enabled, we do not encounter any untetrahedralizable remaining parts in the tetrahedra
decomposition of the knee and hip joints.

6. Conclusion

We have presented a new approach to build a 3D triangular mesh from planar contours. There are two
main contributions in this paper. The ®rst contribution is the characterization, prevention, and postpro-
cessing of untetrahedralizable parts. The tetrahedralizability characterization of a general polyhedron is
shown to be NP-complete [25]. Under reasonable constraints on our degenerated problem domain, we
characterize this problem based on our group operator and develop one rule to reduce the chance of
generating untetrahedralizable remaining parts. The characterization also helps the postprocessing of un-
tetrahedralizable parts if they do occur. The second contribution is the algorithm to reduce a non-prism-
atoid into one or more prismatoids. This algorithm is guaranteed to work on the non-prismatoids generated
by our surface construction program.
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