
Scalable lsosurface Visualization of Massive Datasets on COTS* Clusters
Xiaoyu Zhangt Chandraj i t B aj aj t William Blanket

t Department of Computer Sciences and Center for Computational Visualization, TICAM
Department of Electrical and Computer Engineering

University of Texas at Austin
http://www.ticam.utexas.edu/CCV

Abstract

Our scalable isosurface visualization solution on a commodity off-
the-shelf cluster is an end-to-end parallel and progressive platform,
from the initial data access to the final display. In this paper we
focus on the back end scalability by introducing a fully parallel and
out-of-core isosurface extraction algorithm. 'It partitions the volume
data according to its workload spectrum for load balancing and cre-
ates an UO-optimal external interval tree to minimize the number
of U0 operations of loading large data from disk. It achieves scal-
ability by using both parallel processing and parallel disks. Inter-
active browsing of extracted isosurfaces is made possible by using
parallel isosurface extraction and rendering in conjunction with a
new specialized piece of image compositing hardware called the
Metabuffer. We also describe an isosurface compression scheme
that is efficient for isosurface processing.

CR Categories: L3.1 [Computer Graphics]: Hardware
Architecture-Parallel Processing; 1.3.8 [Computer Graphics]: Ap-
plications

Keywords: Parallel Rendering, Metabuffer, Multi-resolution, Pro-
gressive mesh, Parallel and Out-of-core Isocontouring

1 Introduction

Today tomographic imaging and computer simulations are increas-
ingly yielding massive datasets. Interactive and exploratory visual-
ization has rapidly become an indispensable tool to determine and
browse regions of interest within volumetric imaging data, and ver-
ify and validate the results of computer simulations. One paradigm
of exploratory visualization is to extract multiple 2-dimensional
surfaces satisfying w(x) =const from a given scalar field w(x),
2 E R3, and render it at interactive frame rate (30H.Z). This inter-
active and exploratory visualization technique s popularly known
as isocontour visualization.

Isocontour visualization for extremely large datasets poses chal-
lenging problems for both computation and rendering with guar-
anteed frame rates. First, large isosurfaces are to be extracted in

'Commodity off-the-shelf

0-7803-7223-9l01/$10.00 Copyright 2001 IEEE

time-critical manner from those large datasets, whose sizes are from
multi-gigabytes to terabytes. As the size of the input data increases,
isocontouring algorithms necessarily need to be executed out-of-
core and/or on parallel machines for both efficiency and data acces-
sibility. Second, the interactive aspect of the isocontour visualiza-
tion demands that the scene is rendered quickly in order to provide
responsive feedback to the user. In some cases, the detail allowed
by a single high performance monitor may not be adequate for the
resolution required. An even more common problem is that the
dataset itself may be too large to store and render on a single ma-
chine. Third, the extracted isosurface may need to be transmitted
from the computational servers to the rendering servers via the net-
work, if the computational and rendering servers do not coexist on
the same machines. It may also need to be saved on disk for future
studies. Compact representation of the isosurfaces should be used
in order to meet the time limit of data transmission and save disk
space.
Related Work: Hansen and Hinker describe parallel methods
for isosurface extraction on SIMD machines [17]. Ellsiepen de-
scribes a parallel isosurfacing method for FEM data by dynami-
cally distributing working blocks to a number of connected work-
stations [13]. Shen, Hansen, Livnat and Johnson implement a par-
allel algorithm by partitioning load in the span space [28]. Parker
et al. present a parallel isosurface rendering algorithm using ray
tracing [24]. Chiang and Silva give an implementation of out-of-
core isocontouring using the U 0 optimal external interval tree on a
single processor [8,9]. Bajaj et al. use range partition to reduce the
size of data that are loaded for given isocontour queries and balance
the load within a range partition [3]. In this paper, we propose and
implement a parallel and out-of-core isocontouring algorithm using
parallel processors and parallel YO, which would be fully scalable
to arbitrarily large datasets.

Many research groups have recently studied the problem of
using fast improving PC graphics cards ,for parallel rendering
[12,18,20,26,27]. Schneider analyzes the suitability of PCs for par-
allel rendering for four parallel polygon rendering scenarios: ren-
dering of single and multiple frames on symmetric multiprocessors
and clusters [27]: Samanta et al. discuss various load balancing
schemes for a multi-projector rendering system driven by multiple
PCs [26]. Heirich and Moll demonstrate how to build a scalable
image composition system using off-the-shelf components [18]. In
general, most parallel rendering methods can be classified based on
where data is sorted from object-space to image-space [22].

In the sort-first approach, the display space is broken into a num-
ber of non-overlapping display regions, which can vary in size
and shape. Sort-first methods may suffer from load imbalance in
both the geometric processing and rasterization if polygons are not
evenly distributed across the screen partitions, because polygons
are assigned to the rendering process before geometric processing.
The Princeton University SHRIMP project [26] uses the sort-first
approach to balance the load of multiple PC graphical worksta-
tions. The sort-middle approach distributes transformed primitives

51

http://www.ticam.utexas.edu/CCV

instead of polygons to the graphics pipes responsible for the screen
partitions.

The sort-last approach is also known as image composition.
Each rendering process performs both geometric processing and
rasterization independent of all other rendering processes. Local
images rendered on the rendering processes are composited to-
gether to form the final image. The sort-last method makes the
load balancing problem easier since screen space constraints are
removed. However, compositing hardware is needed to combine
the output of the various processors into a single correct picture.
Such approaches have been used since the 60’s in single-display
systems 115,231, and more recent work includes [14,18].

Parallel &

Extractlon &
Rsnderlng

Figure 1: A schematic drawing showing the three stages of scalable
isosurface visualization pipeline.

Our solution to the image compositing problem is the
Metabuffer, whose architecture is shown in figure 3. This is a sort-
last multi-display image compositing system with several unique
features such as multi-resolution and antialiasing [6]. A very simi-
lar project, though currently without stressing multi-resolution sup-
port, exists at Stanford University and is called Lightening-2 [19].
The Metabuffer hardware supports a scalable number of PCs and
an independently scalable number of displays-there is no a priori
correspondence between the number of renderers and the number
of displays to be used. It also allows any renderer to be responsible
for any axis-aligned rectangular viewport within the global display
space at each frame. Such viewports can be modified on a frame-
by-frame basis, can overlap the boundaries of display tiles and each
other arbitrarily, and can vary in size up to the size of the global dis-
play space. Thus each machine in the network is given equal access
to all parts of the display space, and the overall screen is treated as a
uniform display space, that is, as though it were driven via a single,
large framebuffer, hence the name Metabuffer.

While compression is important for handling large datasets, one
possible approach to the isosurface compression problem is to first
extract the isosurface into triangular meshes and then apply to it
one of the surface compression algorithms [4, 10, 11, 16,29,30].
Although it is conceptually simple, this method has several disad-
vantages. First the rendering servers have to wait until the compu-
tational servers finish both isosurface extraction and compression.
The compression of the surface often takes a very long time, espe-
cially true for the very large surfaces extracted from large datasets,
which contradicts the goal of using compression for real-time ren-
dering. Furthermore, isosurfaces have the property that each vertex
is an intersection point with one unique edge of the 3D volume. An
algorithm designed specifically for an isosurface may get a better
compression ratio. In this paper we describe an index and function
value encoding scheme that compresses the isosurface and allows
streaming the compressed data to the rendering servers incremen-
tally either during the surface extraction or from cache on disk. We
also show the method achieves a better compression ratio than some
general purpose surface compression algorithms.
Main Results: With all three aforementioned techniques com-
bined, parallel and out-of-core computation, parallel rendering and
compression, it is possible to obtain a fully scalable system for
interactive isosurface visualization across multiple isovalues and
from different viewpoints. In this paper we focus on the back end
parallel and out-of-core isosurface extraction, leaving the details of
progressive image composition using the Metabuffer and its per-
formance results to a separate paper [6]. The rest of our paper is

organized as follows: Section 2 briefly describes the architecture
of our framework for scalable isosurface visualization. Section 3
gives the details of our parallel and out-of-core isocontouring algo-
rithm. Section 3.2 provides the detail of our isosurface compression
method and compares its results to that of another surface compres-
sion algorithm. Section 4 gives the performance of our parallel
implementation on a COTS cluster.

2 Framework

Cluster

Figure 2: Our system architecture for scalable isosurface visualiza-
tion. The parallel back-side accomplishes progressive surface ex-
traction and rendering while the parallel front-side composites and
displays progressively.

2.1 Pipelined Stages
We can think of the process of scalable time-critical isosurface visu-
alization of massive data as a parallel and progressive stream from
back to front as shown in figure 1. Triangle streams are generated
by the back-end nodes by progressively extracting the isosurfaces.
The triangle stream from the extraction node will be rendered by
the middle parallel rendering servers. All rendered images will
then be composited by the Metabuffer to display on a multi-tiled
screen. The process of compositing images from multiple rendering
servers to multiple displays using the Metabuffer is called parallel
image composition. Given the required frame rate, the refresh time
between two frames needs to be shared among these three stages:
triangle extraction, rendering and image composition. While the
image composition time taken by the Metabuffer is constant, how
much external time left in the frame interval determines what reso-
lution of triangles will be extracted and rendered.

2.2 Hierarchical Volumetric Data
Due to the large size of the massive dataset, it is extremely time-
consuming or even impossible to do isosurface extraction on a sin-
gle processor. In order to scale to very large datasets, we use a
computational back end consisting of both parallel processors and
parallel disks. Large datasets are partitioned among the parallel
processors in a load-balanced way and stored hierarchically on disk
for efficient I/O access. The hierarchical volume data can be stored
on disk in compressed form [5]. Figure 2 illustrates the parallel end
to end framework for scalable isosurface visualization on a com-
modity off-the-shelf cluster. The parallel back-side provides multi-
resolution isosurfaces extracted from the volume dataset to satisfy
the time limit. This stage is governed by the parallel and progressive
triangle extraction algorithms. We will describe in detail our par-
allel triangle extraction algorithms in section 3.1. Producing multi-
resolution representation of the data at the back-side is essential for
the time critical rendering of massive data. When the user changes

52

viewing parameters frequently, coarser representations of the data
are rendered in order to give the user responsive feedback. Only
when the user chooses a certain viewing position and some inter-
esting isovalue, are the details of the progressive mesh or isocon-
tour streamed for rendering in order to produce higher resolution
image. To reduce the time of data transmission over the network,
the extracted mesh may be communicated to rendering servers in
compressed format. Although the rendering servers might be on
the same set of machines as the triangle extraction processes, the
progressive triangle mesh extraction processes can in general scale
independently of the number of parallel rendering servers.

2.3 The Metabuffer

One novel feature of the framework is the parallel rendering and
image composition system that is able to render the given scene
in the least latency. The parallel front-side is built around the
Metabuffer 161, which is custom hardware built from commodity
PC components. The Metabuffer hardware provides several unique
advantages to assist in rendering large surface in parallel, such as
arbitrarily located and overlapped viewports and multi-resolution.
Each rendering server in figure 2 is mapped to a viewport on the
screen space. A very important problem in the parallel rendering
is how to position those viewports and partition the mesh such that
each rendering server has approximately an equal amount of work.

The Metabuffer allows the number of rendering servers to scale
independently from the the number of display tiles. Since the
Metabuffer allows the viewports to be located anywhere within the
total display space and overlap each other, it is possible to achieve
a much higher degree of load balancing. Since the viewports can
vary in size, the system supports multi-resolution rendering, for in-
stance allowing a single machine to render a background at low
resolution while other machines render foreground objects at much
higher resolution.

PC Workstatlons Meta-Buffer

1

1

Display

Figure 3: Our Metabuffer architecture, where A represents a ren-
dering engine, B is an on-board frame buffer, and C represents a
composing unit.

Given the progressivity from the triangle extraction stage to final
image composition stage in our framework and the fact that each
stage is fully parallelizable, we can achieve a truly scalable render-
ing of large isosurfaces.

3 Parallel Algorithms
In this section we will discuss in more detail the parallel and out-
of-core iswontouring algorithm and the isosurface compression al-
gorithm mentioned in section 2 that enables the framework for seal:
able time-critical visualization of massive datasets. First we discuss
the scalable algorithm of extracting progressive isosurfaces from
large volume datasets.

3.1 Scalable lsosurface Extraction

A scalable data analysis and visualization application must take
data processing, YO, network and rendering all into consideration.
Specifically for the isocontour extraction of large volume data, it
should have load balanced parallel computation for fast surface ex-
traction, out-o€-core computation to scale to datasets bigger than the
size of total main memory, and parallel U0 to avoid the bottleneck
of accessing massive data on disk.

We can model such a system that combines parallel processing
and parallel disk access with a model called the BSP-Disk model
[25]. The BSP-Disk model consists of P interconnected proces-
sors, each of which may have a local memory and disk. The BSP-
Disk model combines the features of the BSP parallel computation
model [31] and the PDM [32] parallel disk model. It is a distributed
memory parallel computation model, while each processor can ac-
cess its local disk in parallel. The BSP-Disk model very closely
describes the characteristics of a PC cluster, where each node has
its own CPU, local memory and local disk. The parameters of the
BSP-Disk model are as follows:

N : Total number of atomic units of the problem.

A4 : Total number of atomic units that can fit in the one pro-
cessor's main memory.

P : Number of processors.

D : Number of Disks.

B : Number of atomic units that fits in one disk block.

A : Time to read or write one disk block on the local disk.

L : minimal synchronization time of the BSP model.

g : gap parameter of the BSP model which characterizes the
communication bandwidth.

In the case of large datasets, we have the design conditions
N > P . M and M >> B. In contrast to the PDM model where a
single processor has equal access to all parallel disks, the disks in
the BSP-Disk model are associated to different processors as their
local disks. One very important example is that every processor has
one associated local disk (P = D), as for the case of a PC cluster.
More generally 5 processors can be assigned to every disk. Extra
communication time is required when one processor needs to ac-
cess the data on a remote disk. In the BSP-Disk model one disk
block can be loaded from every disk into memory in one parallel
U0 because each disk can be accessed independently. Thus up to
D disk blocks can be read into main memory in one parallel UO. In
other words, the data access time is shared among the D disks.

The algorithms designed for the BSP-Disk model would con-
sider all three parts of the time for a real parallel and out-of-core
algorithm, local computation, local disk U 0 and communication.
Therefore the time of the isosurface extraction can be written as
T = maxp(T, + Ti, + T,), where T, is the time for local com-
putation, Ti, is the time for local disk access and T, is the time
for communication. T, and T, are to be measured using the BSP

53

model and Ti, is measured as A x Nd, where Nd is the number
of parallel U0 operations. The objective of our isocontouring algo-
rithm for large datasets is to speedup the computation by distribut-
ing the load to multiple processors, minimize the number of parallel
YOs, and minimize inter-processor communication (such as the re-
mote disk accesses). These factors do not always play together for
each other. We must make tradeoffs according to the real system
parameters. To minimize the number of parallel YO’S, we need to
load only those portions of dataset that contribute to the final re-
sult, and distribute data to the disks such that data is loaded evenly
from the D local disks. Minimizing the local computation time re-
quires good load balance among the processors. Finally minimizing
communication means minimal data redistribution and remote data
access during computation. We choose the approach of static data
partitioning that minimizes the communication during isocontour
extraction because data communication is currently the least scal-
able factor when data size gets larger and new processors and disks
can be easily added. The methods of allowing processors to dynam-
ically steal data or work from remote disks are for future study.

In order to achieve good performance for a static workload allo-
cation method for parallel computation, data must be partitioned
carefully such that each processor has approximately the same
amount of work. Furthermore data must be distributed among the
D disks such that the number of parallel U 0 is minimal. Fortu-
nately the work load of isocontouring computation on a processor
is proportional to the size of data it loads from its local disk. We use
a data partition method similar to that in [3] to distribute the data
according the contour spectrum [2] . The contour spectrum pro-
vides a work load histogram for different isovalue queries. We use
the number of triangles in the isosurface as the Y axis of the con-
tour spectrum. In the ideal data partition, each processor does the
same amount of work for every value of the parameter w. While [3]
tries to break data into range partitions that can each fit into main
memory, we here partition the whole range of data according to the
workload histogram. The partitioning of the whole range avoids the
problem of data duplication among different range partitions. After
data is partitioned, an YO-optimal interval tree [I] is built as index
structure for the data on each disk in a way similar to [9]. The exter-
nal memory interval tree has optimal O(log N + K) U 0 operations
for stabbing queries, where K is the number of active cells.

Cell is the minimum unit of the volume dataset. Function val-
ues are defined on the vertices of the cells and usually tri-linearly
interpolated inside cell. Ideally we can use the granularity of cell
for the data partition and build the external interval tree for all the
cells. However as shown in [9], it is very storage inefficient to build
an external index data structure using the unit of cell because of the
high overhead of data duplication among cells. Instead we use the
atomic unit of block, which is usually a 3 0 rectangular slab of ad-
jacent cells. Although some extra cells maybe be loaded because
of the larger granularity, block provides the possibility of tradeoff
between disk space and YO efficiency. In our implementation, we
choose the size of block as the disk block size such that one block
can be loaded in one YO operation. Since we use a block as the unit
of data partition and accessing, it is possible to extract isosurface
progressively at different resolution to give user the basic shape of
the surface with minimum delay. Figure 4 shows an isosurface (iso-
value 1200) of the Male MRI data is extracted and rendered at three
different resolutions.

At the first stage of our algorithm, we partition the data among
multiple computational nodes and build the external interval tree as
the index structure for the blocks on each disk. Here we have as-
sumed each node has one processor and associated local disk. The
parallel and out-of-core isocontouring algorithm consists of follow-
ing steps.

1. Break the data into blocks. At the start of the data distribu-
tion, there is an initial distribution of data among those disks,

which is not load balanced for isosurface query. For exam-
ple, we can just break the big volume into slabs and each disk
contains one slab of the data. First we divide the dataset into
blocks, each of which is in the same order of the disk block
size. With each block, we store all the information for doing
isocontour extraction on the block, including the function val-
ues of all vertices of the block and the geometric information
such as the dimensions, the origin and the span of the block.
We also store the range interval of the block explicitly. We
construct a triangular matrix in range space to help the data
partition. One axis of the matrix represents the entire range
of function values which is divided into a specified number
of buckets. The second axis is the number of buckets that
the range of a block spans. The minimum function value of
a block and the number of buckets spanned by its range de-
termine which matrix elements it belongs to. For instance, if
a block has range [z, y] and the bucket interval size is a, the
block would belong to the [[-I, [VI] matrix ele-
ment. Thus blocks falling into the same matrix element have
similar span in the range space. We categorize the blocks ac-
cording to which range space triangular matrix element it falls
into.

2. Redistribution of data blocks. The blocks falling into the
same matrix element are then assigned equally to the pro-
cessors. This process is repeated for all the matrix elements.
At the beginning of redistribution, the processors broadcast to
each other the number of blocks in the matrix element and the
statistical information about the blocks. Then each proces-
sor run the same algorithm to determine to which processors
it needs to send blocks and from which processors it will re-
ceive blocks. Here first we try to make each processor have
the same number of blocks of the matrix element. Further
consideration is given to minimize the number of blocks to be
communicated.

3. Build External Interval Tree as the search data structure.
During the redistribution of blocks, every block assigned to
one processor is given a unique ID and added to a single file
that contains all the blocks assigned to the processor. Every
block is stored from the disk block boundary and its location
is easily decided from its ID. While the block is written to the
block file, its range interval associated with its ID is stored in
an interval file, which will be used to build the index structure
to the data blocks. Since even the index structure may not
fit into the main memory while the data size gets larger, we
choose the external interval tree [1,8] for the full scalability
of our algorithm.

4. Isocontour Query Processing. For an isovalue query, we first
search the external interval tree to find all blocks whose range
intersects the isovalue. Such stabbing query on external inter-
val tree is simple and U0 optimal [I]. The isosurface is then
extracted from those intersected blocks. The surface can be
extracted in compressed format, as we describe later. To give
the user quick response, the extracted surface is streamed to
the parallel rendering servers which may reside on the same
machine. The rendered images from the parallel rendering
engines are then composed by the Metabuffer. Since we use
the block as the atomic unit of data distribution and accessing,
the surface can be extracted at different resolution to meet the
different time requirement. The user can get a quick view of
the shape of the isosurface before he can pick an interesting
isovalue and study it in more detail.

This algorithm provides a load balanced and fully out-of-core
method for isocontour extraction, which would be scalable to arbi-

54

Figure 4: An isosurface for the Male MRI data (isovalue = 1200) is progressively extracted and rendered at different resolutions and from
*various viewpoints. The leftmost isosurface has 24,084 triangles; the center isosurface has 651,234 triangles, and the rightmost isosurface
has 6,442,810 triangles.

trary large dataset. The extracted surface are rendered by the paral-
lel rendering servers and finally composited by the Metabuffer. The
surface extraction process and rending process can be run in paral-
lel. Figure 5 shows one isosurface extracted and rendered by eight
processors. Since we have used the diagram of triangle numbers
to determine the partition of dataset, each processor will generate
approximately equal number of triangles and balance the load of
rendering.

e#-
+-: Y *w

F i v .:' . .

Figure 5: Individual portions of an isosurface (isovalue = 800) ex-
tracted from the visible male MRI data with eight computing pro-
cessors and rendered by eight rendering servers. The full resolution
isosurface has 9,128,798 triangles.

3.2 isosurface Compression
The isosurfaces extracted on the computational servers need to
be rendered by the rendering servers and composited by the
Metabuffer. The computational processes and rendering processes
might not be present on the same machines. Therefore isosurfaces
need to be transmitted from the back-end to rendering processes via
the network. Furthermore we need to save and cache those large
isosurfaces extracted from large dataset to examine them from dif-
ferent viewing directions. Compact representation of the isosurface
should be used in the transmission in order to meet the time limit.
We employ a method of edge index encoding to compress the iso-
surface. Given the function values at its 8 vertices greater or less
than the isovalue p, a cell has its inside isosurface topology de-
termined as one of the 2' = 256 possible configurations, which
can be further reduced according to rotational symmetry and vertex
complement [21]. We can easily derive what edges of a cell are
intersected by the isosurface from its index and configuration. A
cell intersected by the isosurface is called a valid cell. Given func-

tion values on the two endpoints of the intersected edge, the point
on this edge intersected by the isosurface can be computed. A ver-
tex that is one end point of an edge intersected by the isosurface is
called a relevant vertex. Hence the representation of the isosurface
can be reduced as encoding the configurations of valid cells and the
function values on the relevant vertices. We further notice that a
cell configuration can be determined if we know which vertices of
its 8 corners are relevant vertices. Therefore all necessary informa-
tion for reconstructing the isosurface is known: the relevant vertices
and valid cells, and the function values on the relevant vertices. The
steps of the edge index compression algorithm are:

1. For every vertex on a slice, we set a bit T = 1 if i t is a relevant
vertex, T = 0 otherwise. Similarly for each cell in a layer
between two slices, we set a bit i = 1 if it is a valid cell,
i = 0 otherwise.

2. Encode the vertex bitmap of a slice using an entropy encoding
method, such as adaptive run-length coder [7] or arithmetic
coder [33].

3. Encode the function values of the relevant vertices on the slice
using the second-order difference of their quantized values.

4. Encode the cell bitmap of a layer similarly.

5. Repeat upper steps until there are no more slices and layers.

Table 1: Comparison of compressed isosurface sizes in bytes using
edge index coding with a general surface compression algorithm.
The general compression algorithm uses 8 bits for each coordinate
per vertex. For unsigned short and char data type, we encode them
directly using the predictive coder. Float values are normalized and
quantized using 32 bits for the first point and 14 bits for difference.

This method has yielded a very good compression ratio to iso-
surface of regular 3D mesh compared to the general purpose trian-
gular surface compression algorithms as shown in table 1, where
the general algorithm is that of [4]. Furthermore, the edge index

55

I ' , I

Numbor 01 procossors
0 I 0 ~ a o p s s J a s

Name
Male MRI

Male cryosection
Female crvosection

Figure 6: Speedup of isosurface extraction and rendering for two
isovalues (800 and 1200) compared to the ideal case. The data used
is the Visible Male MRI data .

Dimension Size
512 x 512 x 1252

1800 x 1000 x 1878
1600 x 1000 x 5186

656MB
6.6GB
16.5GB

method has the advantage of incremental encoding and decoding
because two slices and one layer are necessary in main memory at
any time for the encoding and decoding processes. Thus both the
compression and decompression of the isosurface using edge index
encoding need only a small amount of main memory and the re-
construction of the surface can start far before the whole surface
transmission is finished. Furthermore the encoding of indices and
function values is done during isosurface extraction, such that no
expensive post-extraction compression process is necessary.

Table 2: The sizes of our test imaging datasets.

to more than 16GB, are all from the visible human project of the
National Library of Medicine. Each of those datasets is too large for
a single PC to handle in its main memory. While all those datasets
are from medical imaging, our algorithm can be certainly applied to
other types of data, for example those from large scale simulation.

The first test data is the Male MRI dataset. The surface extracted
on one machine is rendered by the same machine and the images are
then composited according their z values. Every rendering server in
this configuration has the viewport of the whole display space. In

this configuration every rendering server renders at the same reso-
lution. We measure its isosurface extraction and rendering time by
using from one processor to 32 processors. Being able to run effi-
ciently on a single processor demonstrates the out-of-core property
of our method. Figure 6 shows the speedup of isosurface extraction
and rendering for two typical isovalues 800 and 1200, correspond-
ing to the skin and bone respectively, for the MRI dataset. Figure 7
shows the actual time of each processor for the isovalue 800 with a
different number of processors.

Figure 7: Individual processor time for extracting and rendering an
isosurface (isovalue = 800) from the Male MRI data with 1, 8, 16
and 32 processors.

The slopes of the two speedup curves are very similar, which
demonstrates the the isocontour extraction algorithm applies
equally well to different isovalues.

The contour spectrums of data partitioning for the cases of 8,16
and 32 processors are shown in figure 8. The first row of figures
show the diagrams of the triangle numbers extracted by each pro-
cessor for the range of isovalue from 0 to 1900, where the curves of
the real experimental result in solid thin lines are compared to the
ideal case in thick dashed line. The second row of figures are the
actual surface extraction and rendering time for the whole range of
isovalues. The similarity of the two set of curves justifies our use
of the spectrum of triangle numbers as the work load diagram.

Figure 9: Isosurface extraction and rendering time for the Visible
Male cryosection and Female cryosection data at two different iso-
values(13000 and 29000).

We also test our implementation on the much larger Male
cryosection and Female cryosection datasets. We start at partition-
ing the Male cryosection data into 8 pieces and the Female cryosec-
tion data into 16 pieces, because of the 2GB file size limit of Linux.
Figure 9 shows the time of isosurface extraction and rendering for
the two datasets for two different isovalues 13000 and 29000. It
gives very good speedup when the number of processors and disks

56

(a) Triangle distribution for 8 processors (b) Triangle distribution for 16 processors (c) Triangle distribution for 32 processors

I I

(d) Isosurface extraction and rendering
time for 8 processors

(e) Isosurface extraction and rendering
time for 16 processors

(0 Isosurface extraction and rendering
time for 32 processors

Figure 8: The histogram of triangle distribution and isosurface extraction and rendering time for the data partitioning of the Male MRI data,
where the thick dashed lines represent the averaged ideal case.

increases. The sharp drop of computational time from 8 processors
to 16 processors for the Male cryosection data and from 16 pro-
cessors to 32 processors for the Female cryosection data is due to
better operating system disk cache performance for the smaller par-
titions. A very large isosurface (487,635,342 triangles) extracted
from the Female cryosection data is shown in Figure 10. While the
surface is noisy due to the dataset, it demonstrates the scalability of
our system to very large data and very large surface.

5 Conclusion and Future Work
In this paper we propose a scalable time-critical rendering frame-
work of massive datastreams based around the Metabuffer image
composition hardware.The time-critical rendering process can be
thought of as a chain from parallel and progressive mesh genera-
tion, parallel rendering to parallel image composition. We describe
in detail a scalable isocontouring algorithm by taking advantage of
the parallel processors and parallel disks. It partitions the volume
data according to its workload spectrum for load balancing and cre-
ates an I/O-optimal external interval tree to minimize the number
of I/O operations of loading large data from disk.

There are improvements necessary for real interactivity for very
large datasets. There are also the remaining problems of introduc-
ing dynamic load balancing by replicating some data on different
disks and accessing data from remote disks at runtime. It is an in-
teresting problem to see how much improvement we can achieve by
choosing the right replication factor and data distribution.

Acknowledgments: This research is supported in part by grants
ACI-9982297, DMS-9873326 from the National Science Founda-
tion, a DOE-ASCI grant BD4485-MOID from Sandia National
Laboratory, Lawrence Livermore National Laboratory, from grant
UCSD 1018140 as part of the National Partnership for Advanced

Figure 10: Two views of an isosurface(isovalue = 29000) extracted
and rendered from the full resolution Visible Female cryosection
data. The isosurface contains 487,635,342 triangles

57

Computational Infrastructure, a grant BD 781 from the Texas Board
of Higher Education, and a gift and cluster support from Compaq
Computer Corporation.

References
[l] ARGE, L., A N D VITTER, J. S . Optimal interval management

in external memory. In Proc. IEEE Foundations of Computer
Science (1996), pp. 560-569.

[2] BAJAJ, C., PAscuCCI, V., AND SCHIKORE, D. The con-
tour spectrum. In Proceedings of the 1997 IEEE Visualization
Conference (October 1997).

[3] BAJAJ, c . , PASCUCCI, v., THOMPSON, D., AND ZHANG,
X. Parallel acclerated isocontouring for out-of-core visual-
ization. In Proceedings of IEEE Parallel Visualization and
Graphics Symposium (October 1999), pp. 97-104.

141 BAJAJ, c . , PASCUCCI, v., AND ZHUANG, G. Single resolu-
tion compression of arbitrary triangular meshes with prop er-
ties. In IEEE Data Compression Conference (1999), pp. 247-
256.

[5] BAJAJ, c . , AND ZHANG, x. Streaming compressed surfaces
extracted from compressed volumes. Tech. rep., University of
Texas at Austin, 2000.

[6] BLANKE, w. J., FUSSELL, D. s., BAJAJ, C., AND ZHANG,
X . The metabuffer: A scalable multiresolution multidis-
play 3-d graphics system using commodity rendering engines.
Tr2000-16, University of Texas at Austin, February 2000.

[7] BOTTOU, L., HOWARD, P., AND BENGIO, Y. The z-coder
adaptive binary coder. In Proceedings of IEEE Data Com-
pression Conference DCC'98 (March 1998), pp. 13-22.

optimal isosurface ex-
traction. In IEEE Visualization 97 (Nov. 1997), R. Yagel and
H. Hagen, Eds., IEEE, pp. 293-300.

[9] CHIANG, Y.-J., SILVA, c. T., AND SCHROEDER, W. J. In-
teractive out-of-core isosurface extraction. In Proceedings of
the 9th Annual IEEE Conference on Visualization (VIS-98)
(Oct. 18-23 1998), ACM Press, pp. 167-174.

[lo] CHOW, M. M. Optimized geometry compression for real-
. time rendering. In Proceedings of IEEE Visualization '97

1111 DEERING, M. Geometry compression. Computer Graphics

[8] CHIANG, Y., AND SILVA, c. T:

(Phoenix, 1997), pp. 347-354.

(SIGGRAPH 95 Proceedings) (1995), 13-20.

Pomegranate: A fully scalable graphics architecture. Com-
puter Graphics (SIGGRAPH 2000 Proceedings) (2000), 443-
454.

Parallel isosurfacing in large unstructed
datasets. In Visualization in Scient& Computing (1995).
Springer-Verlag. pp. 9-23.

[141 EYLES, J . , MOLNAR, S . , POULTON, J . , GREER, T., LAS-
TRA, A., ENGLAND, N., A N D WESTOVER, L. Pixelflow:
The realization. In Proceedings of the SiggrapfdEurographics
Workshop on Graphics Hardware (August 1997). pp. 57-68.

[15] FUSSELL, D. S. , AND RATHI, B. D. A vlsi-oriented archi-
tecture for real-time raster display of shaded polygons. In
Graphics Interface '82 (May 1982).

1121 ELDRIDGE, M., IGEHY, H., AND HANRAHAN, P.

1131 ELLSIEPEN, P.

161 GUEZIEC, A., TAUBIN, G., LAZARUS, F., AND HORN, W.
Cutting and stitching: Efficient conversion of a non-manifold
polygonal surface to a manifold. Tech. Rep. RC-20935, IBM
T.J. Watson Research Center, 1997.

171 HANSEN, c . , AND HINKER, P. Massively parallel isosurface
extraction. In Visualization '92 (September 1992).

181 HEIRICH, A., AND MOLL, L. Scalable distributed visualiza-
tion using off-the-shelf components. In Parallel Visualization
and Graphics Symposium - 1999 (San Francisco, California,
October 1999), J. Ahrens, A. Chalmers, and H.-W. Shen, Eds.

RAHAN, P. Distributed rendering for scalable displays. In
Proceedings of Supercomputing 2000 (October 2000).

[20] HUMPHREYS, G., AND HANRAHAN, P. A distributed graph-
ics system for large tiled displays. In Proceedings of IEEE
Visualization Conference (1999), pp. 215-223.

1211 LORENSEN, W., A N D CLINE, H. Marching cubes: A
high resolution 3d surface construction algorithm. Computer
Gruphics 21,4 (July 1987), 163-169.

A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 1 4 , 4 (July 1994).

[23] MOLNAR, S . E. Image composition architectures for real-
time image generation. Ph.d. dissertation, technical report
tr91-046, University of North Carolina, 1991.

SLOAN, P. Interactive ray tracing for isosurface rendering. In
Visualization '98 (October 1998).

1253 RAMACHANDRAN, V. Personal communication, November
1999.

I261 SAMANTA, R., ZHENG, J., FUNKHOUSER, T., LI, K. , AND
SINGH, J. P. Load balancing for multi-projector rendering
systems. In SIGGRAPH/Eurographics Workshop on Graphics
Hardware (August 1999).

1271 SCHNEIDER, B.-0. Parallel rendering on pc workstations. In
Parallel and Distributed Processing Techniques and Applica-
tions (July 1998), pp. 1281-1288.

1281 SHEN, H., HANSEN, C., LIVNAT, Y., AND JOHNSON, C.
Isosurfacing in span space with utmost efficiency (issue). In
Visualization '96 (1996), pp. 287-294.

1291 TAUBIN, G., AND ROSSIGNAC, J. Geometric compression
through topological surgery. ACM Trans. Gr. 17, 2 (1996),
84-1 15.

[30] TOUMA, c . , AND GOTSMAN, c. Triangle mesh compres-
sion. In Proceedings of the 24th Conference on Graphics In-
terface (GI-98) (1998), W. Davis, K. Booth, and A. Fourier,
Eds., Morgan Kaufmann Publishers, pp. 26-34.

1311 VALIANT, L. G. A bridging model for parallel computation.
Communications of the ACM 33 (September 1990), 103-111.

[32] VITTER, J. S. External memory algorithms and data struc-
ture. In DIMACS Series in Discrete Mathematics and Theo-
retical Cornputer S cience (1999).

1331 WITTEN, I., NEAL, R., A N D CLEARY, J. Arithmetic coding
for data compression. Commun. ACM 30 (June 1987), 520-
540.

[19] HUMPHREYS, G., BUCK, I . , ELDRIDGE, M., A N D HAN-

[22] MOLNAR, s., COX, M., ELLSWORTH, D., AND FUCHS, H.

[24] PARKER, s., SHIRLEY, P., LIVNAT, Y., HANSEN, c . , AND

58

