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Abstract 

Our scalable isosurface visualization solution on a commodity off- 
the-shelf cluster is an end-to-end parallel and progressive platform, 
from the initial data access to the final display. In this paper we 
focus on the back end scalability by introducing a fully parallel and 
out-of-core isosurface extraction algorithm. 'It partitions the volume 
data according to its workload spectrum for load balancing and cre- 
ates an UO-optimal external interval tree to minimize the number 
of U0 operations of loading large data from disk. It achieves scal- 
ability by using both parallel processing and parallel disks. Inter- 
active browsing of extracted isosurfaces is made possible by using 
parallel isosurface extraction and rendering in conjunction with a 
new specialized piece of image compositing hardware called the 
Metabuffer. We also describe an isosurface compression scheme 
that is efficient for isosurface processing. 

CR Categories: L3.1 [Computer Graphics]: Hardware 
Architecture-Parallel Processing; 1.3.8 [Computer Graphics]: Ap- 
plications 

Keywords: Parallel Rendering, Metabuffer, Multi-resolution, Pro- 
gressive mesh, Parallel and Out-of-core Isocontouring 

1 Introduction 

Today tomographic imaging and computer simulations are increas- 
ingly yielding massive datasets. Interactive and exploratory visual- 
ization has rapidly become an indispensable tool to determine and 
browse regions of interest within volumetric imaging data, and ver- 
ify and validate the results of computer simulations. One paradigm 
of exploratory visualization is to extract multiple 2-dimensional 
surfaces satisfying w(x) =const from a given scalar field w(x),  
2 E R3, and render it at interactive frame rate (30H.Z). This inter- 
active and exploratory visualization technique s popularly known 
as isocontour visualization. 

Isocontour visualization for extremely large datasets poses chal- 
lenging problems for both computation and rendering with guar- 
anteed frame rates. First, large isosurfaces are to be extracted in 
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time-critical manner from those large datasets, whose sizes are from 
multi-gigabytes to terabytes. As the size of the input data increases, 
isocontouring algorithms necessarily need to be executed out-of- 
core and/or on parallel machines for both efficiency and data acces- 
sibility. Second, the interactive aspect of the isocontour visualiza- 
tion demands that the scene is rendered quickly in order to provide 
responsive feedback to the user. In some cases, the detail allowed 
by a single high performance monitor may not be adequate for the 
resolution required. An even more common problem is that the 
dataset itself may be too large to store and render on a single ma- 
chine. Third, the extracted isosurface may need to be transmitted 
from the computational servers to the rendering servers via the net- 
work, if the computational and rendering servers do not coexist on 
the same machines. It may also need to be saved on disk for future 
studies. Compact representation of the isosurfaces should be used 
in order to meet the time limit of data transmission and save disk 
space. 
Related Work: Hansen and Hinker describe parallel methods 
for isosurface extraction on SIMD machines [17]. Ellsiepen de- 
scribes a parallel isosurfacing method for FEM data by dynami- 
cally distributing working blocks to a number of connected work- 
stations [13]. Shen, Hansen, Livnat and Johnson implement a par- 
allel algorithm by partitioning load in the span space [28]. Parker 
et al. present a parallel isosurface rendering algorithm using ray 
tracing [24]. Chiang and Silva give an implementation of out-of- 
core isocontouring using the U 0  optimal external interval tree on a 
single processor [8,9]. Bajaj et al. use range partition to reduce the 
size of data that are loaded for given isocontour queries and balance 
the load within a range partition [3]. In this paper, we propose and 
implement a parallel and out-of-core isocontouring algorithm using 
parallel processors and parallel YO, which would be fully scalable 
to arbitrarily large datasets. 

Many research groups have recently studied the problem of 
using fast improving PC graphics cards ,for parallel rendering 
[12,18,20,26,27]. Schneider analyzes the suitability of PCs for par- 
allel rendering for four parallel polygon rendering scenarios: ren- 
dering of single and multiple frames on symmetric multiprocessors 
and clusters [27]: Samanta et al. discuss various load balancing 
schemes for a multi-projector rendering system driven by multiple 
PCs [26]. Heirich and Moll demonstrate how to build a scalable 
image composition system using off-the-shelf components [18]. In 
general, most parallel rendering methods can be classified based on 
where data is sorted from object-space to image-space [22]. 

In the sort-first approach, the display space is broken into a num- 
ber of non-overlapping display regions, which can vary in size 
and shape. Sort-first methods may suffer from load imbalance in 
both the geometric processing and rasterization if polygons are not 
evenly distributed across the screen partitions, because polygons 
are assigned to the rendering process before geometric processing. 
The Princeton University SHRIMP project [26] uses the sort-first 
approach to balance the load of multiple PC graphical worksta- 
tions. The sort-middle approach distributes transformed primitives 
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instead of polygons to the graphics pipes responsible for the screen 
partitions. 

The sort-last approach is also known as image composition. 
Each rendering process performs both geometric processing and 
rasterization independent of all other rendering processes. Local 
images rendered on the rendering processes are composited to- 
gether to form the final image. The sort-last method makes the 
load balancing problem easier since screen space constraints are 
removed. However, compositing hardware is needed to combine 
the output of the various processors into a single correct picture. 
Such approaches have been used since the 60’s in single-display 
systems 115,231, and more recent work includes [14,18]. 

Parallel & 

Extractlon & 
Rsnderlng 

Figure 1: A schematic drawing showing the three stages of scalable 
isosurface visualization pipeline. 

Our solution to the image compositing problem is the 
Metabuffer, whose architecture is shown in figure 3. This is a sort- 
last multi-display image compositing system with several unique 
features such as multi-resolution and antialiasing [6]. A very simi- 
lar project, though currently without stressing multi-resolution sup- 
port, exists at Stanford University and is called Lightening-2 [19]. 
The Metabuffer hardware supports a scalable number of PCs and 
an independently scalable number of displays-there is no a priori 
correspondence between the number of renderers and the number 
of displays to be used. It also allows any renderer to be responsible 
for any axis-aligned rectangular viewport within the global display 
space at each frame. Such viewports can be modified on a frame- 
by-frame basis, can overlap the boundaries of display tiles and each 
other arbitrarily, and can vary in size up to the size of the global dis- 
play space. Thus each machine in the network is given equal access 
to all parts of the display space, and the overall screen is treated as a 
uniform display space, that is, as though it were driven via a single, 
large framebuffer, hence the name Metabuffer. 

While compression is important for handling large datasets, one 
possible approach to the isosurface compression problem is to first 
extract the isosurface into triangular meshes and then apply to it 
one of the surface compression algorithms [4, 10, 11, 16,29,30]. 
Although it is conceptually simple, this method has several disad- 
vantages. First the rendering servers have to wait until the compu- 
tational servers finish both isosurface extraction and compression. 
The compression of the surface often takes a very long time, espe- 
cially true for the very large surfaces extracted from large datasets, 
which contradicts the goal of using compression for real-time ren- 
dering. Furthermore, isosurfaces have the property that each vertex 
is an intersection point with one unique edge of the 3D volume. An 
algorithm designed specifically for an isosurface may get a better 
compression ratio. In this paper we describe an index and function 
value encoding scheme that compresses the isosurface and allows 
streaming the compressed data to the rendering servers incremen- 
tally either during the surface extraction or from cache on disk. We 
also show the method achieves a better compression ratio than some 
general purpose surface compression algorithms. 
Main Results: With all three aforementioned techniques com- 
bined, parallel and out-of-core computation, parallel rendering and 
compression, it is possible to obtain a fully scalable system for 
interactive isosurface visualization across multiple isovalues and 
from different viewpoints. In this paper we focus on the back end 
parallel and out-of-core isosurface extraction, leaving the details of 
progressive image composition using the Metabuffer and its per- 
formance results to a separate paper [6]. The rest of our paper is 

organized as follows: Section 2 briefly describes the architecture 
of our framework for scalable isosurface visualization. Section 3 
gives the details of our parallel and out-of-core isocontouring algo- 
rithm. Section 3.2 provides the detail of our isosurface compression 
method and compares its results to that of another surface compres- 
sion algorithm. Section 4 gives the performance of our parallel 
implementation on a COTS cluster. 

2 Framework 

Cluster 

Figure 2: Our system architecture for scalable isosurface visualiza- 
tion. The parallel back-side accomplishes progressive surface ex- 
traction and rendering while the parallel front-side composites and 
displays progressively. 

2.1 Pipelined Stages 
We can think of the process of scalable time-critical isosurface visu- 
alization of massive data as a parallel and progressive stream from 
back to front as shown in figure 1. Triangle streams are generated 
by the back-end nodes by progressively extracting the isosurfaces. 
The triangle stream from the extraction node will be rendered by 
the middle parallel rendering servers. All rendered images will 
then be composited by the Metabuffer to display on a multi-tiled 
screen. The process of compositing images from multiple rendering 
servers to multiple displays using the Metabuffer is called parallel 
image composition. Given the required frame rate, the refresh time 
between two frames needs to be shared among these three stages: 
triangle extraction, rendering and image composition. While the 
image composition time taken by the Metabuffer is constant, how 
much external time left in the frame interval determines what reso- 
lution of triangles will be extracted and rendered. 

2.2 Hierarchical Volumetric Data 
Due to the large size of the massive dataset, it is extremely time- 
consuming or even impossible to do isosurface extraction on a sin- 
gle processor. In order to scale to very large datasets, we use a 
computational back end consisting of both parallel processors and 
parallel disks. Large datasets are partitioned among the parallel 
processors in a load-balanced way and stored hierarchically on disk 
for efficient I/O access. The hierarchical volume data can be stored 
on disk in compressed form [5]. Figure 2 illustrates the parallel end 
to end framework for scalable isosurface visualization on a com- 
modity off-the-shelf cluster. The parallel back-side provides multi- 
resolution isosurfaces extracted from the volume dataset to satisfy 
the time limit. This stage is governed by the parallel and progressive 
triangle extraction algorithms. We will describe in detail our par- 
allel triangle extraction algorithms in section 3.1. Producing multi- 
resolution representation of the data at the back-side is essential for 
the time critical rendering of massive data. When the user changes 
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viewing parameters frequently, coarser representations of the data 
are rendered in order to give the user responsive feedback. Only 
when the user chooses a certain viewing position and some inter- 
esting isovalue, are the details of the progressive mesh or isocon- 
tour streamed for rendering in order to produce higher resolution 
image. To reduce the time of data transmission over the network, 
the extracted mesh may be communicated to rendering servers in 
compressed format. Although the rendering servers might be on 
the same set of machines as the triangle extraction processes, the 
progressive triangle mesh extraction processes can in general scale 
independently of the number of parallel rendering servers. 

2.3 The Metabuffer 

One novel feature of the framework is the parallel rendering and 
image composition system that is able to render the given scene 
in the least latency. The parallel front-side is built around the 
Metabuffer 161, which is custom hardware built from commodity 
PC components. The Metabuffer hardware provides several unique 
advantages to assist in rendering large surface in parallel, such as 
arbitrarily located and overlapped viewports and multi-resolution. 
Each rendering server in figure 2 is mapped to a viewport on the 
screen space. A very important problem in the parallel rendering 
is how to position those viewports and partition the mesh such that 
each rendering server has approximately an equal amount of work. 

The Metabuffer allows the number of rendering servers to scale 
independently from the the number of display tiles. Since the 
Metabuffer allows the viewports to be located anywhere within the 
total display space and overlap each other, it is possible to achieve 
a much higher degree of load balancing. Since the viewports can 
vary in size, the system supports multi-resolution rendering, for in- 
stance allowing a single machine to render a background at low 
resolution while other machines render foreground objects at much 
higher resolution. 

PC Workstatlons Meta-Buffer 

1 

1 

Display 

Figure 3: Our Metabuffer architecture, where A represents a ren- 
dering engine, B is an on-board frame buffer, and C represents a 
composing unit. 

Given the progressivity from the triangle extraction stage to final 
image composition stage in our framework and the fact that each 
stage is fully parallelizable, we can achieve a truly scalable render- 
ing of large isosurfaces. 

3 Parallel Algorithms 
In this section we will discuss in more detail the parallel and out- 
of-core iswontouring algorithm and the isosurface compression al- 
gorithm mentioned in section 2 that enables the framework for seal: 
able time-critical visualization of massive datasets. First we discuss 
the scalable algorithm of extracting progressive isosurfaces from 
large volume datasets. 

3.1 Scalable lsosurface Extraction 

A scalable data analysis and visualization application must take 
data processing, YO, network and rendering all into consideration. 
Specifically for the isocontour extraction of large volume data, it 
should have load balanced parallel computation for fast surface ex- 
traction, out-o€-core computation to scale to datasets bigger than the 
size of total main memory, and parallel U0 to avoid the bottleneck 
of accessing massive data on disk. 

We can model such a system that combines parallel processing 
and parallel disk access with a model called the BSP-Disk model 
[25]. The BSP-Disk model consists of P interconnected proces- 
sors, each of which may have a local memory and disk. The BSP- 
Disk model combines the features of the BSP parallel computation 
model [31] and the PDM [32] parallel disk model. It is a distributed 
memory parallel computation model, while each processor can ac- 
cess its local disk in parallel. The BSP-Disk model very closely 
describes the characteristics of a PC cluster, where each node has 
its own CPU, local memory and local disk. The parameters of the 
BSP-Disk model are as follows: 

N : Total number of atomic units of the problem. 

A4 : Total number of atomic units that can fit in the one pro- 
cessor's main memory. 

P : Number of processors. 

D : Number of Disks. 

B : Number of atomic units that fits in one disk block. 

A : Time to read or write one disk block on the local disk. 

L : minimal synchronization time of the BSP model. 

g : gap parameter of the BSP model which characterizes the 
communication bandwidth. 

In the case of large datasets, we have the design conditions 
N > P . M and M >> B. In contrast to the PDM model where a 
single processor has equal access to all parallel disks, the disks in 
the BSP-Disk model are associated to different processors as their 
local disks. One very important example is that every processor has 
one associated local disk (P = D), as for the case of a PC cluster. 
More generally 5 processors can be assigned to every disk. Extra 
communication time is required when one processor needs to ac- 
cess the data on a remote disk. In the BSP-Disk model one disk 
block can be loaded from every disk into memory in one parallel 
U0 because each disk can be accessed independently. Thus up to 
D disk blocks can be read into main memory in one parallel UO. In 
other words, the data access time is shared among the D disks. 

The algorithms designed for the BSP-Disk model would con- 
sider all three parts of the time for a real parallel and out-of-core 
algorithm, local computation, local disk U 0  and communication. 
Therefore the time of the isosurface extraction can be written as 
T = maxp(T, + Ti, + T,), where T, is the time for local com- 
putation, Ti, is the time for local disk access and T, is the time 
for communication. T, and T, are to be measured using the BSP 
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model and Ti, is measured as A x Nd, where Nd is the number 
of parallel U0 operations. The objective of our isocontouring algo- 
rithm for large datasets is to speedup the computation by distribut- 
ing the load to multiple processors, minimize the number of parallel 
YOs, and minimize inter-processor communication (such as the re- 
mote disk accesses). These factors do not always play together for 
each other. We must make tradeoffs according to the real system 
parameters. To minimize the number of parallel YO’S, we need to 
load only those portions of dataset that contribute to the final re- 
sult, and distribute data to the disks such that data is loaded evenly 
from the D local disks. Minimizing the local computation time re- 
quires good load balance among the processors. Finally minimizing 
communication means minimal data redistribution and remote data 
access during computation. We choose the approach of static data 
partitioning that minimizes the communication during isocontour 
extraction because data communication is currently the least scal- 
able factor when data size gets larger and new processors and disks 
can be easily added. The methods of allowing processors to dynam- 
ically steal data or work from remote disks are for future study. 

In order to achieve good performance for a static workload allo- 
cation method for parallel computation, data must be partitioned 
carefully such that each processor has approximately the same 
amount of work. Furthermore data must be distributed among the 
D disks such that the number of parallel U 0  is minimal. Fortu- 
nately the work load of isocontouring computation on a processor 
is proportional to the size of data it loads from its local disk. We use 
a data partition method similar to that in [3] to distribute the data 
according the contour spectrum [2] .  The contour spectrum pro- 
vides a work load histogram for different isovalue queries. We use 
the number of triangles in the isosurface as the Y axis of the con- 
tour spectrum. In the ideal data partition, each processor does the 
same amount of work for every value of the parameter w. While [3] 
tries to break data into range partitions that can each fit into main 
memory, we here partition the whole range of data according to the 
workload histogram. The partitioning of the whole range avoids the 
problem of data duplication among different range partitions. After 
data is partitioned, an YO-optimal interval tree [I]  is built as index 
structure for the data on each disk in a way similar to [9]. The exter- 
nal memory interval tree has optimal O(log N + K) U 0  operations 
for stabbing queries, where K is the number of active cells. 

Cell is the minimum unit of the volume dataset. Function val- 
ues are defined on the vertices of the cells and usually tri-linearly 
interpolated inside cell. Ideally we can use the granularity of cell 
for the data partition and build the external interval tree for all the 
cells. However as shown in [9], it is very storage inefficient to build 
an external index data structure using the unit of cell because of the 
high overhead of data duplication among cells. Instead we use the 
atomic unit of block, which is usually a 3 0  rectangular slab of ad- 
jacent cells. Although some extra cells maybe be loaded because 
of the larger granularity, block provides the possibility of tradeoff 
between disk space and YO efficiency. In our implementation, we 
choose the size of block as the disk block size such that one block 
can be loaded in one YO operation. Since we use a block as the unit 
of data partition and accessing, it is possible to extract isosurface 
progressively at different resolution to give user the basic shape of 
the surface with minimum delay. Figure 4 shows an isosurface (iso- 
value 1200) of the Male MRI data is extracted and rendered at three 
different resolutions. 

At the first stage of our algorithm, we partition the data among 
multiple computational nodes and build the external interval tree as 
the index structure for the blocks on each disk. Here we have as- 
sumed each node has one processor and associated local disk. The 
parallel and out-of-core isocontouring algorithm consists of follow- 
ing steps. 

1. Break the data into blocks. At the start of the data distribu- 
tion, there is an initial distribution of data among those disks, 

which is not load balanced for isosurface query. For exam- 
ple, we can just break the big volume into slabs and each disk 
contains one slab of the data. First we divide the dataset into 
blocks, each of which is in the same order of the disk block 
size. With each block, we store all the information for doing 
isocontour extraction on the block, including the function val- 
ues of all vertices of the block and the geometric information 
such as the dimensions, the origin and the span of the block. 
We also store the range interval of the block explicitly. We 
construct a triangular matrix in range space to help the data 
partition. One axis of the matrix represents the entire range 
of function values which is divided into a specified number 
of buckets. The second axis is the number of buckets that 
the range of a block spans. The minimum function value of 
a block and the number of buckets spanned by its range de- 
termine which matrix elements it belongs to. For instance, if 
a block has range [z, y] and the bucket interval size is a, the 
block would belong to the [[-I, [VI] matrix ele- 
ment. Thus blocks falling into the same matrix element have 
similar span in the range space. We categorize the blocks ac- 
cording to which range space triangular matrix element it falls 
into. 

2. Redistribution of data blocks. The blocks falling into the 
same matrix element are then assigned equally to the pro- 
cessors. This process is repeated for all the matrix elements. 
At the beginning of redistribution, the processors broadcast to 
each other the number of blocks in the matrix element and the 
statistical information about the blocks. Then each proces- 
sor run the same algorithm to determine to which processors 
it needs to send blocks and from which processors it will re- 
ceive blocks. Here first we try to make each processor have 
the same number of blocks of the matrix element. Further 
consideration is given to minimize the number of blocks to be 
communicated. 

3. Build External Interval Tree as the search data structure. 
During the redistribution of blocks, every block assigned to 
one processor is given a unique ID and added to a single file 
that contains all the blocks assigned to the processor. Every 
block is stored from the disk block boundary and its location 
is easily decided from its ID. While the block is written to the 
block file, its range interval associated with its ID is stored in 
an interval file, which will be used to build the index structure 
to the data blocks. Since even the index structure may not 
fit into the main memory while the data size gets larger, we 
choose the external interval tree [ 1,8] for the full scalability 
of our algorithm. 

4. Isocontour Query Processing. For an isovalue query, we first 
search the external interval tree to find all blocks whose range 
intersects the isovalue. Such stabbing query on external inter- 
val tree is simple and U0 optimal [I]. The isosurface is then 
extracted from those intersected blocks. The surface can be 
extracted in compressed format, as we describe later. To give 
the user quick response, the extracted surface is streamed to 
the parallel rendering servers which may reside on the same 
machine. The rendered images from the parallel rendering 
engines are then composed by the Metabuffer. Since we use 
the block as the atomic unit of data distribution and accessing, 
the surface can be extracted at different resolution to meet the 
different time requirement. The user can get a quick view of 
the shape of the isosurface before he can pick an interesting 
isovalue and study it in more detail. 

This algorithm provides a load balanced and fully out-of-core 
method for isocontour extraction, which would be scalable to arbi- 
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Figure 4: An isosurface for the Male MRI data (isovalue = 1200) is progressively extracted and rendered at different resolutions and from 
*various viewpoints. The leftmost isosurface has 24,084 triangles; the center isosurface has 651,234 triangles, and the rightmost isosurface 
has 6,442,810 triangles. 

trary large dataset. The extracted surface are rendered by the paral- 
lel rendering servers and finally composited by the Metabuffer. The 
surface extraction process and rending process can be run in paral- 
lel. Figure 5 shows one isosurface extracted and rendered by eight 
processors. Since we have used the diagram of triangle numbers 
to determine the partition of dataset, each processor will generate 
approximately equal number of triangles and balance the load of 
rendering. 

e#- 
+-: Y *w 

F i  v .:' . .  

Figure 5: Individual portions of an isosurface (isovalue = 800) ex- 
tracted from the visible male MRI data with eight computing pro- 
cessors and rendered by eight rendering servers. The full resolution 
isosurface has 9,128,798 triangles. 

3.2 isosurface Compression 
The isosurfaces extracted on the computational servers need to 
be rendered by the rendering servers and composited by the 
Metabuffer. The computational processes and rendering processes 
might not be present on the same machines. Therefore isosurfaces 
need to be transmitted from the back-end to rendering processes via 
the network. Furthermore we need to save and cache those large 
isosurfaces extracted from large dataset to examine them from dif- 
ferent viewing directions. Compact representation of the isosurface 
should be used in the transmission in order to meet the time limit. 
We employ a method of edge index encoding to compress the iso- 
surface. Given the function values at its 8 vertices greater or less 
than the isovalue p, a cell has its inside isosurface topology de- 
termined as one of the 2' = 256 possible configurations, which 
can be further reduced according to rotational symmetry and vertex 
complement [21]. We can easily derive what edges of a cell are 
intersected by the isosurface from its index and configuration. A 
cell intersected by the isosurface is called a valid cell. Given func- 

tion values on the two endpoints of the intersected edge, the point 
on this edge intersected by the isosurface can be computed. A ver- 
tex that is one end point of an edge intersected by the isosurface is 
called a relevant vertex. Hence the representation of the isosurface 
can be reduced as encoding the configurations of valid cells and the 
function values on the relevant vertices. We further notice that a 
cell configuration can be determined if we know which vertices of 
its 8 corners are relevant vertices. Therefore all necessary informa- 
tion for reconstructing the isosurface is known: the relevant vertices 
and valid cells, and the function values on the relevant vertices. The 
steps of the edge index compression algorithm are: 

1. For every vertex on a slice, we set a bit T = 1 if i t  is a relevant 
vertex, T = 0 otherwise. Similarly for each cell in a layer 
between two slices, we set a bit i = 1 if it is a valid cell, 
i = 0 otherwise. 

2. Encode the vertex bitmap of a slice using an entropy encoding 
method, such as adaptive run-length coder [7] or arithmetic 
coder [33]. 

3. Encode the function values of the relevant vertices on the slice 
using the second-order difference of their quantized values. 

4. Encode the cell bitmap of a layer similarly. 

5. Repeat upper steps until there are no more slices and layers. 

Table 1: Comparison of compressed isosurface sizes in bytes using 
edge index coding with a general surface compression algorithm. 
The general compression algorithm uses 8 bits for each coordinate 
per vertex. For unsigned short and char data type, we encode them 
directly using the predictive coder. Float values are normalized and 
quantized using 32 bits for the first point and 14 bits for difference. 

This method has yielded a very good compression ratio to iso- 
surface of regular 3D mesh compared to the general purpose trian- 
gular surface compression algorithms as shown in table 1, where 
the general algorithm is that of [4]. Furthermore, the edge index 
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Figure 6: Speedup of isosurface extraction and rendering for two 
isovalues (800 and 1200) compared to the ideal case. The data used 
is the Visible Male MRI data . 

Dimension Size 
512 x 512 x 1252 

1800 x 1000 x 1878 
1600 x 1000 x 5186 

656MB 
6.6GB 
16.5GB 

method has the advantage of incremental encoding and decoding 
because two slices and one layer are necessary in main memory at 
any time for the encoding and decoding processes. Thus both the 
compression and decompression of the isosurface using edge index 
encoding need only a small amount of main memory and the re- 
construction of the surface can start far before the whole surface 
transmission is finished. Furthermore the encoding of indices and 
function values is done during isosurface extraction, such that no 
expensive post-extraction compression process is necessary. 

Table 2: The sizes of our test imaging datasets. 

to more than 16GB, are all from the visible human project of the 
National Library of Medicine. Each of those datasets is too large for 
a single PC to handle in its main memory. While all those datasets 
are from medical imaging, our algorithm can be certainly applied to 
other types of data, for example those from large scale simulation. 

The first test data is the Male MRI dataset. The surface extracted 
on one machine is rendered by the same machine and the images are 
then composited according their z values. Every rendering server in 
this configuration has the viewport of the whole display space. In 

this configuration every rendering server renders at the same reso- 
lution. We measure its isosurface extraction and rendering time by 
using from one processor to 32 processors. Being able to run effi- 
ciently on a single processor demonstrates the out-of-core property 
of our method. Figure 6 shows the speedup of isosurface extraction 
and rendering for two typical isovalues 800 and 1200, correspond- 
ing to the skin and bone respectively, for the MRI dataset. Figure 7 
shows the actual time of each processor for the isovalue 800 with a 
different number of processors. 

Figure 7: Individual processor time for extracting and rendering an 
isosurface (isovalue = 800) from the Male MRI data with 1, 8, 16 
and 32 processors. 

The slopes of the two speedup curves are very similar, which 
demonstrates the the isocontour extraction algorithm applies 
equally well to different isovalues. 

The contour spectrums of data partitioning for the cases of 8,16 
and 32 processors are shown in figure 8. The first row of figures 
show the diagrams of the triangle numbers extracted by each pro- 
cessor for the range of isovalue from 0 to 1900, where the curves of 
the real experimental result in solid thin lines are compared to the 
ideal case in thick dashed line. The second row of figures are the 
actual surface extraction and rendering time for the whole range of 
isovalues. The similarity of the two set of curves justifies our use 
of the spectrum of triangle numbers as the work load diagram. 

Figure 9: Isosurface extraction and rendering time for the Visible 
Male cryosection and Female cryosection data at two different iso- 
values( 13000 and 29000). 

We also test our implementation on the much larger Male 
cryosection and Female cryosection datasets. We start at partition- 
ing the Male cryosection data into 8 pieces and the Female cryosec- 
tion data into 16 pieces, because of the 2GB file size limit of Linux. 
Figure 9 shows the time of isosurface extraction and rendering for 
the two datasets for two different isovalues 13000 and 29000. It 
gives very good speedup when the number of processors and disks 
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(a) Triangle distribution for 8 processors (b) Triangle distribution for 16 processors (c) Triangle distribution for 32 processors 

I I 

(d) Isosurface extraction and rendering 
time for 8 processors 

(e) Isosurface extraction and rendering 
time for 16 processors 

(0 Isosurface extraction and rendering 
time for 32 processors 

Figure 8: The histogram of triangle distribution and isosurface extraction and rendering time for the data partitioning of the Male MRI data, 
where the thick dashed lines represent the averaged ideal case. 

increases. The sharp drop of computational time from 8 processors 
to 16 processors for the Male cryosection data and from 16 pro- 
cessors to 32 processors for the Female cryosection data is due to 
better operating system disk cache performance for the smaller par- 
titions. A very large isosurface (487,635,342 triangles) extracted 
from the Female cryosection data is shown in Figure 10. While the 
surface is noisy due to the dataset, it demonstrates the scalability of 
our system to very large data and very large surface. 

5 Conclusion and Future Work 
In this paper we propose a scalable time-critical rendering frame- 
work of massive datastreams based around the Metabuffer image 
composition hardware.The time-critical rendering process can be 
thought of as a chain from parallel and progressive mesh genera- 
tion, parallel rendering to parallel image composition. We describe 
in detail a scalable isocontouring algorithm by taking advantage of 
the parallel processors and parallel disks. It partitions the volume 
data according to its workload spectrum for load balancing and cre- 
ates an I/O-optimal external interval tree to minimize the number 
of I/O operations of loading large data from disk. 

There are improvements necessary for real interactivity for very 
large datasets. There are also the remaining problems of introduc- 
ing dynamic load balancing by replicating some data on different 
disks and accessing data from remote disks at runtime. It is an in- 
teresting problem to see how much improvement we can achieve by 
choosing the right replication factor and data distribution. 
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