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Abstract

Several naturally occurring as well as manufactured objects have shell like structures, that
is their boundaries consist of surfaces with thickness. In an earlier paper, we have provided
a reconstruction algorithm for such shell structures using smooth fat surfaces within three-
sided prisms. In this paper, we extend the approach to a scaffolding consisting of three
and four-sided prisms. Within each prism the constructed function is converted to a spline
representation. In addition to the adaptive feature of our earlier scheme, the new scheme has
the following extensions: (a) four sided fat patches are employed; (b) the size of individual fat
patches are bigger; (c) fairing techniques are combined to obtain nicely shaped fat surfaces.
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1 Introduction

Many human manufactured and several naturally occurring objects have shell like structures,
that is the object bodies consist of surfaces with thickness. Such surfaces are called fat surfaces in
[2]. The problem of constructing smooth approximations to fat surface objects arises in creating
geometric models such as airfoils, tin cans, shell canisters, engineering castings, sea shells, the
earth’s outer crust, the human skin, and so forth.

Problem Description. As input we are given a matched triangulation pair T = (T, 7MW (also
called a fat triangulation) with attached normals at each vertex which presents a linearization
of the inner and outer boundary surfaces of a shell domain. The goal is to reconstruct smooth
fat surface whose bounding surfaces provide approzimations of T and T, respectively. Ad-
ditionally mid-surfaces between the boundary surfaces are also provided.
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The matched pair of surface triangulation with normals could be obtained via several inputs,
such as nearby iso-contours of volume data, point clouds, single surfaces (see methods in [2]).

Needless to say, one could solve this geometric modeling problem by classical or existing
methods (see, e.g. [7, 8, 9]) of surface splines construction to construct individual boundary
surfaces as well as mid-surfaces of the fat boundaries. However, besides the added space com-
plexity of individually modeling the primary bounding surfaces and mid-surfaces, post local
and/or global interactive surface modification would require extremely cumbersome surface-
surface interference checks to be performed to preserve geometric model consistency.

The implicit method was shown effective for solving such a problem which was proposed in
[2], in which the fat surface is defined by the contours of a single trivariate function F. The
function is piecewise, and defined on a collection of triangular prisms in IR3, such that it is
C' and its contour F(z,y,z) = «a for any a € (—1,1) provides a smooth mid-surface with
F(z,y,z) = —1 and F(z,y,z) = 1 as the inner and outer boundaries of the shell structure. It
should be pointed out that the simplicial hull scheme for constructing A-patches on tetrahedra
(see [1, 5]) cannot serve to our purpose, since the simplicial hull, over which a trivariate function
F' is defined, has no thickness at each vertex.

In this paper, we extend the construction of the function F' in [2] by incorporating quadri-
lateral patches, spline functions and fairing techniques, so that the size of several individual fat
surface patches is bigger, the number of patches is fewer, and the “shape” of the fat surfaces is
better.

2  Algorithm and Notations

This section gives the algorithm outline (see Fig 2.1). Notations used are also introduced here.

2.1 Outline of the algorithm

Step 1. Decimation.

This step reduces the number of fat triangles and maintains features. We use the curvature
adaptive decimation scheme of [2].
Step 2. Merge triangles into quadrilaterals.

Merge certain adjacent triangles into quadrilaterals to further reduce the number of patches.
Details of this step appear in Section 3.
Step 3. Construct C' trivariate function approzimations.

Construct a C! piecewise trivariate function F(?), over a collection of 3-prisms and 4-prisms
defined on the fat triangles and quadrilaterals, so that Sc(f) = {p :F)(p) =a, a€[-1, 1]} are

(o)

smooth surfaces and S*/ and S§U) are approximation of 7(®) and 7, respectively. Here o is a
given integer related to the freedom of the spline function used. This step is detailed in section
4.

Step 4. Fuiring. Fairing by spline functions. Details are again in section 4.

Step 5 (optional). Capturing Sharp Features is detailed in section 5.

Step 6. Display the fat surface. Details are given in section 6.



Fig 2.1: The algorithm steps: Figure (a) is the input triangulation pair (917 fat triangles) with normals
at vertices. (b) is the decimated result (265 fat triangles). (c) is the output (119 fat triangles and 73
fat quadrilaterals) of the merging step. (d) is a C'! function construction without using splines. (e) is
the fairing result using splines. The curves on the surfaces (d) and (e) are isophote lines. (f) is a display
showing the mixed patch nature.

2.2 Notations

Our trivariate function F(?) is piecewise defined on a collection of 3-prisms and 4-prisms. To
define these prisms, we denote the i-th fat vertex (vertex pair) as V; = (V-(O), V-(l)) € R®. Let

(2 (]

[V;V;Vi] be a fat triangle. Then the 3-prism D;;), is a volume in IR? enclosed by the surfaces

H;j, Hj, and Hy; (see Fig 2.2), where Hy,, is a ruled surface defined by V; and Vi,

Hyy, = {p:p=bivy(A) + bavn(A), bi+b2=1, A€ R}

withv;(A) = VO 42N, N; = VY —v9. For any point p = byvy(A)+byvp (A) with by +by = 1,
(b1, b2, A) will be called Hjy,,—coordinate of p. The 3-prism D;jy, for [V;V;V}], is a volume which
is represented explicitly as

Dijk = {p p= bl’l)i()\) + bQ’Uj()\) + b3’l)k()\), bi+by+b35=1 >0, A€ R}

We call (b1,b2,b3,\) as the D;j,—coordinate of p. For each A, Pijr(X) := {p : p = biv;(\) +
bovj(A) + b3vg(A), b1+ bo+ b3 =1,b; > 0} defines a triangle. Let G;;;, be the point set that is



Fig 2.2: The volume prism cell D;;;, and a Fig 2.3: The volume prism cell D;;z; defined
face Hji(t, A) defined by a fat triangle [V;V;V}] by a fat quadrilateral [V;V;V, V]

the grouping of points into prism D;;;; in the decimation step.
Let [V;V;ViVi] be a fat quadrilateral. The 4-prism D;ji; for [V;V;V, V] is defined by (sse Fig.
2.3)

Dijry = {p : p = Boo(u,v)v;(\) + Bio(u,v)vj(})
+ Bo1(u, v)v(A) + Bii(u,v)vg(N), u,v € [0,1], X € R},

where By = (1 —u)(1 —v), Bip = u(1l —v), By1 = (1 —u)v, By = uv. We shall call (u,v, ) as
the D;jii-coordinate of p. The equation

p = Boo(u, v)vi(A) + Bio(u, v)vj(A) + Bot (u, v)vi(A) + Bui(u, v)vg(A) (2.1)

defines a transform between (u,v, ) and (z,y, 2).

3 Merging Fat Triangles

Let [V;V;Vi] and [V;V, V] be two adjacent fat triangles of the decimated mesh. They could be
merged to form a quadrilateral if the following condition is satisfied:

N/ [Boo(u, v)N; + Boi (u,v)N; + Bio(u,v)N; + B11Ni] > 0 for p, € Gij, (3.1)

where Gijr = Gijk U Gjki, (u,v,A) is the D;jp-coordinate of p,, N is the normal at p, and
the term in the square brackets is the average of the normals at four vertices. Condition (3.1)
implies that the angle between N; and the averaging normal is less than 7/2. We only need to
consider the merging of one of 7(®) and 7(V, the other is correspondingly merged.

In [6], M. Eck and H. Hoppe also merge triangles into quadrilaterals where they attempt
to pair up all the triangles by a graph matching. Since we allow a hybrid of triangular and
rectangular patches (e.g., to keep sharp features (see §5), some of the edges are not removable),
and since our implementation and the tests show that the shape of quadrilateral surface patches
become bad if the quadrilateral is too narrow, we do not seek to merge all the triangles into
quadrilaterals. Instead, we grade each edge by the deviation from a rectangle of the quadrilateral
formed by merging the two adjacent triangles. An edge is removed (that is its two adjacent
triangles are merged) if condition (3.1) is satisfied and if the grade of this edge is less than a



given threshold value and is less than its four neighbor edge grades. To grade an edge, for each
vertex of the quadrilateral that is formed by merging the two adjacent triangles of the edge,
compute the absolute value of the difference of the angle formed by the two incident edges and
/2, then choose the maximal value of the four absolute values, for the four vertices, as the
grade of the edge. If a quadrilateral is a rectangle, then its grade is zero. The worst case is
where its grade is close to 37/2, in which the angle at one vertex is close to 2.

We notice that most of the CAGD models or some parts of the models come from curvilinear
partition of objects. The triangulation is then formed by subdividing quadrilaterals, obtained
from the curve partition, into triangles. Our triangle merging policy has the property that it
recovers the original curve partition in most of the cases. Fig 3.1 shows such an example for a
teapot.

Fig 3.1: Left: the input triangulation pair approximate of a teapot that has 1428 fat triangles. Right:
the merging result that has 294 fat triangles and 567 fat quadrilaterals. The threshold value that controls
the merging is taken as 7 /4.

4 Construct C' Trivariate Function Approximations

After step 2, we have a mesh consisting of fat triangles and fat quadrilaterals. For each triangle
[ViV;Vi] and quadrilateral [V;V;V, V] we have volumes D; i, and Dy with the grouped point sets
Gijr and Gjjg, respectively. In this section, we construct a C ! trivariate piecewise function F =
F() (o > 0 fixed) over the collection of these volumes, so that it is the required approximation.
This function is constructed stepwise. First, the function is defined on the edges of the volumes
(see §4.2), then on the faces (see §4.3) and finally in the volumes (see §4.4-84.5).

4.1 Spline Functions

To achieve better approximation and better shape, spline functions defined on triangles and
rectangles are utilized in the construction of F'. On a triangular domain with a regular partition
(see Fig 4.1), C! cubic splines defined in BB form were given by Sabin, 1976 (see [10]). Fig
4.2 gives the BB—form coefficients of a typical base function defined on 13 sub-triangles. Note
that, these splines in general are not linearly independent (see B6hm, Farin and Kahmann [4]).
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Fig 4.1: Regular partition of triangular and rectangular domains with resolution 27 for o = 3.
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Fig 4.2: Bézier coefficients for two C! cubic spline basis functions. Each is defined on the union of 13
sub-triangles, which forms the support of the function.

But the collection we use are indeed linearly independent. For a regular partition of a triangle,
say T, we shall associate a base function to each sub-triangle of the partition. To give proper
indices for these bases, we label the sub-triangles as T;j;;, for (i, 4,k) € J7 = J7 UJZ, J7 and J§
are defined as follows:

JU =A{0G,5,k): 1,5,k€{1,2,3,...,27 }; i+j+k=2+2},
ng{(z’,j,k): i,j,k€{1,2,3,...,2"—1}; i+j+k:2"+1},

where 27 is the resolution of the partition. Fig 4.3 gives Ji and Jy for ¢ = 2. Now we denote
the base function defined by Fig 4.2 with center triangle T;;; as NJ.

Using N%k, a C' cubic spline function on a regularly partitioned triangle is expressed as
Y(ijk)ere bijeNE- On a rectangle, we use tensor-product B-splines 3=, 3= bij N3 (u) N3 (v),
where {N%(t)}2”f] are C? cubic B-spline bases defined on the uniform knots t; = o, i =

0,1,---, 2. Here we have shifted N% so that t; is the center of the support supp(N%) =
23 23

((i —2)/27, (i + 2)/29).

4.2 F and VF on the edge of the volume
The function value F' and the gradient VF on the edge v;(A\) of a volume are defined by

Fri(\) =2x—1, VFwi(\) =(1- NN + AN,



Fig 4.3: For the regular partition of a triangle with resolution 27, the index set J° of the sub-triangles
are divided into J{Y and JJ. This figure shows them for ¢ = 2.

We normalize the normals such that N Nz-(o) = NI Ni(l) = 2, and so that the definitions of
F(v;(\)) and VF(v;()\)) remain consistent. Here N} is the transpose of N; = Vi(l) — Vz-(o). Note
Dy, F = NiT VF holds on the edge, where Dy, F' denotes the directional derivative of F' in the
direction N;.

4.3 I and VF on the face of the volume

The function and gradient on a face of a volume determine the position and tangent of the
constructed surface at the face. Since the C! construction of F in the volume requires the
function and gradient to be C? and C* on the face, respectively (see (4.6) and (4.8)), we construct
them in the following steps:

a. Construct a C' function and a C° gradient by averaging pre-constructed volume functions.
b. Using the result of step a, construct the C? function and the C' gradient.

4.3.1 (" function and C° gradient on the face

Let H;; be the face for the edge [V;V;]. The C! function ﬁ’ij and the C° gradient Vﬁ’ij on H;j
are defined by averaging the C'! functions and C? gradients on the two adjacent volumes. Hence
the tasks of this sub-section are to construct the volume functions and then do averaging. The
volume function constructed here is not our final result of F, since they are not smoothly and
even not continuously join at the boundaries of the volumes. However, their average on the
common face (regarded as a 2D function) are C* and C?, respectively.

Let [V;V;Vi] and [V;V;V]] be the two neighbor fat triangles of the edge [V;V}]. The case of
one or two neighbors are quadrilaterals is similar. On the volume D;j;, we construct a function
of the following form

Fijk = Biji + Siji
where B;jj, is of cubic BB-form and Sfjk is of spline form:

Bijk(b1,b2,b3,A) = > biyigis (A By iy, (b1, b2, bs),
i1+22+43=3



S%k(blab%b?n)\) = Z (ai1i2i3 + ’wi1i2’i3A)Niol—i2i3 (blabZab?))a
(i1,i2,i3) €7
where J7 = J7 — {(2°,1,1),(1,2%,1),(1,1,27)} and B}, ; (b1,bs,bs) = sy b1 b3 . The
BB-form part B is used to interpolate function values and gradients on the three edges of the
volume. The spline part S7; ik 1S a modification of B;j;; for achieving a better approximation in

the volume.
The coefficients of B;;; are defined by interpolating the data on the edge of the volume:

bzoo(A) = F(vi(A)), boso(A) = F(v;(N)), boos(A) = F(vg(A)),
boto(N) = F(ui(A)) + %[fuj(x) oV (V)

bao1, b120, bo21, bio2 and b2 are similarly defined. Also, b111 is defined by making the cubic Bjjy
approximate a quadratic: bi11 = 1(ba1o + bi2o + boo1 + bor2 + bio2 + boo1) — %(b300 + boso + boos)-

Sijk is determined by fitting the points inside the volume Djj and fairing. Let {q%o), Ty qgé)}
cT7On Gijr be the vertex list. Similarly, let {q%l), N q,gll)} cT7Wn Gijk. We compute the
coefficients of the splines by the following equations:

’ Wo I:F'Uk( g?abg?abl(’)?7>‘()) ( 1)t+1] =0, 321,27"'a“t7 t=0,1,
win Z;B%(;JSZ):O’ §=0,1,2; i=1,---,2° -1,
< wlnSTZaS('”“) =0, s=0,1,2; i=1,---,27 -1, (4.1)
8b~2 2 5 0 ~ <\ 2
// %S +9 0?8 9%8 n 0’S Lo ) 0?S ;
— — = min.
\ O0x? Koz Oy? Oy? a 0xdy
where (b g?,bg?,bg?, S’)) are the D;jp—coordinates of qgt), ng, s =0,1,2;4 =1,---,279 — 1, are

the given normals on the three boundaries of the mid-surface. These normals are computed

by averaging the mid-surface normals defined by B;jrx = 0. v are points on boundaries of
mid-surface. S(by,bo) is the mid-surface defined by Fyjx = 0. S(z,y) = S(bi(x,vy),b2(x,y)) with

(z,y) to be a local Descartes coordinate. We choose (Vk( ) 4 Vk( )) as the origin of this system,
%[(Vi(o) + Vi(l)) — (Vk(o) + Vk(l))] as the x-direction. The y-direction is chosen to be perpendicular

to x-direction and point to the side on which %(V]-(O) + Vj(l)) lies. Note that we do not use a
(b1,b2) coordinate system directly, because the energy defined in this system is not rotation
invariant. System (4.1) is solved in the least square sense. The first set of equations forces the
surface interpolating the points in the volume. The second and third sets of equations force
the mid-surface to have the given normals on the boundaries. The last minimization forces the
surface to have minimal strain energy. Also wy and w; are weights balancing the three sets
of constrains. The minimization leads to a nonlinear system of equations. The integrations
in the system are computed by a 6-point numerical quadrature rule (see [3], page 35) on each
sub-triangle. We solve the entire system by Newton iteration. Since the system behaves linearly,
it converges fast. It needs, in general, 2 or 3 iterations to achieve a single word-length precision.



After Fjj; and F;j have been defined, then we are ready to define
- 1 ~ 1
Fj=35 (Fijk|H¢j + Fijl|H¢j) , VEj=5 (VFijk|HU + VFijl|HU) :
If a four-sided polygon, say [V;V;V, V)], is a neighbor of [V;V}], then we define

Fijki = Bijki + Sjjp

with
Bz]kl u,v, )\ Z Z bzlzg B3( )
1= 022 0
Szgkl u, v, )\ Z Z Qiyig +w1112 )NZS(U)Ng?’(U)'
11=0120=0

The coefficients B;jki(u,v, A) are determined as follows:
boo = F(vi(})), bso = F(v;(N), bsz = F(vg(N), bos = F(ui(N)),
bio = i(X) + 5 (550) — A VE(i().

The other coefficients on the edge are similarly defined. Define

b1 = 5(b1o +bor) + §(bs1 + b13), baz = 5(bs2 + bas) + §(bao + bo2),
bor = 5(bgo + ba1) + 5 (b3 +bo1), biz = 3(boz + b13) + §(bs2 + bio).

The coefficients of S iiki are determined as that of
and fairing.

a

ik by fitting the data inside the volume D;jx;

4.3.2 (? function and C! gradient on the face
Now let us define the C? function Fj,, and C* gradient VFj,,. Let

Fym(t, )= F (0 (N)Hg () + [om () — w(N)]T VEF (0, () H (2)
+ F(vm(N)H3 (t) + [vm(A) — (N7 VF (0(N) H3 (2)

+ G (t) + i () A, (4.2)
with
H3(t) = 3t2 + 243, H3(t) =t — 2% + 13,
H3(t) = 3t2 — 243, H3(t) = t2 + 13,

¢lm()—226 ZiNG(t), P (t) = XT3 vilNG(D).

From the construction of Fj,,, we know that it has the same form as Fy, defined by (4.2)
but with different ¢7 . and vf, that are C* cubic splines. We denote them as ¢lm and d’lm Now
we determine ¢7 and vf by approximating ¢7 and ¢ in the least square sense:

/0 [66(8) — $a0)] dt = min, /0 (65 (8) — 9] dt = min. (43)

9



Each of them leads to a system of linear equations. The integrations in these systems are
computed by Gauss-Legendre quadrature rule on each sub-interval and then summed up. Let

di(A) = vm(A) —ui(A), dao(t) = (1 = )N, + tNm, d3(t,A) = di X do.

Then we define VFy,,(t,A) by the following conditions:

OF (T, A
AV E(1,0) = 2Tt
BV (1, 3) = ), (4.4

A5V Fim (£, A) = df V Fim (£, 1),
where VFv’lm(t, \) is a C! approximation of V Fj,, (£, \):
VEim(t,) = (1 = ) VF (0 () + tVE (0m(N) + ¢ (8) + G5 (DA,
with ¢f,,(t) = 75% siNG (1), 65,(1) = S5 9iNG(¢) - ¢f, and ¢, are determined by

1 ] ~
/ ||v-Flm(t7/\Z) - V-Fl’m(ta )"L)Hth = min, for Ao = 0, Ar=1
0

It might be necessary to point out now that Vﬁ’lm cannot be used as VFj,, even though
it is C', since it may not satisfy the first two conditions of (4.4). It is clear that, these two
conditions must be satisfied because Fj,, is previously defined. Though the right-handed side of
the third equation of (4.4), which is a directional derivative, can be any value, it is reasonable to
choose this value by approximating the existing information about V Fj,,. Hence we use VE,,
to compute this directional derivative.

T
Since [|ds|[2[dy, da, ds] 1 = [di [|da]|? — da(dT da), da|dy | — di (dT da), 5], (4.4) implies

1

V= e

{{dilldall? — da(df dy)| P + |dolda[|* — v (d dy)] Q + dsR},  (4.5)
where P(t,\) = 22 o4 )) = 2EmbA) Ry 3y = dTV Fyp(t, A).

4.4 I on the volume D;;j,

Now we are ready to define F' within the volumes. Let [V1V2V3Vy] be a typical fat quadrilat-
eral. Let F, and F, be defined by the cubic Hermite interpolation in the u and v directions,

respectively:
Fu(ua v, )‘) = HS(U)FM (Ua )‘) + H?(U’)du (Ua )‘)TVFM(Ua >‘)
+ H3(u)Fo3(v, ) + H3(u)dy (v, )TV Fy3(v, M),
Fv(ua v, )‘) = Hg (U)FIQ (’U,, A) + H%(U)dv (U, A)TVFU(U, A)
+ H3(u)Fy3(u, \) + Hs (v)dy (u, \)T VFy3(u, \),



where dy (v, \) = Haz(v, A) — Hia(v, N), dy(u, A) = Haz(u, ) — Hi2(u, A). Then we define
wy Fy (4,0, A) + wyFy(u, v, A)

F) (u,v,\) = pr—— + R (u, v, \) (4.6)
with
20 -229-2
(w0, 0) = D Y (@iyiy + wiiy NG 5(u) N3 (0),
11=2 12=2

where w,, = [(1 — v)v]?, w, = [(1 — w)u)?2. The last term R°(u,v,)) in (4.6) is referred as

correction term, which is used to fit the data in the volume and it does not change the surface
on the face of the volume. Let {VS(T)} C Goga NTT) (r=0o0r1), and (ugT),ng), /\ET)) be the

Dq934—coordinate of VS(T). Thus a;,;, and w;,;, are defined by

w [F(U)( (r) (T)’ A7)y — (_1)T+1] =0,
// 325 L, 80 (%S 2+2(1_ (28 o (47)
'uau2 Ov? Ov? B\ Guaw ) —™™
where S(u,v) is the mid-surface defined by F(?)(u,v,\) = 0. The first equality is in the least

square sense. The weight w is put to address the importance of interpolating the points in the
volume.

4.5 F on Volume D;;;
Let [V1 V23] be a typical fat triangle. we Define

3
F (b1, by, by, \) = > wiDj(b1, by, b3, A) + T (by, by, b3, \) (4.8)
i=1

with

TU (bla b27 b37 A) = (a'i1i2i3 + wi1i2i3A) 1,11213 (bla b2’ b3)
(t1,02,i3)€JS
where w; = —gnﬁﬁij, Jg ={(@,5,k) €J?:i>1,7>1,k> 1},

2
k=1 J#kbj

Dy(b1, b, b3, X) = F(vs(A))H3 (b;) + F(pi(b1, ba, bs, A)) H (bs)

+ d;(b1, by, b3, \) T VF (v;(\)) H3 (b;)

+ d;(b1, by, b3, )TVF(pZ(blab27b3a \)H? (by),
pilbr, by, ) = 120N + 1)
di(b1, b, b, A) = — lfjb esi(\) — lﬁcb ers(V),
eji(A) = v;(A) —vi(N), eri(N) = vr(A) — vi(N),

11



and (4,7, k) € {(1,2,3),(2,3,1),(3,1,2)}. Again, the last term in (4.8) is called the correction
term. The parameters a;,;,i, and w;, ;,i, are similarly defined as a;,;, and w;,;, in (4.6) by fitting
and fairing.

Fig 4.4: Smooth fat surface construction: Figure (b) is the smoothing of Figure (a). Polygon (a), that
has 3296 fat triangles and 389 fat quadrilaterals, is the decimated and merged result of a mesh that has
fat 25552 triangles. Note the adaptive nature: More fat triangles are used at the parts of the ears, eyes
and mouth. To capture sharp features, fat triangles are not merged at the parts of the neck, eyes and
mouth. The brain model consists of 40884 fat triangles.

4.6 Basic Results
Theorem 4.1 The function F9) constructed is C* on > Dijk U Djjpy-

Proof. First note that the function F” is C! within each of the volumes, since the gradient
on the faces of the volumes is C' and the correction terms is C! in the volume. Second note
that the function values and gradients of the correction term R” in (4.6) and the term 7 in
(4.8) vanish on the boundary of the corresponding volume. Hence these terms do not influence
the continuity of the function F°. On each edge of the volumes, the C'! continuity of F’ can
be similarly proved as Theorem 4.1 of [2]. Hence, a fact, that needs to be proved, is that the
function values and gradients of F° on the boundary of the volumes coincide with function
values and gradients defined in section 4.3. This fact will guarantee that the function is C' on
the boundary faces. For the 3-prisms, this fact could be proved similar to the proof of Theorem
4.1 of [2]. Hence the remaining is to prove the fact for the 4-prisms. Consider the function value
and gradient of F on the edge u = 0 for a typical fat quadrilateral [V;VoV3Vy]. It follows from
(4.6) that

F7(0,v,\) = Fy,(0,v,\) = Fia(v, \).

12



Fig 4.5: Different resolution constructions of smooth fat surfaces. Three mesh levels (h direction) with
fixed 0 = 3 are shown. From the left to the right, they have 249, 213 and 95 fat triangles and have 334,
206 and 64 fat quadrilaterals, respectively.

Hence the function value is what we require. Computing partial derivatives of F'° and using the
relation (4.4), we have

OF° T
= F
ou du(’l),A) \% 14(’1),)\),
OF° O0Fy T
v = v = d1(>\) VF14(’U,A),
OF°  0OFy4 T
= = F A).
o~ on ) VA
Differentiating (2.1) about z,y and z, we have
du v g_A
T T 1
o 06 55| 1, (0, 0), di (), do ()]}

Computing partial derivatives of F' with respect to z,y and z and combining the two sets of
equations above, we obtain VF? = VFy4(v,\). Hence, F° is C*. <

To show the smoothness of function F?, Fig 4.4 shows a construction example. Figure (b) is
the fat surface construction of the input in figure (a). Fig 4.5 gives a multiresolution construction
of the hypersheet surface in the mesh direction (h direction). Fig. 2.1 (d) and (e) show two
resolutions in the spline levels (p direction) with o = 1, 3, respectively.

5 Sharp Features of the Constructed Surfaces

To capture sharp features, we need to mark certain edges as sharp. To this end, we compute
dihedral angle 8 = 7 — 6 for the two incident faces, for each edge of the triangulation T(® and
T, If § < , then this edge is marked as a sharp edge. Here 6; is the angle between the two
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Fig 5.1: Grouping the triangles by the sharp edges (thick lines) and assigning one normal for each group.

Fig 5.2: Left: the input polygons with some edges are marked as sharp. Right: the constructed fat
surfaces with sharp features. There are four fat edgs (inner and outer) on the top polygon are marked as
sharp. On the bottom polygon, only four outer edgs are marked as sharp.

normals of the two triangles and « is a threshold value for controlling the sharp feature. After
marking the edges, the vertices also need to be marked. If there exist sharp edges incident to
a vertex, then we say this vertex is sharp, otherwise, it is non-sharp. For a sharp vertex, the
normal that has been assigned before needs to be re-computed. Now the triangles around a
sharp vertex are divided into some groups by the sharp edges (see Figure 5.1). For each group,
we assign a single normal for the vertex. This normal could be computed by the weighted
average of face normals. The weight is chosen to be the angle of the edges that are incident to
this vertex. In the construction of surface patch for one triangle, there is only one normal is
used for one vertex of the triangle. This normal is the vertex normal if the vertex is non-sharp,
otherwise the normal is the group’s normal.

Two examples are shown in Fig 5.2. The left two are input polygons, the right shell bodies
are the corresponding output. In the star-like polygon on the top-left, the left four inner and
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outer peak edges are selectively marked as sharp. The fat surface on the top-right exhibit the
sharp feature. For the bottom-left polygon, the left four peak edges of the outer polygon are
marked as sharp, no edge is marked for inner polygon. The figure on the bottom-right presents
the outer-sharp, inner-smooth nature. Another example that has sharp feature is shown in Fig
5.3.

Fig 5.3: Left: the input polygon, that has 1914 fat triangles and 836 fat quadrilaterals, with some edges
are marked as sharp. Right: the constructed fat surface with sharp features. To show the fat nature, the
shell that is closed is cutaway on the top to show the interior.

6 Display of the Fat Surfaces

Often we wish to evaluate the surface F = « for a given o € [—1,1]. Let [V;V;Vi] be any fat
triangle. Then for each (bi, by, b3), b; >0, 3 b; = 1, determine \'*) = A (b by, b3) such that

min min
Ejk(blab2,b3aA$z)n) = aq,
‘Aﬁj}n - %‘ — min{‘)\ - %‘ : Fye(bi,bo, b3, ) =a} .

The surface point is defined by p = p(b1, b, bs, )\S;-)n). The main task here is to compute /\7(10;)”
for each (by,bo,bs). It follows from (4.8) that D;(b1, by, bs, ) is a rational function of A. It is of
the form

No + N1 + NoA? + N33 + NyA*

Do+ D)+ D2>\2

Fo+ FIA+ F)? + (6.1)

Hence ¢()) := Fj;x (b1, bo, b3, A) is a rational function of A. The nearest zero to  of ¢(A) — « is
: (a)

the required A, ;.

Although ¢(A\) — @ = 0 is a nonlinear algebraic equation, ¢(A) — a can be approximated by

a polynomial of degree at most 2, since the rational term in (6.1) is small compared with the
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polynomial part. Hence, taking the root of the polynomial part as an initial value, and then
using Newton iteration, we obtain the required solution.

For the four sided polygon [V;V;V; V], the surface point Fj;(u,v,\) = « is evaluated simi-
larly.

7 Conclusions

Using Bézier, triangular form and tensor form trivariate spline functions, we construct a C*
function F? on a collection of 3-prisms and 4-prisms, such that the contours F° = —1 and
F? =1 approximate the given input triangulation pair, which represent the inner and outer
boundaries of a shell body. Apart from fitting the data clouds, the spline functions also serve
to fair the shape of the constructed surface. The implementation and test examples show that
the proposed method for fat surface construction is correct and fulfills our initial goals.
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