
3D RGB Image Compression for Interactive
Applications

CHANDRAJIT BAJAJ
The University of Texas at Austin
INSUNG IHM
Sogang University
and
SANGHUN PARK
The University of Texas at Austin

This paper presents a new 3D RGB image compression scheme designed for interactive real-time
applications. In designing our compression method, we have compromised between two important
goals: high compression ratio and fast random access ability, and have tried to minimize the over-
head caused during run-time reconstruction. Our compression technique is suitable for applications
wherein data are accessed in a somewhat unpredictable fashion, and real-time performance of de-
compression is necessary. The experimental results on three different kinds of 3D images from
medical imaging, image-based rendering, and solid texture mapping suggest that the compression
method can be used effectively in developing real-time applications that must handle large volume
data, made of color samples taken in three- or higher-dimensional space.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: data compaction
and compression; I.3.3 [Computer Graphics]: Picture/Image Generation; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism – color, shading, shadowing, and texture;
I.4.2 [Image Processing and Computer Vision]: Compression (Coding)– approximate methods

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Data compression, Haar wavelets, image-based rendering,
interactive real-time applications, medical imaging, random access, 3D texture mapping, 3D volume
data

C. Bajaj’s and S. Park’s research was supported in part by NSF grants ACI-9982297, DMS-9873326,
and a Sandia/LLNL grant (BD-4485)
I. Ihm’s research was supported in part by the University Foundation Research Program 2000
grant from the Ministry of Information & Communication of Korea and the University of Texas
TICAM fellowship funds during his sabbatical.
Authors’ addresses: C. Bajaj, Department of Computer Sciences, The University of Texas at Austin,
Austin, TX 78712; I. Ihm, Department of Computer Science, Sogang University, Seoul, Korea; S.
Park, TICAM, The University of Texas at Austin, Austin, TX 78712.
Permission to make digital/hard copy of part or all of this work of personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwide, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 0730-0301/01/0100–0010 $5.00

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001, Pages 10–38.

3D RGB Image Compression for Interactive Applications • 11

1. INTRODUCTION

Volumetric or volume data in computer graphics and scientific visualization
are a discrete collection of scalar or vector values sampled in n-dimensional
space, where n is typically greater than or equal to 3 [Kaufman 1991]. Such
data are often produced by volumetric imaging scanners, like CT and MRI, as
well as the output of physical simulations. 3D texture maps, which are created
by evaluating solid texture functions on a three-dimensional grid, are another
example of 3D volumes [Ebert et al. 1994]. Four dimensional space-time volume
data appears frequently in computational fluid dynamics and global climate
simulations [Nielson et al. 1997]. Sampled light fields or lumigraphs created
for image-based rendering are also volume data in 4D [Levoy and Hanrahan
1996; Gortler et al. 1996]. Interactively handling and visualizing such datasets
has become increasingly important.

Typical volume data are often very large in size, ranging from several hun-
dred megabytes to several dozen gigabytes. Developing interactive real-time
applications with such data assumes, implicitly or explicitly, that the entire
data can be loaded into main memory for efficient run-time processing. This
places enormous burden on in-core storage space as well as transmission band-
width. One way to alleviate this problem is to store compressed representa-
tions. There are several data compression techniques, most of which are geared
towards achieving the best compression rate with minimal distortion in the
reconstructed images [Gonzalez and Woods 1993; Sayood 1996] (High com-
pression rate and visual fidelity). Such compression methods, however, often
impose constraints on the random access ability, which makes them inappro-
priate for interactive graphics applications especially where it is difficult to
predict data access patterns in advance (Fast decoding for random access).
For instance, variable bitrate or differential encoding schemes, such as the
Huffman or arithmetic coders coupled to block JPEG or MPEG schemes, do not
lend themselves to efficiently decode individual data items that are accessed in
a random pattern in interactive exploration.

In order to be used in developing real-time or, at least, interactive-time graph-
ics applications, a compression method must satisfy some requirements. In
addition to the two aforementioned issues, we consider the following proper-
ties, as similarly discussed in Beers et al. [1996] and Levoy and Hanrahan
[1996]:

— Multi-resolution representation. It is highly recommended to choose a com-
pression technique that additionally provides a multi-resolution representa-
tion. This offers the basis for LOD (Level of Detail) processing of compressed
data.

— Effective exploitation of data redundancy. In general, n-dimensional vol-
ume data exhibit redundancy in all n dimensions. A compression scheme
devised for 2D images, for example, could be applied to compress each slice
in 3D volumes; however, a good compression technique must be able to fully
exploit data coherence in all dimensions to maximize compression perfor-
mance.

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

12 • C. Bajaj et al.

— Selective block-wise compression. In some applications like 3D texture
mapping, as will be demonstrated in Section 4.3, it is more effective to
selectively compress a dataset block-wise rather than the entire dataset in
totality. It is very desirable that a compression scheme includes this selective
compression capability in its encoding algorithm for better compression.

Vector quantization [Gersho and Gray 1992], which meets some of the
above five properties, has been popular in developing interactive real-time
applications mainly because it supports fast random decoding through simple
table lookups. Recent applications of vector quantization in the computer graph-
ics field, include compression of CT/MRI datasets [Ning and Hesselink 1993],
light fields [Levoy and Hanrahan 1996], and 2D textures [Beers et al. 1996].

In an effort to provide a compression method that supports fast decompres-
sion to random access as well as achieves fairly high compression ratios, we
have developed a compression scheme for 3D volume data whose voxels have
associated RGB color (vector) attributes. In this paper, we extend our previ-
ously published work on compression of volume data with grey-scale density
values [Ihm and Park 1998; 1999]. The new method presented in this paper
employs a new encoding technique, called zerobit encoding, which significantly
improves the decompression speeds compared to the previous results. Unlike
the previous work on volume compression (e.g., [Fowler and Yagel 1994]), it is a
lossy compression method, based on a 3D wavelet transform, and offers a multi-
resolution representation of volume data in addition to fast decompression to
random access.

The rest of this paper is organized as follows: In Section 2, we outline the
three steps of our compression scheme. In Section 3, we provide details of a
new zerobit encoding technique. Experimental results on three different kinds
of 3D images that are found in medical imaging and real-time rendering are
reported in Section 4. Finally, we present conclusions and directions for further
research in Section 5.

2. PRELIMINARIES

2.1 3D Images, Unit Blocks and Cells

In this paper, a 3D image refers to a 3D volume dataset, defined on a regu-
lar grid, whose voxel values are 24-bit RGB colors. It is naturally constructed
from a sequence of gradually varying 2D images, like movies and the Visible
Human RGB cryosection images [NLM 1997], or can be formulated from high-
dimensional sampled data, such as light fields [Gortler et al. 1996; Levoy and
Hanrahan 1996] and space-time volume data. It can also be built by sampling
a procedurally defined solid texture in three-dimensional space [Ebert 1994].
In our framework, a 3D image is partitioned into a set of subvolume of size
16 × 16 × 16, called unit blocks, which are again subdivided into subblocks of
size 4 × 4 × 4, called cells. As will be explained in the later sections, cells are
the basic unit for our 3D image compression scheme. One of the desirable prop-
erties we expect a 3D image to have is that its RGB colors have some degree of
spatial coherence, at least, within cells.

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 13

Fig. 1. The three stages of our compression scheme.

A typical transform coding algorithm consists of three major stages: trans-
form, quantization, and encoding [Fournier 1995; Shapiro 1993]. An input
dataset is passed through some transformation to represent it using a different
mathematical basis in the hope that this new representation will reveal the cor-
relation that exists in the data. The decorrelated coefficients produced in this
stage, are quantized to produce a stream of symbols, each of which corresponds
to an index of a particular quantization bin. The last stage encodes the stream
of symbols and attempts to losslessly represent it as efficiently as possible.
Our compression scheme is along the similar lines as is illustrated in Figure 1.
In the remainder of this preliminary section, we briefly explain our adapted
solutions for the first two stages, and describe our new encoding scheme, called
zerobit encoding, for the last stage in Section 3.

2.2 3D Haar Wavelet Transform

In the transform stage, we apply a discrete Haar transform that is the sim-
plest wavelet basis [Fournier 1995; Schröder and Sweldens 1996; Stollnitz et al.
1996]. The Haar wavelet is simple and computationally cheap because it can
be implemented by a few integer additions, subtractions, and shift operations.
It yields a multiresolution representation for discrete data in a fashion that is
very natural in computer graphics. The potential for using the 3D Haar wavelet
in approximation of 3D volumes was discussed earlier in Muraki [1992; 1993].
The basis is quite effective in applications that require fast decomposition and
reconstruction though it does not perform as well in terms of filtering qual-
ity as other popular wavelet bases, such as Daubechies wavelets. Westermann
[1994] tested the Haar and Daubechies bases in approximating the volume
rendering integral in multiresolution spaces for the purpose of reducing the
amount of memory needed during the rendering process. As expected, it was
shown that the Daubechies wavelets achieved higher compression rates than
the Haar wavelet did. Their complexity, however, increased the rendering time
to a great extent, implying the Haar basis is a better choice for the interactive
applications where the response time is most important.

The 1D Haar wavelet transform is extended naturally into higher dimensions
simply by taking tensor products of 1D filters. Consider a 2 × 2 × 2 grid of a
3D image whose eight voxel colors are labeled as ci j k , 0 ≤ i, j , k ≤ 1. The
Haar transform in 3D is expressed as in Figure 2, where clll represents their
average, and the remaining seven values on the left side are detail, or wavelet,
coefficients, determined by filtering sequences. For example, chlh is obtained by

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

14 • C. Bajaj et al.

Fig. 2. A 3D Haar transform (decomposition).

Fig. 3. An inverse 3D Hàar transform (reconstruction).

applying the high-pass or detail filter h, the low-pass or smoothing filter l , then
the high-pass filter h, along the three principal axes, respectively. As a result of
an application of the 3D Haar transform, the eight coefficients are decomposed
into one average and seven detail coefficients.

The original values can be reconstructed by its inverse transform (Figure 3).
In our framework, coefficients in the transforms are 3-tuples whose elements,
corresponding to red, green, and blue channels, respectively, are represented as
three unsigned characters. Hence, a vector addition/subtraction in the inverse
transform is efficiently implemented in three integer addition/subtraction
operations. There is a lot of redundancy among arithmetic operations in the
eight reconstruction formulae. For instance, the subexpression clll + cllh ap-
pears four times in computing c000, c001, c010, and c011, and clll + cllh+ clhl + clhh
appears twice in restoring c000, and c001. By avoiding recomputing such com-
mon subexpressions, the inverse transform can be performed in 24 vector ad-
dition/subtraction operations.

Now consider a 4× 4× 4 cell C of a 3D image. When the 3D Haar transform
is applied to each of eight 2 × 2 × 2 subblocks in C, eight sets of transformed
coefficients, consisting of an average value and seven details, are generated. By
repeating the transform to the eight averages, the cell C is further decomposed
into the next coarser scale of wavelet coefficients. The 64 coefficients of C after
two consecutive applications of the forward transform can be organized in a
hierarchy, called decomposition tree, depicted in Figure 4, which consists of an
average c, one set of detail coefficients {d0 j , j = 1, . . . , 7} on level 0, and eight

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 15

Fig. 4. A two-level wavelet decomposition of a 4× 4× 4 cell C.

additional detail sets {dij , i = 1, . . . , 8, j = 1, . . . , 7} on level 1 that are associ-
ated with the eight 2×2×2 regions. The hierarchical structure of a transformed
cell Cwvlt can be represented in a set notation as Cwvlt = {c, {d01, d02, . . . , d07},
{{d11, d12, . . . , d17}, {d21, d22, . . . , d27}, . . . , {d81, d82, . . . , d87}}}, in which c is
called an average node, and each set of seven detail coefficients as a detail node.

Note that eight averages of the 2× 2× 2 regions are implicitly represented
in the decomposition tree, and are reconstructed using the average node and
detail node on level 0. The original voxel colors are then reconstructed using
the computed averages and eight level-1 detail nodes. In our scheme, two ap-
plications of the 3D Haar transform are thought to be enough, considering that
a smaller number of applications of inverse transform results in a faster recon-
struction, and that most of the data 63/64 (=1−(1/82)) are already decomposed
into detail coefficients.

2.3 Truncation of Insignificant Wavelet Coefficients

After the Haar transform, voxel values of a 3D image are decorrelated, and the
energy in the original data is packed into a relatively small number of coeffi-
cients. The information in a cell C is expressed as a weighted sum of wavelet
basis functions whose weights are stored in its decomposed cell Cwvlt . The the-
ory behind wavelet compression tells that the best way to pick a fixed number
of wavelet coefficients, making the resulting error in the L2 norm as small as
possible, is simply to select coefficients with the largest norms, and replace
the rest by null values [Chui 1992; Daubechies 1992]. The original information
is thus approximated by a smaller number of nonzero wavelet coefficients.

Our compression scheme is designed to use about 1 to 7 per-cent of wavelet co-
efficients, and truncate the remaining. Hence, after the wavelet transform and
truncation, 93 to 99 per-cent of coefficients become null. The level of wavelet
compression is easily controlled by specifying a ratio λ of nonzero coefficients
that survive the truncation. Then, a proper threshold value τ needs to be speci-
fied to cut off smaller wavelet coefficients. In our framework, we specify a target
ratio λ̄ of nonzero wavelet coefficients to be used, then corresponding threshold
values are automatically computed. For a given λ̄, τ can be computed by

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

16 • C. Bajaj et al.

selecting the (λ̄ · the total number of voxels)-th largest coefficient of the entire
dataset.

When the 3D image is very large, as in our case, implementing the selection
algorithm becomes complicated. In our work, we propose to use an approximate
method to compute a threshold value that is easier to implement. Suppose that
a 3D image has resolution nx × ny × nz (for convenience’ sake, assume that nx ,
ny , and nz are multiples of 16.). The 3D image is partitioned into a collection
of unit blocks of size 16× 16× 16. We first apply a Haar wavelet transform to
each unit block i, and compute the ratio ri of nonzero wavelet coefficients to the
entire number 4096 (=163) of coefficients in unit blocks. This ratio is a good
approximate measure that indicates how complicatedly voxel colors change in
the unit blocks. The total number of nonzero coefficients to be used for the entire
data is thus adaptively distributed to unit blocks according to their complexity.
It is reasonable that more nonzero coefficients are assigned to unit blocks with
higher ratios.

For an image of size nx × ny × nz , nx · ny · nz · λ̄ nonzero coefficients are to
be distributed to nx/16 · ny/16 · nz/16 unit blocks. For unit block i, we allocate
ni = ri/

∑
j r j ·nx ·ny ·nz ·λ̄ coefficients, where the weight ri/

∑
j r j is the relative

measure of data complexity. Then, the nith largest wavelet coefficient becomes
the threshold value τi of the unit block, and coefficients smaller than τi are
replaced by zeros. We find that this adaptive decision of thresholds diminishes
the “blockiness” effect that often occurs when a single threshold value is applied
to the entire wavelet image. Notice that the actual ratio λ is slightly different
from the target ratio λ̄, since unit blocks often contain more than one wavelet
coefficient having the same value as their thresholds.

2.4 Quantization of Wavelet Coefficients

During decomposition, we use floating-point numbers to calculate average
and detail coefficients as correctly as possible. To achieve a high compres-
sion ratio, nonzero wavelet coefficients, surviving from the truncation, are
vector-quantized. In our scheme, 24-bit coefficients are quantized into 8-bit in-
dices with codebooks having 24-bit codewords using the median-cut algorithm
[Heckbert 1982]. While each component of RGB colors ranges from 0 to 255, its
averages fall between 0 and 255, and details between−128 and 127. To take care
of two different ranges, the average and detail coefficients are vector-quantized
using two codebooks, called average and detail codebooks, respectively. Further-
more, since it is not space-efficient to have distinct codebooks for each cell, we
have a group of cells in a contiguous region share codebooks. The experimental
experience tells that a rather large contiguous region can share codebooks with
only little degradation of reconstructed image quality.

3. THE ZEROBIT ENCODING SCHEME

3.1 Spatial Coherence in Wavelet Coefficients

In this section, we describe the final encoding stage of our compression scheme.
The encoding stage takes the symbol stream from the quantizer, and attempts

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 17

Fig. 5. Ratios of null detail nodes.

to represent the data stream as efficiently as possible without loss. Popular vari-
able length coders, such as Huffman or arithmetic coders, work very well. How-
ever, such techniques are not appropriate when individual data items must be
quickly decompressed in an arbitrary sequence. An encoding technique, called
zerotree encoding [Shapiro 1993], and its variations [Said and Pearlman 1993;
Chen and Pearlman 1996] have proven particularly useful in combination with
wavelet transform coding, but is too slow for interactive applications. In Ihm
and Park 1998; 1999], an effective encoding technique was proposed that sup-
ports fast random access to compressed density data. In this paper, we extend
the technique to compress 3D images with RGB colors, and improve its per-
formance, based on the property of wavelet coefficients, to achieve a lot faster
random access as well as higher compression ratio without deteriorating image
quality.

After the decomposition process, detail coefficients with smaller magnitude
are zeroed out, and the non-zero coefficients are quantized. When 93 to 99 per-
cent of wavelet coefficients are cut off, only 1 to 7 per-cent of 64 coefficients
of a cell contain nonzero values. As a result of quantization, nonzero coeffi-
cients are represented by one-byte indices to shared codebooks. A cell is now in
the form C̄wvlt = {c̄, {d̄01, d̄02, . . . , d̄07}, {{d̄11, d̄12, . . . , d̄17}, {d̄21, d̄22, . . . , d̄27},
. . . , {d̄81, d̄82, . . . , d̄87}}}, where each element is either null or an index to code-
books. In the encoding stage, C̄wvlt must be encoded as efficiently as pos-
sible with furthermore a guarantee of fast decoding to random access. In
particular, the binary information, called the significance map, that denotes
whether each element of C̄wvlt is null or not, must be efficiently encoded.
As shown in [Shapiro 1993], the cost attributed to encoding the significance
map represents a significant portion of the bit budget at a low bit-rate, and
is likely to become an increasing fraction of the total cost as the target rate
decreases.

A careful observation on the values of C̄wvlt suggests an efficient encoding
scheme that offers much faster reconstruction as well as higher compression
ratio than in Ihm and Park [1998; 1999]. A large portion of wavelet coefficients
would be replaced by null values during truncation. Considering the usual

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

18 • C. Bajaj et al.

spatial coherence in 3D images, it is very probable that the null coefficients
exist in thick clusters. We observe that the ratio of null detail nodes in the de-
composition trees where seven coefficients are all zero, are fairly high. Figure 5
shows sample statistics for two different datasets in which the ratios of null
detail nodes are measured for several target rates. This empirical evidence re-
veals that the ratios of null detail nodes increase as the target ratio decreases,
and in particular, that those for level-1 nodes are very high.

In our old encoding scheme [Ihm and Park 1998; 1999], we simply used 64 bit-
flags, or eight bytes, to store all the significance information of 64 transformed
coefficients regardless of their values. In the new encoding scheme, a two-stage
significance map system is used: There are 9 detail nodes in a cell C̄wvlt , one
on level 0 and eight on level 1. The information whether detail nodes are null
or not, is represented in 9 bits (stage 0), called zerobits. For each nonnull detail
node, the significance information of its seven detail coefficients is stored in
additional seven bits (stage 1). Using this two-stage system for significance
maps improves the encoding technique in two ways. First, the cost for encoding
significance maps is reduced. When a detail node is not null, an extra bit for
zerobit as well as 7 stage-1 bits for significance information becomes necessary.
However, a large portion of detail nodes are null as observed in Figure 5, and
they can be represented using only one zerobit per detail node, hence saving
the encoding cost.

More significantly, the reconstruction process also becomes much faster. In
order to reconstruct a voxel in a cell, the inverse Haar transform must be applied
twice. Conceptually, this corresponds to traversing the decomposition tree from
the root to a leaf. First, the average c and the seven details {d0 j , j = 1, 2, . . . , 7}
on level 0 are used to reconstruct the average ci (i = 1, 2, . . . , 8) of the ith
2× 2× 2 region where the voxel belongs. Then, ci and the details {dij , j =
1, 2, . . . , 7} on level 1 reconstruct the voxel value. When a zerobit of a detail node
indicates that the node is null, whether it is on level 0 or 1, neither decoding
of its seven details nor application of the inverse transform is necessary. Since
all the detail coefficients are zero, the average value is simply propagated to
its child nodes without extra computations. As our experimental results show,
this provides large savings in the reconstruction computation.

3.2 Zerobit Encoding

Now we describe our zerobit encoding technique in detail (see Figure 6). To
compress a 3D image, it is first partitioned into a set of unit blocks that are
subblocks of size 16 × 16 × 16. A unit block contains 64 cells of size 4 × 4 × 4,
the basic units for our 3D image compression scheme. After going through the
first two compression stages, they are encoded as follows: For each unit block,
we allocate one byte of memory to store the number of nonnull cells in the unit
block that contain at least one nonzero cell (Number of Non-Null Cells (NNNC)).
When NNNC is zero, it means that all the coefficients in the 16×16×16 region
are zero, and this void region is encoded in one byte.

If the unit block contains at least one nonnull cell, its 64 cells are enumerated
in left-to-right, front-to-back, and top-to-bottom fashion, identifying nonnull

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 19

Fig. 6. The Zerobit Encoding scheme.

cells with nonnegative integers in increasing order. To indicate whether a cell
is null or not, we use a Cell Bit Flag Table (CBFT), made of four unsigned
short integers (64 bits), in which 64 bit flags are turned off if and only if their
corresponding cells are null. When a voxel is reconstructed, the bit flag of a
cell that contains it, is checked to see if the cell is empty, in which case its
decompressed color is black. CBFT makes it possible to quickly get rid of void
4× 4× 4 regions of nonnull unit blocks in the encoding stage.

In case a cell is not null, suitable information is kept for reconstruction of
voxel colors. Recall that a nonnull cell C̄wvlt has elements whose values are
either null or indices to codebooks. In order to keep this information, an addi-
tional chunk of memory, called cell information, is allocated per nonnull cell,
and is stored in Cell Information Array (CIA).

Our primary goal is to encode a nonnull cell C̄wvlt as efficiently as possible
so that the encoding technique offers both fast random access and high com-
pression ratio. There are two kinds of indices in C̄wvlt , one average index and
possibly several nonnull detail indices, which point to the Average and Detail
codebooks, respectively, in Shared Codebooks (SC). The average index is stored
in the average index field (one byte) of cell information, and nonnull detail in-
dices are enumerated in a proper order in a byte stream, called Detail Index

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

20 • C. Bajaj et al.

Stream (DIS). Since DIS is shared by several nonnull cells, the address of the
first detail index of C̄wvlt is remembered in a two-byte variable detail offset of
cell information.

The positional, or significance, information of 63 detail coefficients in C̄wvlt
are encoded through zerobits and a significance map. Nine bits are necessary
to store zerobits of nine detail nodes, one for level-0 node, and eight for level-1
nodes. The eight level-1 zerobits are stored in a byte. Each seven-bit significance
map of nonnull detail nodes is also put in a byte. In our encoding, eight bits
are allocated, and the most significant bit simply indicates the level of detail
nodes, 1 for level 0, 0 for level 1, though this information is not necessary in
decoding. The level 1 zerobits, followed by a significance map of non-null detail
nodes of C̄wvlt , are stored in another byte stream, called Zerobit and Significance
Map Stream (ZSMS). The address of the first byte is then stored in a two-byte
variable zerobit offset of cell information. The position of zerobit and significance
map flag of a coefficient d̄ i j can be computed quickly by a few table accesses as
explained in the next subsection. Note that at most 640 bytes (64 cells in a unit
block and at most 10 bytes per cell) are necessary for ZSMS. Since the most
significant bit of zerobit offset is always free, we put the level-0 zerobit there.

In order to understand the structure of ZSMS clearly, consider the eighth
nonnull cell in Figure 6. In this example, the first bit of zerobit offset indicates
that the level 0 zerobit is 1. The level-1 zerobits are always stored in the byte,
indexed by the remaining bits of zerobit offset (the 24th byte in this case). There
are three nonnull detail nodes, one for level 0 and two for level 1. Their signifi-
cance maps follow the level-1 zerobits and are stored in the entries from 25 to 27.

3.3 Reconstruction and Its Costs

The reconstruction process consists of two steps. All the coefficients necessary
for reconstruction are decoded from the zerobit-encoded structure, then the in-
verse 3D Haar transform is applied to compute voxel colors. When the color
of a voxel v is to be reconstructed, we go to the unit block that contains v. If
its NNNC is zero, the color is simply null, that is, black ([case 1]). Otherwise,
the bit flag of a cell C that contains v, is looked up in CBFT. In case it is zero,
the color is again null ([case 2]). For voxels in a void region, say background, the
reconstruction cost is just one or two variable accesses and address computa-
tions.

If the bit flag is on, it means that the voxel v belong to a nonnull cell, and
additional computations are necessary ([case 3]). First, the address or identi-
fication number of cell information for C in CIA is calculated by counting the
number of bit 1 in CBFT that precedes it in the cell enumeration. To count
the number quickly, we use a precomputed counting table with 216 = 65,536
entries. Indexed by a two-byte unsigned short, corresponding to 16 bit flags of
CBFT, the table returns the number of 1 bit in the index. The address can be
obtained efficiently by accessing the table only a few times, 2.5 on average.

3.3.1 Decoding of Coefficients. Once we know the address of the specific
cell C, we must decode all the necessary coefficients before the application of
the inverse Haar transform. The decoding algorithm is described in Figure 7.

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 21

Fig. 7. The coefficient decoding algorithm.

Suppose that we are decoding the index of a coefficient x contained in a cell C.
Once the index is decoded, its value can be obtained from SC. If x is an average
coefficient, its index is simply found in average index of cell information for
C ([case 3a]). If x is a detail coefficient dij , that is, the j th detail of the ith
detail node, we first check if the ith detail node is null, by accessing its zerobit
which can be quickly fetched using zerobit offset. If the zerobit is off, its index
is null ([case 3b]). When dij belongs in a nonnull detail node, we look up its
bit flag in the significance map. The position of the significance map of the ith
detail node in ZSMS can be easily determined using zerobits and zerobit offset.
If the bit flag for dij is off, the index is again null ([case 3c]).

In the last case ([case 3d]) in which the bit flag is on, the index for dij points
to a significant wavelet coefficient in the detail codebook of SC. Its displacement
in DIS can be obtained by counting the number of 1 bits in the significance map
that precedes it in the detail coefficient enumeration. Finally, the sum of detail
offset and the displacement becomes the address of the index in DIS. Note that
finding the position of bit flags, and counting nonzero bits can be efficiently
implemented in a few bit-wise operations and precomputed table accesses.

Figure 6 shows an example in which the index d̄55 of detail coefficient d55
of a cell C, numbered 8, is being retrieved. The level-1 zerobits of this cell in
the 24th byte of ZSMS tells that the third- and fifth-detail nodes are nontriv-
ial. Furthermore, the most significant bit of zerobit offset indicates that the

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

22 • C. Bajaj et al.

significance map for the level 0 detail node needs to be stored in ZSMS. Since
two nonnull detail nodes, one on level 0 and another on level 1, precede it, the
significance map for the fifth detail node is found in the 27th (=24+1+2) byte
of ZSMS. The fifth bit flag in the map (circled one) is on, and the displacement,
or the number of 1 bit in the significance map which precedes d̄55, is counted
by a few simple table accesses. The displacement 7 is then added to detail offset
41 to get the address 48 for d̄55 in DIS. Note that the most significant bits of
the significance maps are used to indicate the levels, hence, are not counted.

Now, let’s briefly analyze the timing costs for decoding a coefficient x. The
costs for the first two cases ([case 3a] and ([case 3b]) are trivial. When the
zerobit is on, the bit flag for x in the significance map can be quickly found
using a few bit-wise operations and a table access ([case 3c]). Even the most
expensive case ([case 3d]) requires only a few more bit-wise operations and table
accesses. Recall that null detail nodes take a significance portion as empirically
shown in Figure 5. This implies that the probability that either of the two cheap
cases ([case 3a]) and ([case 3b]) occurs, is quite high. Furthermore, considering
the fact that we usually use only 1 to 7 per-cent of nonzero wavelet coefficients,
93 to 99 per-cent of decoding belongs in either [case 1], [case 2], [case 3b], or
[case 3c]. From this analysis, we see that decoding a coefficient in an encoded
unit block is very efficient.

3.3.2 Applications of Inverse Transform. After retrieving all the necessary
coefficients, the inverse 3D transform is applied, which requires additional in-
teger arithmetic operations. Our compression method offers three different re-
construction modes: voxel mode, plane mode, and cell mode. In voxel mode, an
individual voxel is reconstructed one by one. On the other hand, groups of vox-
els in a cell are simultaneously reconstructed in plane mode and cell mode for
efficiency.

When a voxel v of a cell is to be reconstructed in voxel mode, one average and
7 detail coefficients on level 0 are decoded. Next, an appropriate one among the
eight reconstruction formulas in Figure 3 is applied to compute the average of
a 2× 2× 2 subblock that contains v. Then another set of 7 detail coefficients
are decoded, and another reconstruction formula is applied to compute the
color of v. Note that seven vector addition/subtraction operations need to be
carried out per formula, in which one vector operation amounts to 3 integer
addition/subtraction operations. In total, it costs 15 decoding operations and 14
vector arithmetic operations per voxel reconstruction in voxel mode.

Frequently, voxel access patterns exhibit some degree of locality. For exam-
ple, a contiguous region might have to be decompressed, say, to show axial,
coronal, or sagittal slices of the Visible Human RGB data, or retrieve a proper
set of colors for image-based rendering of light field data. To enhance effi-
ciency of voxel reconstruction, we also provide two optimized access modes.
In cell mode, the entire region of a cell becomes a reconstruction unit, and all
the 64 voxels are reconstructed at the same time. In this case, 64 coefficients
in an encoded cell are first decoded. Next, the set of 8 reconstruction formu-
las are evaluated 9 times, one for computing 8 averages on level 1, and eight
for computing 64 voxel colors. Although there appears to be 56 (=7 · 8) vector

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 23

Fig. 8. Reconstruction costs per voxel.

addition/subtraction operations in each application of the 8 formulas, a simple
optimization technique from compiler theory that removes redundant arith-
metic computations, as briefly explained in Section 2.2, shows that 24 oper-
ations are optimal [Aho et al. 1986]. Since the number of total operations is
9 · 24, it costs 3.375 (=9 · 24/64) vector arithmetic operations and one decoding
operation per voxel in cell mode.

The plane mode provides efficient reconstruction when arbitrary 2D slices,
orthogonal to principal axes, need to be decompressed. In this mode, 16 voxels
in a 4× 4 perpendicular plane of a cell are simultaneously reconstructed. The
planes are orthogonal to either x-, y-, or z-axis, and the reconstruction costs
are not symmetrical due to the filtering sequence of the 3D Haar transform. A
careful analysis reveals that the decoding cost is 2.25 (=36/16) per voxel, and
the cost for vector arithmetic operations per voxel is 6.25 (=100/16) for x-axis,
5 (=80/16) for y-axis, 3.75 (=60/16) for z-axis.

Figure 8 summarizes the reconstruction costs for the three modes. It should
be emphasized that the analyzed costs are only for the worst case. Our zer-
obit encoding technique allows us to avoid unnecessary decoding and arith-
metic operations. Suppose that voxels are reconstructed in, for instance,
cell mode. Recall that γ0 and γ1 are the ratios of null detail nodes on level
0 and 1, respectively (Figure 5). The 24-vector arithmetic operations for re-
construction of eight level-1 averages, are carried out only with probability
1 − γ0, since the level-0 average simply propagates to them without arith-
metic operations in case that the level-0 detail node is null. The same com-
putation occurs eight times to reconstruct voxel colors with the probability
1 − γ1. In total, the average cost of integer vector operations per voxel is
((1 − γ0) · 24 + (1 − γ1) · 24 · 8)/64 = (1 − γ0) · 0.375 + (1 − γ1) · 3. The aver-
age costs for other modes are also listed in the figure. Due to the high ratio γ1,
the average costs are usually far less than the worst case costs.

4. EXPERIMENTAL RESULTS

We have implemented the compression method described in this paper, and
tested it with three different kinds of 3D images on an SGI workstation with a
195 MHz MIPS R10000 CPU. The first test dataset was constructed simply by
stacking up gradually varying 2D slices from medical imaging. In particular,
we used a precropped cryosection color images of the Visible Man data from
the National Library of Medicine (NLM) [NLM 1999]. The second type of 3D

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

24 • C. Bajaj et al.

Fig. 9. The dimensions of the visible man cryosection RGB images.

Fig. 10. Experimental results on compression ratio and visual fidelity (visible man).

images were built from the 4D light field data, which have been used in Levoy
and Hanrahan [1996] for image-based rendering. The last type of 3D images
were generated for real-time 3D texture mapping by sampling solid textures
that are procedurally defined in continuous texture space.

4.1 Compression of Visible Human Cryosection RGB Images

Instead of experimenting with the original cryosection RGB images, dissemi-
nated by NLM, that require a great deal of efforts for preprocessing, we used
the Visible Man dataset, commercially available from Research Systems, Inc..
The dataset contains 1,878 axial RGB images, stored in JPEG, which are parti-
tioned into five sections of different dimensions (see Figure 9). The uniform blue
background in the original slices were removed, and then they were cropped
to represent only regions of interest. This preprocessing yields some file size
reduction. From this dataset, we constructed a 3D image whose size is about
6.4 GBytes.

To see the effectiveness of the zerobit encoding technique, we implemented
two compression algorithms. First, the new method (NEW), presented in this
paper, was implemented. Next the compression algorithm for CT/MRI data [Ihm
and Park 1998; 1999] was extended for 3D images (OLD). In the following two
subsections, we present experimental results for these two implementations.
Particularly, it is demonstrated how effectively the zerobit encoding method
removes unnecessary computations during reconstruction, and enhances the
timing performances over the old method.

4.1.1 Compression Ratio and Visual Fidelity. Statistics for the compres-
sion ratio and quality of our compression method are given in Figure 10. We com-
pressed at four different target ratios λ̄ = 0.02, 0.03, 0.04 and 0.05, in which the
actual ratios after coefficient truncation are slightly different. The new method

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 25

Fig. 11. A sample slice in the cropped region (abdomen).

(NEW) yielded a compression ratio of 39.72 to 81.07 for the four target ratios.
Compared with the method without zerobit encoding (OLD), the compression
ratios increase by 10 to 15 per-cent.

To examine distortion or difference between the original and reconstructed
3D images, we measured the mean-square peak-signal-to-noise ratio PSNR (dB)
that indicates the size of the error relative to the peak value of the signal. The
numbers in the row total were obtained by selecting every tenth slices from both
original and compressed datasets, and computing their differences. It should be
mentioned that these values are affected by the proportion of empty background
region in data. To find out reconstruction quality in the interior region, we took a
cropped region in the Abdomen section, which is one of the most complex parts,
and evaluated the same measure (cropped abdomen). Figure 11 shows a sample
slice in the cropped region, and compares between the original and compressed
images. When the target ratio is 2%, the blocky artifacts are clearly visible.

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

26 • C. Bajaj et al.

Fig. 12. Sample slices from two test datasets (thorax).

When the ratio is greater than 5%, our compression technique reconstructs
slices quite faithfully.

We could not find other statistics to compare ours with for the Visible Human
RGB dataset. Considering that the goal of our compression scheme is to provide
fast reconstruction to random access while achieving good compression ratio
and reconstruction quality, we believe the zerobit encoding technique produces
a favorable compression performance.

4.1.2 Voxel Reconstruction Time. To measure the reconstruction over-
heads, we used slices in the Thorax section, which is highly complex; hence, it
would be rather slow to reconstruct compared to other sections. As the analysis
in Figure 8 indicates, the average reconstruction cost decreases as the ratios γ0
and γ1 increase. These ratios tend to become greater as the proportion of empty
background region in a 3D image gets higher. We cropped the Thorax section
further to produce another test dataset with a lower background proportion.
Figure 12 illustrates sample slices from the two test datasets.

All the three reconstruction modes were tested to evaluate overheads for re-
constructing voxel colors from compressed 3D image (see Figure 13). The tim-
ings in voxel mode 1 were taken by repeatedly fetching voxels with randomly
generated indices (i, j , k). We first accessed one million voxels from the uncom-
pressed Thorax data, stored in a simple 3D array. Then, the same measurement
was taken using the compressed data. As indicated by the results, our zerobit
encoding method provides very fast reconstruction speeds to random accesses.
Even in the worst case of the experiment (Target ratio = 5.0%, Background
Region = 21.1%), voxel reconstruction is only 1.4 times slower than just fetch-
ing colors from a 3D array.

In another, more practical, experiment for timing performances, we gen-
erated a series of cutting planes with arbitrary positions and orientations
repeatedly, and accessed voxels, necessary for displaying the planes, until vox-
els are decompressed one million times (voxel mode 2). The results show that
reconstruction turns out faster than the “pure” random access (voxel mode 1).
When voxels neighboring cutting planes are reconstructed from compressed
data, they are reconstructed with spatial coherence. We conjecture that the

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 27

Fig. 13. Experimental results on voxel reconstruction time (visible man). The three modes
voxel mode, plane mode, and cell mode were tested to measure the times taken in reconstruct-
ing one million voxels, 4 × 4 planes, and 4 × 4 × 4 cells, respectively. The timing performances of
the new zerobit encoding (NEW) are compared with the old method [Ihm and Park 1999] (OLD) for
the various target ratios.

locality in memory access achieves higher hit ratios of hardware caches, and
produces faster computation.

The timings for two other modes plane mode and cell mode were taken by re-
constructing one million times randomly selected 4×4 planes and 4×4×4 cells,
respectively. The test results imply that the two reconstruction modes are very
competitive. In most cases, a voxel reconstruction is even faster than a simple
memory fetch, which requires computation of an address of 3D array. Our com-
pression method allows a group of voxels to be decompressed simultaneously
at the minimal expense. Of course, spatial data structures, such as octree, may
help speed up voxel fetch operations when a 3D image is uncompressed. In
this test, we just took an unstructured 3D array access as a relative criterion
for measuring the reconstruction speed. The test results also demonstrate how
prominently the new zerobit encoding technique improves the timing perfor-
mance over the previous encoding method. Compared to the implementation

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

28 • C. Bajaj et al.

Fig. 14. A 3D formulation of 4D light fields.

without zerobit encoding (OLD), the new method (NEW) is 2.5 to 3.3 and 3.9 to
5.7 times faster in voxel mode and cell mode, respectively. From the timing per-
formance results, we can see that the zerobit encoding method is very effective
in accelerating decompression speed.

4.2 Light Field Rendering

In this section, we apply zerobit encoding to compress datasets produced for
image-based rendering. In Levoy and Hanrahan [1996], the light field was de-
fined as a radiance at a point in a given direction, and was sampled by lines
determined by their intersection points with two parallel planes. The two points,
parameterized by (u, v) and (s, t), respectively, define a point in 4D space, hence,
the discrete representation of light field can be regarded as a 4D RGB im-
age. The same representation was independently defined as the lumigraph in
Gortler et al. [1996]. Light fields are usually very large in size, and must be
compressed. They proposed to use vector quantization [Levoy and Hanrahan
1996] and JPEG [Gortler et al. 1996] to compress the light field. Recently, dif-
ferent compression schemes were presented to improve compression efficiency
[Kiu et al. 1998; Zhang and Li 2000].

In order to use our 3D-compression technique in image-based rendering, 4D-
sampled light-field datasets were reformulated into 3D images. Assume that
we have a sampled light field whose resolution is nu × nv and ns × nt in the
uv-plane (front) and st-plane (back), respectively. The 4D function LF (i, j , k, l)
is usually produced by rendering, or taking a picture of, a set of 2D images
Ii, j (k, l) with the center of projection of the camera at the sample (i, j) on the
uv-plane (Figure 14(a)). The set of 2D images is partitioned into groups of four
adjacent images I2i,2 j , I2i+1,2 j , I2i,2 j+1, and I2i+1,2 j+1, 0 ≤ i < nu/2, 0 ≤ j < nv/2
(Figure 4(b)). Notice that there exists a high degree of inter-pixel coherence
between adjacent images in the same group. The ns×nt images are then subdi-
vided into tiles of size 4×4, and the four corresponding tiles, each from the four
adjacent images, form 4× 4× 4 cells in a reformulated 3D image. In this way,

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 29

Fig. 15. Comparisons with vector quantization on light field datasets. The zerobit encoding scheme
is compared with the vector quantization method used in Levoy and Hanrahan [1996]. The sizes
(Size) and compression ratios (Comp. Ratio) in (a) exclude the gzip compression, that could follow
both compression methods for efficient storage and transmission. The rendering times in (b) were
obtained by averaging the image-based rendering times, spent on displaying 76 frames of 382×382
pixels.

4D light fields are converted into 3D images. Although we lose data coherence
in one dimension, cells in the 3D image still keep the coherence that exists in
the three remaining dimensions, and this makes our 3D image compression
technique performs well.

We compressed rearranged light fields with our method, and compared its
performance with the vector quantization technique, employed in Levoy and
Hanrahan [1996]. In this experimentation, we used the source programs and
datasets of the LightPack package, publicly available at [LightPack 1996].
Figure 15 compares the performance of two compression methods on two repre-
sentative datasets buddha and dragon whose resolutions are 32×32×256×256
(192 MBytes). While the vector quantization method yielded compression rates
21.79 and 20.18 for buddha and dragon, our method produced higher ratios

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

30 • C. Bajaj et al.

of 44.51 to 91.11 and 38.21 to 83.03, respectively (Figure 15 (a)). These rates
exclude the gzip compression, that could follow both compression methods for
efficient storage and transmission as in Levoy and Hanrahan [1996]. The PSNR
data shows that the reconstructed image quality for the light-field datasets is
almost the same for the two compression methods when about 2% and 5% of
coefficients are used in our method for the buddha and dragon datasets, respec-
tively.

In order to examine the timing performance, we measured the image-based
rendering time, spent on displaying 76 frames of 382 × 382 pixels with grad-
ually varying viewing parameters. Considering the way 3D images are rear-
ranged from 4D light fields, it is natural and efficient to reconstruct com-
pressed data in plane-mode. As explained in Section 3.3.2, it is the fastest
when 4 × 4 planes perpendicular to the z-axis are decompressed. Hence, we
stacked up four 4 × 4 tiles during rearrangement so that they are orthogonal
to the z-axis. Two cases of bilinear interpolation on the st-plane (st-lerp) and
quadralinear interpolation on both uv- and st-planes (uvst-lerp) were tested
(Figure 15(b)). The table shows our method is faster for both datasets in most
cases. Note that the reconstruction cost per voxel for vector quantization is
very cheap since voxels are decompressed simply by accessing codebooks. It
must be cheaper than our compression scheme on average. In our implemen-
tation, we maintain a small set of cache blocks that hold 4 × 4 planes, and
all the 16 voxels in 4 × 4 planes are quickly decompressed into the cache at
the same time. There is a lot of interframe coherence for light field rendering,
and this property, coupled with our cache scheme, results in faster rendering
on the whole. When nearest samples without interpolation are taken during
image-based rendering, our method yielded frame rates 39 and 52 for the two
datasets.

Figure 16 presents sample images obtained by applying the image-based
rendering technique to the compressed datasets. It is obvious that zerobit en-
coding achieves both higher compression rates/image quality and faster render-
ing even though the 3D versions of light fields, rearranged for zerobit encoding,
cannot fully exploit the data redundancy that exists in all four dimensions of
the original data. We expect that the future extension of the current 3D zerobit
encoding technique to 4D space will provide faster frame rates for light field
rendering while having much higher image quality.

4.3 3D Texture Mapping for Real-Time Rendering

As the last example, we describe briefly how we applied the zerobit-encoding
technique to real-time solid texture mapping which often requires a pro-
hibitively large amount of texture memory.1 Two-dimensional texture mapping
has proved very useful in adding realism in rendering; however, it often suf-
fers from the limitation that it is not easy to wrap 2D patterns, without visual
artifacts, onto the surface of objects with complicated shapes [Heckbert 1986].
As an attempt to alleviate the computational complications of wrapping as well

1The details on this compression-based 3D texture mapping for real-time rendering are described
in Bajaj et al. [2000].

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 31

Fig. 16. Sample rendered images (st-lerp).

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

32 • C. Bajaj et al.

Fig. 17. Sample slices from the four 3D textures.

as to resolve the visual artifacts, Peachey [1985] and Perlin [1985] proposed
the use of space filling 3D-texture images, called solid textures. Many of the
textures found in nature such as wood and marble, are easily simulated with
solid textures that map three-dimensional object space to color space [Ebert
et al. 1994].

Solid textures are usually synthesized procedurally instead of painting or
digitizing them. They are often based on mathematical functions or programs
that take 3D coordinates of points as input, and compute their corresponding
texture colors. The evaluation is generally performed on the fly during the ren-
dering computation. While procedural models provide a compact representation
of textures, evaluating procedures as necessary during texture mapping leads
to slow rendering. Explicitly storing sampled textures in dedicated memory,
and fetching texture colors as necessary, as in the current graphics accelera-
tor supporting real-time texture mapping, can generate images faster, however,
they tend to take up a large amount of texture memory. For example, when a 3D
RGB texture with resolution 256×256×256 is represented in one byte per color
channel, it requires 48 MBytes of texture memory. Storing more elaborate tex-
tures with higher resolution, say, 512×512×512, which amount to 384 MBytes
per RGB texture, would be prohibitive even to the most advanced rendering sys-
tems. To make 3D texture mapping practical, efficient solutions for handling
potentially huge textures of nontrivial resolutions need to be devised.

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 33

Fig. 18. Four renderings of polygonal models with 3D textures.

As one solution, we propose to compress 3D textures using zerobit encod-
ing. The idea of rendering directly from compressed textures was presented in
Beers et al. [1996], where they used vector quantization to compress 2D tex-
tures in simple or mip-map form. The key point in our texture mapping scheme
is to extract only the necessary portions from the discrete 3D texture map,
then selectively compress them in compact form using zerobit encoding. In the
implementation, a 3D texture image in texture space is subdivided into sub-
blocks of size 4× 4× 4, called texture cells, which coincide with cells, the basic
compression units of zerobit encoding. Then each polygon on the boundary of
a polygonal object is 3D-scan-converted in texture space to find all the texture
cells that intersect with the surface of the solid object. Notice that texels in the
selected texture cells contain all the texture information necessary for render-
ing. The cells that are not chosen are replaced by null cells, that is, cells with

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

34 • C. Bajaj et al.

Fig. 19. Experimental results on four 3D textures and objects.

black color. By preserving only nearby texture colors surrounding the surface of
an object in this intermediate stage, a large portion of texture data is removed
to alleviate the potential prohibitive storage requirement. The selected texture
cells usually take only a small percentage of the original texture data. The null
cells still exist in the texture map in this stage, and the uncompressed texture
size remains the same. However, the spatial coherence additionally created by
null cells allows the zerobit encoding scheme to compress the 3D texture very
efficiently.

For our experiments, we generated four different 3D textures of resolution
256 × 256 × 256 (48 MBytes) and applied them to four polygonal models with
various shapes and sizes (Figure 17 and 18). To reduce the texture memory
sizes, the scan-converted texture images were compressed using zerobit encod-
ing with various target ratios λ̄. In Figure 19(a), we compare sizes and com-
pression rates for various cases. Observe that it took only a small amount of
memory, ranging from 188 KBytes to 540 KBytes. Considering that the size of
the original textures is 48 MBytes, we see that the proposed texture mapping
scheme achieves very high compression rates through texture cell selection and
zerobit encoding.

To find out how zerobit encoding affects rendering in the point of compu-
tation time and image quality, we have implemented the compression-based
3D texture mapping scheme by extending the MESA 3D Graphics Library
[Paul 1999]. MESA is a publicly available OpenGL implementation, and its
current version 3.0 supports 3D texture mapping with uncompressed texture
images only. Figure 18 shows sample images rendered with the linear filter from
the textures compressed with a target ratio of 10%. In Figure 20, we cropped
and enlarged a portion of the Bunny-with-Eroded images twice to make the

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 35

Fig. 20. Aliasing artifacts of compression-based 3D texture mapping (2X).

compression artifacts more visible. When the target ratio is 3%, the blocky ar-
tifacts are clearly visible, but most features are still preserved well enough
for many real-time applications such as 3D games and animation. When they
are compressed with a ratio higher than 10%, the texture-mapped images are
almost free of aliasing artifacts.

We also measured the computation time, spent on rendering 54 frames
of 512 × 512 pixels, without hardware graphics acceleration, with incremen-
tally varying viewing parameters. They include all computations for render-
ing including 3D texture mapping, view parameter setting, and displaying the
final images. Figure 19(b) reports the average time per frame in seconds for
three different rendering modes. In the table, our compression-based texturing
scheme was compared with texture mapping without compression to evaluate
overheads for fetching texels from zerobit-encoded textures. Both nearest and

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

36 • C. Bajaj et al.

linear filtering methods were tested whose performances are presented in the
“NEAR” and “LINE” fields, respectively. As indicated by the test results, the
fast random access ability of our compression method results in a small impact
on rendering time. We observe only a 14 percent and a 15 percent increase on
rendering time on average for the nearest and the linear filters, respectively. Ob-
serve that the linear filtering method takes, for instance, 0.37 second to render
a Teapot image from the uncompressed texture of size 48 Mbytes. On the other
hand, the same filtering takes 0.44 second to produce the Teapot image with
few visual artifacts from the compressed texture of size 268 KBytes (λ̄ = 10%).
The benefit from zerobit encoding is evident, and is critical in particular when
texture memory resource is rather limited. From the experiments, we conclude
that the zerobit encoding technique is very effective for compressing 3D tex-
tures. Notice that the zerobit-encoded 3D textures implicitly represent three
levels of details. As well as it compresses textures well, its capability of multi-
resolution representation makes it easy to implement 3D mip-maps using only
a small amount of texture memory. The reduction images on the next three lev-
els could be stored in another zerobit-encoded structure, or could be just stored
compactly in simple 3D arrays. (Less than 110 KBytes of texture memory is
necessary for storing all the lower resolution images on level 3, 4, . . . , 8 of a
2563 RGB texture.) Refer to Bajaj et al. [2000] for test results on textures with
higher resolution 512× 512× 512 whose sizes are 384 Mbytes.

5. CONCLUDING REMARKS

In this paper, we have presented a new 3D RGB image compression scheme de-
signed for interactive real-time applications. The experimental results on three
different 3D images from medical imaging, image-based rendering, and 3D tex-
ture mapping show that it provides fast random access to compressed data in
addition to achieves fairly high compression ratios. It is easy to implement, and
provides a hierarchical representation with three levels of detail. It is suitable
for applications wherein data are accessed in somewhat unpredictable fash-
ions, and fast decompression is critical. Our method will be used as another
candidate, along with the vector quantization technique, for a compression tool
supporting real-time performance.

Our compression method, based on the Haar wavelets, neither yields as good
compression rates nor offers as high fidelity in a reconstruction as JPEG or
multi-tap Daubechies wavelets do. It has been designed to compromise between
compression rates and random decoding speeds, and is geared towards good
performance for various 3D RGB images whose voxel colors have some extent
of coherence within, at least, each 4 × 4 × 4 grid, as observed in most volume
datasets found in computer graphics and visualization. The Haar filters are
not powerful enough to handle 3D images with very sophisticated or random
variations of voxel colors. For such datasets, better filters, such as Daubechies
wavelets, must be adopted, but only at increased costs for random decoding as
observed in Westermann [1994].

A primary motivation for this research was to develop a compression tech-
nique that can be employed effectively in real-time applications that must

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

3D RGB Image Compression for Interactive Applications • 37

handle large datasets, made of samples taken in three- or higher-dimensional
space. We are currently extending the 3D compression technique to four-
dimensional volume data. Once effective compression schemes for arbitrary
dimensional datasets are developed, the high memory requirement, which of-
ten troubles many volume graphics algorithms will be alleviated to a great
extent.

ACKNOWLEDGMENTS

We would like to thank the Stanford University Computer Graphics Lab for
the source programs and light field datasets in the LightPack package. The
MESA 3D Graphics Library is an OpenGL implementation by Brian Paul. We
also wish to thank Viewpoint, the Stanford University Computer Graphics
Lab, the RenderMan software [Upstill 1990], and the Blue Moon Rendering
Tools (BMRT) for their public polygonal models and surface shaders.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Rending Mass.

BAJAJ, C., IHM, I., AND PARK, S. 2000. Compression-based 3D texture mapping for real-time ren-
dering. Graph. Models 62, 6 (Nov.), pp. 391–410.

BEERS, A., AGRAWALA, M., AND CHADDHA, N. 1996. Rendering from compressed texture. In Computer
Graphics (Proceedings of SIGGRAPH ’96). ACM, New York, pp. 373–378.

CHEN, Y. AND PEARLMAN, W. 1996. Three-dimensional subband coding of video using the zero-tree
method. In Proceedings of SPIE - Visual Communications and Image Processing ’96 (Orlando,
Fla., Mar.), pp. 1302–1312.

CHUI, C. K. 1992. An Introduction to Wavelets. Academic Press, Inc., Orlando, Fla.
DAUBECHIES, I. 1992. Ten Lectures on Wavelets. SIAM, Philadelphia, Pa.
EBERT, D. S. (ED.), MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY, S. 1994. Texturing and

Modeling: A Procedural Approach. AP Professional.
FOURNIER, A. (ED.) 1995. Wavelets and Their Applications in Computer Graphics. In ACM

SIGGRAPH ’95 Course Notes. ACM, New York.
FOWLER, J. E. AND YAGEL, R. 1994. Lossless compression of volume data. In Proceedings of the

1994 Symposium on Volume Visualization. pp. 43–50.
GERSHO, A. AND GRAY, R. M. 1992. Vector Quantization and Signal Compression. Kluwer Academic

Publishers.
GONZALEZ, R. AND WOODS, R. 1993. Digital Image Processing. Addison-Wesley, Reading, Mass.
GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. 1996. The Lumigraph. In Computer

Graphics (Proceedings of SIGGRAPH ’96). ACM, New York, pp. 43–54.
HECKBERT, P. 1982. Color image quantization for frame buffer display. In Computer Graphics

(Proceedings of SIGGRAPH ’82). ACM, New York, pp. 297–307.
HECKBERT, P. 1986. Survey of texture mapping. IEEE Comput. Graph. Appl. 6, 11 (Nov.), 56–67.
IHM, I. AND PARK, S. 1998. Wavelet-based 3D compression scheme for very large volume data. In

Proceedings of Graphics Interface ’98 (Vancouver, B. C., Canada, June). pp. 107–116.
IHM, I. AND PARK, S. 1999. Wavelet-based 3D compression scheme for interactive visualization of

very large volume data. Comput. Graph. Forum 18, 1, pp. 3–15.
KAUFMAN, A. (ED). 1991. Volume Visualization. IEEE Computer Society Press, Los Alamitos, Calif.
KIU, M., DU, X., MOORHEAD, R., BANKS, D., AND MACHIRAJU, R. 1998. Two-dimensional sequence

compression using MPEG. In Visual Communication and Image Processing ’98. pp. 914–921.
LEVOY, M. AND HANRAHAN, P. 1996. Light field rendering. In Computer Graphics (Proceedings of

SIGGRAPH ’96). ACM, New York, pp. 31–42.
LIGHTPACK. 1996. Light Field Authoring and Rendering Package. http://graphics.stanford.edu/

software.

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

38 • C. Bajaj et al.

MURAKI, S. 1992. Approximation and rendering of volume data using wavelet transforms. In
Proceedings of Visualization ’92 (Boston, Mass., Oct.). pp. 21–28.

MURAKI, S. 1993. Volume data and wavelet transforms. IEEE Comput. Graph. Appl. 13, 4,
pp. 50–56.

NIELSON, G. M., HAGEN, H., AND MÜLLER, H. 1997. Scientific Visualization: Overviews, Methodolo-
gies, and Techniques. IEEE Computer Society Press, Los Alamitos, Calif.

NING, P. AND HESSELINK, L. 1993. Fast volume rendering of compressed data. In Proceedings of
Visualization ’93 (San Jose, Calif., Oct.). pp. 11–18.

NLM. 1997. http://www.nlm.nih.gov/research/visible/visible-human.html.
PAUL, B. 1999. The Mesa 3D Graphics Library. http://www.mesa3d.org.
PEACHEY, D. R. 1985. Solid texturing of complex surfaces. In Computer Graphics (Proceedings of

SIGGRAPH ’85). ACM, New York, pp. 279–286.
PERLIN, K. 1985. An image synthesizer. In Computer Graphics (Proceedings of SIGGRAPH ’85).

ACM, New York, pp. 287–296.
SAID, A. AND PEARLMAN, W. 1993. Image compression using the spatial-orientation tree. In Pro-

ceedings of IEEE International Symposium on Circuits and Systems (Chicago, Ill., May). IEEE
Computer Society Press, Los Alamitos, Calif., pp. 279–282.

SAYOOD, K. 1996. Introduction to Data Compression. Morgan-Kaufmann, San Francisco, Calif.
SCHRÖDER, P. AND SWELDENS, W., (EDS). 1996. Wavelets in computer graphics. In ACM SIGGRAPH

’96 Course Notes. ACM, New York.
SHAPIRO, J. M. 1993. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans.

Sig. Process. 41, 12 (Dec.). pp. 3445–3462.
STOLLNITZ, E., DEROSE, T., AND SALESIN, D. 1996. Wavelets for Computer Graphics: Theory and

Applications. Morgan-Kaufmann, San Francisco, Calif.
UPSTILL, S. 1990. The RenderManTM Companion. Addison-Wesley, Reading, Mass.
WESTERMANN, R. 1994. A multiresolution framework for volume rendering. In Proceedings of the

1994 Symposium on Volume Visualization (Oct.), pp. 51–58.
ZHANG, C. AND LI, J. 2000. Compression of lumigraph with multiple reference frame (MRF) pre-

diction and just-in-time rendering. In Proceedings of the IEEE Data Compression Conference
(Mar.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 253–262.

Received November 1999; revised March 2001; accepted April 2001

ACM Transactions on Graphics, Vol. 20, No. 1, January 2001.

