‘H
& COMPUTER
% AIDED
GEOMETRIC
DESIGN

ELSEVIER Computer Aided Geometric Design 18 (2001) 221-243
www.elsevier.com/locate/comaid

C* modeling with A-patches from rational trivariate functions

Guoliang Xt21, Hongci Huand-2, Chandrajit Bajaf-*-3
@ Sate Key Laboratory of Scientific and Engineering Computing, ICMSEC, Chinese Academy of Sciences,
Beijing, PR China
b Department of Mathematics, Hong Kong Baptist University, Hong Kong, PR China
€ Department of Computer Science, University of Texas, Austin, TX 78712, USA

Received 12 December 1998; revised 11 November 2000

Abstract

We approximate a manifold triangulation]]h3 using smooth implicit algebraic surface patches,
which we call A-patches. Here each A-patch is a real iso-contour of a trivariate rational function
defined within a tetrahedron. The rational trivariate function provides increased degrees of freedom
so that the number of surface patches needed for free-form shape modeling is significantly reduced
compared to earlier similar approaches. Furthermore, the surface patches have quadratic precision,
that is they exactly recover quadratic surfaces. We give conditions under wigidhsenooth and
single sheeted surface patch is isolated from the multiple she&801 Elsevier Science B.V. All
rights reserved.
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1. Introduction

We begin with a manifold triangulation (often considered the preprocessing step
of computational geometric design). We construafa smooth collection of implicit
algebraic (polynomial) surface patches defined within tetrahedra, which we call A-patches
(Bajaj et al., 1995b; Bajaj, 1997). This family of A-patches are real iso-contours of
trivariate rational functions (ratio of polynomials) which interpolate the vertices of the
input manifold triangulation and provide smooth approximations of the input shape.
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Fig. 1. (a) Face tetrahedra. (b) Face tetrahedra and edge tetrahedra.

Various approaches of using implicit surface representation in modeling geometric
objects or reconstructing the image to scattered data have been described in papers (see,
for example (Bajaj, 1993; Dahmen and Thamm-Schaar, 1993; Guo, 1991a; Lodha, 1992;
Sederberg, 1985; Bajaj et al., 1995b)). Prior schemes using implicit surface representations
interpolating vertices of a surface triangulatidn use various simplicial hulls (see
(Dahmen and Thamm-Schaar, 1993; Guo, 1991a, 1991b; Bajaj et al., 1995b; Bajaj, 1997)).
It consists of the following three steps:

(a) Generate a normal for each vertexbfwhich will also be the normal of the

constructed smooth surface at the vertex.

(b) Build a surrounding simplicial hulE' (consisting of a series of tetrahedra) of the

triangulation.

(c) Construct a piecewise trivariate polynomfalwithin that simplicial hull, and use

the zero contour of to represent the surface.
Dahmen (1989) first proposed an approach for constructing a simplicial hall. dh
this approach, for each fa¢g; p; px] of 7, two pointsu;;; andv;;; off each side of the
face are chosen and two tetrahelrgp ; pruijx] and[ p; p; prviji] (called face tetrahedra)
are constructed. For each edgeZof two tetrahedra (called edge tetrahedra) are formed
that blend the neighboring face tetrahedra (see Fig. 1). The collection of these tetrahedra
contains the tangent plane near the vertices and have no self-intersection. Since such
simplicial hulls are nontrivial to construct for arbitrary triangulation, several improvements
have been made in later publications to overcome the difficulties (see (Dahmen and
Thamm-Schaar, 1993; Guo, 1991a, 1991b; Bajaj et al., 1995b)). For the construction of
the surface within¥’, Dahmen (1989) used six quadric patches for each face tetrahedron
and four quadric patches for each edge tetrahedron. Guo (1991a) uses a Clough—Tocher
split to subdivide each face tetrahedron of the simplicial hull, hence utilizing three cubic
patches per face &f . The edge tetrahedra are subdivided into two. Dahmen and Thamm-
Schaar (1993) do not split the face tetrahedra, but the edge tetrahedra is split. All of these
papers provided heuristics to overcome the multiple-sheeted and singularity problem of
the implicit patches. Since the multi-sheeted property may cause the constructed surface
to be disconnected, Bajaj et al. (1995b) constructed A-patches that were guaranteed to be
nonsingular, connected and single sheeted within each tetrahedron.

We too use the simplicial hull approach in this paper, however, we give up the
requirement of being single sheeted within each tetrahedron. The idea we exploit is to
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Fig. 2. Surface family. Fig. 3. Multiple sheeted surface.

separate a smooth and single sheeted surface piece from the multi-sheeted patches within
each tetrahedron, to construct a smooth and connected surface. Since the single sheeted
requirement of the real zero contour in tetrahedra leads to much stronger conditions on the
coefficients ofF than that of allowing the existence of multi-sheeted surfaces, the present
scheme yields much broader candidates of allowable surface families. Fig. 2 shows such a
surface family over two adjacent triangles. Fig. 3 shows the multiple sheets property of the
surface.

We use A-patches derived from rational trivariate functions, thak iss piecewise
rational function defined ot¥'. This rational form provides extra degrees of freedom in
the construction of the® function F so that often we do not need to split the edge
or face tetrahedra. Suppose e and f are the vertex, edge and face numbers of the
triangulation7 . Then, if the surface considered is of genus zero, Euler’s formula yields
v+ f —e=2. It follows from this formula thatt = 3v — 6, f = 2v — 4. Then the
ratio of the patch numbers of our earlier scheme (Bajaj et al., 1995b) and the present
one is about 8 5. Therefore, the patch number is significantly reduced. Although the
modeling functionF is rational in form, it is evaluated as easily as a cubic polynomial
(details in Sections 4 and 5). Furthermore, the constructed surface has the “plane recovery”
property, that is, if the three normals at the vertices of a triangle are all perpendicular to
the triangle, then the surface coincides with the triangle. Having this feature is important
since many geometric CAGD models have planar regions adjacent to curved patches.
Even further, the surface constructed could also recover quadric, i.e., possesses quadratic
precision.

The paper is organized as follows. Section 2 provides notation and some necessary
lemmas. Section 3 builds the simplicial hull. The construction of the trivariate rational
function F and the computation of the coefficients Bfare provided in Section 4. In
Section 5, we present schemes to evaluate the rational patches. Examples that show the
effectiveness of the schemes are presented in Section 6. The proof the regularity of the
constructed A-patches is given in Appendix A.
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2. Notationsand preliminary details

The trivariate polynomials and rational functions used in this paper are expressed
in Bernstein—Bézier (BB) form over tetrahedra. Lgt, po, p3, pa € R3 be affine
independent. Then the tetrahedron with vertipgsp,, p3, and p4 is defined by

4 4
[p1pP2p3pal = {p eR p= Zaipi, a; =0, Zai =1;.
i=1 i=1
Foranyp = Zf‘zl aipi € [p1p2papal, a = (a1, az, a3, as)T is the barycentric coordinate
of p. Any polynomialF (p) of degree: then can be expressed as BB form dyerpz p3p4]
asF(p) =Y =, baB} (@), X € 21, where

n n!
BA(O[)ZML.. 4

is Bernstein polynomialyi| = Y%, &; with & = (A1,..., 42)T = Y&, Aie;, the coeffi-
cientsby, = by,,n404 (@S @ subscript, we simply writeasiiioi3r4) are called weights,
andzi stands for the set of all four dimensional vectors with nonnegative integer compo-
nents. To simplify notation, we usg(x, y, z), F(p), F(x) and F(a1, ..., as) to denote

the same trivariate functioA. Lemmas 2.1 and 2.2 in the following give conditionsf

join of BB form polynomials.

Lemma 2.1 (Farin, 1990)Let F(p) = Zm:n b; B (a) be defined on the tetrahedron
[p1p2p3pal, then

1 . . .
bn—1yei+e; = bne; + ;(Pj —p)"VF(p)), j=1,....4; j#i, 2.1)
where VF (p) = 2522, 31;;P>’ OF ()T,

Lemma 2.2 (Farin, 1990).Let F(p) = Zm:n a, B} () and G(p) = ZIM:n b;. By (ar)
be two polynomials defined on the tetrahedra [ p1 p2p3pal and [p} p2 papal, respectively.
Then F and G are C1 at the face [ pap3pa] iff

A0rohzhg = DOrodgrg> A2+ A3+ Aa=n, (2.2)
4
bligisia = Y _ BiGOipgiates *2+r3+ra=n—1, (2.3)

i=1
where (B1, B2, B3, B4) " isthe barycentric coordinate of py about [ p1p2p3pal.

Lemma 2.3. Let F(1,b) = Y o ob; B3(1) + B1%b with bg < 0 and 0 < B. Let Fj(1) =
!_obiB] (1), j=0,...,3 and

3Fa(t)  F3(1) )

—7 - T 5 b b =
pr? pr?

Then for any givenreal b, if b > byin := min{p  p@

in[0,1) issimple (see Fig. 4).

1) ;
b = min max| —
MmN efo,1] {

F3(1) }

L= n — .
min re[o,l]m{r:Fl(r)@}{ Bt2

}, the minimal real zero of F (¢, b)
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F(tb) for b= b,

F(tb) for b< B min

Fig. 4. Lifting the curve )" b; Bl:?(z) on theright end by adding the term Bt2b so that its minimal zero
in[0,1) issimple.

Proof. Suppose b > br%)n. Let 7min € [0, 1] be the point at which the minimal value of
the function that defines bg}i)n is achieved. Then fmin > 0 and b > —3F2(tmin)/B12;,,,

b > — F(tmin)/ B12;,. Since 1> = B3(1) = B3(1)/3+ B3(1), we have

Fo(tmin) + lngz(fmin)b/3 >0,
F3(tmin) + B[ B3 (tmin) /3 + B3 (tmin) ]b > 0.

Since Fo(tmin) = bo < 0, then by the subdivision formula (see (Farin, 1990), p. 88) we
know that the coefficients of the Bézier form of F (¢, b) over [0, tmin] have aonetime sign
change. By the variation diminishing property of BB form, F (¢, b) has exactly one real
zeroin [0, tmin]. Hence, theminimal real zero of F(z, ) in[0, 1] issimple. If b > bﬁ)n, the
lemmaissimilarly proved. O

Note. Theminimal value bf.rfi)n and bfﬁi)n can be obtained by computing the critical points
in (O, 1] of the rational functions considered, which leads to solving quadratic and cubic
polynomial equations since the coefficients of the highest degree are vanishing.

Lemma 2.3 plays a central role in the construction of our A-patches for separating a
single sheeted surface piece from the multiple-sheeted patches, in which the coefficients b;

and B aregiven and b is afree parameter (see Section 4.2).

3. Simplicial hull

For the given triangulation 7, the normals on the vertices are determined such that
they point to one side of the input triangulation. We call this side the positive side. The
other side is the negative side. Since the constructed C* surface will have the normals at
the vertices, the value of these normals provide a mechanism to control the shape of the
surface. Our criterion for determining these normalsisto avoid producing bumpy surfaces.
The estimation of surface normalsfrom a surface triangulation isimportant and has several
solutions, such as using interpolatory subdivision schemes (see (Dyn et al., 1990; Kobbelt,
1997)), or limit surface normal of Loop’s subdivision (see (Loop, 1987)), or constraint
fitting (see (Xu and Bajaj, 1997)). We use Loop’s subdivision scheme.

Let [pip;] be an edge of 7, if (p; — pi)™n; (pi — p;)™n; >0 and at least one of
(pj — pi)nj and (p; — p;)"n; ispositive, then we say the edge is positive convex. If both
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(b)

Fig. 5. (a) Positive convex edge; (b) Zero convex edge; (¢) Nonconvex edge.

the numbers are zero then we say it is zero convex. The negative convex edge is similarly
defined. If (p; — pi)"n; (pi — pj)"n; <0, then we say the edgeis nonconvex (see Fig. 5).
Let [p; p; pi] beafaceof 7. If itsthree edges are nonnegative (positive or zero) convex and
at least one of them is positive convex, then we say the face [p; p; pi] is positive convex.
If al the three edges are zero convex then we label the face as zero convex. The negative
convex faceis similarly defined. All the other cases [ p; p; p«] are classified as nonconvex.

Let 7 = Tnonzero Y Zzero, Where Tnonzero and Zzero are the collections of the faces of
7 that are not zero convex and zero convex, respectively. A simplicial hull of Znonzero,
denoted by X, is a collection of nondegenerate tetrahedra which is constructed as
follows:

3.1. Build facetetrahedra

Let [pip;pi] be aface of Tnonzero. L€t ¢ = (p; + pj + pi)/3, nijk be the normal of
face [p; p; p«] that points to the positive side of 7. Then choose point u;« if the face is
positive convex or nonconvex and point v; if the face is negative convex or nonconvex as
follows.

Ujjk = ¢+ fmaxMijk Vijk = C + Iminfijk
with

tmax = Max{0, 1; +&,1j + &, tk + &, ij, Lk, tik},

tmin = MN[0, t; — e, t; — &, tx — &, tij, Ljk, tik}s
where ¢ > 0 isasmall number, 1; is defined by

(c = pr +tinijx)'n; =0,
ie,n=(p — c)Tnl/niTjknl, I =i, j, k.t plusapositive s guaranteesthat the Bézier coef-
ficients fééé"l), 2(6{,"1), ééékl) of the surface patch are positive (see Section 4.2 Step 2). 1, is
defined so that the Bézier coefficients féllflkl), 1(11{)'1) 1((’)’1"1) are nonnegative (see Section 4.2
Step 4). Thisleadsto

[p1 — ¢+ alc, pr, pm) (1 — Pu)] 1y
(n + nm) Tniji

im =

[pm — ¢ +a(c, pms P (Pm — P A

+
(ni 4+ nm) niji
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Fig. 6. Convex faces, normals, tetrahedra and Fig. 7. Convex and noncornvex faces, normals,
surface patches. tetrahedra and surface patches.

(I,m)= (@, j), (j, k), (i,k) and

[2(c — p1) + (¢ — pu)] (P — PD)
Il Pm — prlI? '

Then the positive face tetrahedron [ p; pj pruijr] and/or the negativeface [p; p; prviji] are

formed.

For two adjacent faces [p;p;jpi] and [p;p;pil, if the constructed face tetrahedra
[pipjpruijr] and [pipjpiuiji] or [pipjprvijc] and [p;pjpiviji] intersect, we localy
modify the common edge [p;p;] by the Buitterfly subdivision scheme (see (Dyn et
al., 1990)) and then re-compute the normal and re-build the face tetrahedra. The local

subdivision may take several steps if necessary until the adjacent face tetrahedra do not
intersect.

al(c, pm, p1) = (3.2

3.2. Build edge tetrahedra

Let [p;p;] be an edge of 7 where [p; p; pi] and [p; p; pi] are the two adjacent faces
in Znonzero- If the edge is positive convex or nonconvex, the positive face tetrahedra
[pipjpruijr] and [p; pjpiu;ji]l have been constructed. The positive edge tetrahedron is
then [p; pju;jruiji]. Similarly, the negative edge tetrahedron [p; pjv;jx viji] is constructed
if the edge is negative convex or NONCONvex.

Figs. 6 and 7 show two adjacent triangles, vertex normals, tetrahedra as well as surface
patches. The detail of the input is described in Section 6.

4. C* modeling by rational functions

In this section, we construct a piecewise C* rational function F over X. Its real zero
contour {p: F(p) = 0} possesses a separate subset S such that S U Zze (i) passes through
the vertices of 7', (ii) has the given normal at each vertex, and (iii) is a smooth and single
sheeted surface.
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4.1. A-patchesfrom rational functions

Let [p; pj pi] € Tnonzero, theniif [p; p; pi] is positive convex, define

(ijk) 3
F|[Pkpipjuijk] = § : fA B; ()
[A]=3

(ijk) (ijk) (ijk)
" ayip@203 + byjjga1as + €110

o203 + o103 + 102
Similarly, if [p; p; pr] is negative convex, define

F|[Pkpipjvijk] = Z f)\(ljk)B)?(a)
|A]=3
dyhoeees + byfygenes + & oo
* aza3 + o103 + 10
If [pi pjpk] is nonconvex, define Flip, p; p;u;;,1 8 the composite of three cubics that are
defined on [cp; pjuijkl, [prcpjuijk] and [ py picuji], respectively, where c = (p; + p; +
Pk)/3- Flipipipjuij1 1S Similarly defined. As in the the papers of Dahmen and Thamm-
Schaar (1993), Guo (1991a; 1991b), Bajgj, Chen and Xu (1995b), we could use one
cubic instead of three in some cases. However, using three cubics yields some nice shape
advantages (see the Notein Section 4.2).
Let [p; p;]1 beanedgeof 7 that isnot zero-convex, with [p; p; pi]1 and [p; p; pi]1 aretwo
adjacent faces in Tnonzero. If [p; p;1is positive convex or nonconvex, define

B3 10(@). (4.2)

B3 o). (4.2)

D a\Tar + b8y
) 3 1101 1101 3
F|[Mijlpipjuijk] = Z fk Bk(a)+ o +a BllOl(a)
s 1+ o4
(ijkl) (ijkl)
I G E + 1011 @4
o1+ oq

If [pi p;]is negative convex or nonconvex, define

B3 (). (4.3)

~ (i jkI) = (ijkl)
~(ijki dyqo1 @1+ brjo @

F|[Uijlpipjvijk] = Z f)flj )Bf(ot)—k 0 0

A|=3

~(ijkl) 7 (ijkD)

dyor1 1+ bigg @4
a1+ oy
Now we define our A-patches from which a smooth surface approximation of the
triangulation 7 is constructed.

4
By01(c)

o1+ og

B3 (). (4.4)

Face A-patch. Let [p; p;pirl € Tnonzero- If [pip;pi] is positive convex, then the face A-
patch of [p; p; pk1, denoted by F;j, is defined by

Fijx = {peR3 F(p)=0; p=(1—tmin)q + tminttiji: ¥q € [p;i pj pi;
tmin € (—00, 0) if F(g) > 0; tmin € [0, 1] if F(gq) <0}, (4.5)
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where fmin is the minimal ¢ in absolute value among al ¢'s that satisfy the required
condition. If [p; p;pi] is negative convex, F;jr is similarly defined. If [p;p;pi] is
nonconvex, F;ji is defined by
Fijx = {peR% F(p)=0; p=(1— tmin)q + tminttij if F(q) <O0;
or p=(1—tmin)g + tminvijx if F(q) > 0;
tmin € [0, 1): Vg € [pip;pil}. (4.6)
where tin isthe minimal of al thet's in [0, 1) satisfying the required condition.

Edge A-patch. Let [p; p;1 be a nonzero-convex edge of 7 with [p; p;pi] and [p; p; pil
are two adjacent faces, then the edge A-patch of [p; p;1, denoted by E;;, is defined by

Eij={pe R3: F(p)=0; p=(1— tmin)q + tmintt, Yu € [uijxu;j1]if F(g) <O0;
or p=(1—tmin)g + tminv, Yv € [v;jxviji] if F(q) > 0;
tmin € [0, 1): Vg € [pip;1}. (4.7
where tin isthe minimal of al thet's in [0, 1) satisfying the required condition.

That is, F;j; and E;; are defined by the minimal zero of so called shooting polynomials
in ¢. For face A-patches, the shooting polynomials, that are cubicin variable ¢, are

3
ik
Z Bx(l'/ )(Q)BE(I) = F|[Pkpipjuijk]((1 —1)q + “"i/k)’
s=0
: (4.8)
~(iik
Z B9 (@) B3(t) = Flipepipjuipd (L= Dq + tviji),
s=0
where g = a1p; + az2p; + aapk € [pip; pk] and
- ik -
BUM () = Z fx(:sz)xsstlkgzks(al’ a2, a3), 1<s<3,
hi+ro+Arz=3—s
ik ik 3
B@) = Y FooBias(@ ez 00)
rit+ro+A3=3
o ” o
+ ajfioaes + bifenas + cffiaran

B (a1, o2,

o203 + 103 + o102 111(011 a2, a3)
and B (¢) is similarly defined. I [p; p; pi] is nonconvex, B{"" (¢) and B{/® (¢) are
similarly but defined piecewise with the rational part being zero. For edge A-patches, the
shooting polynomials are

3
ijkl
Z B\ )(617 W) BY(t) = Fltuijpepsuizd (L — g + tu),
s=0
3
Sijkl
Z B )(q, V)B3(t) = Fliwjipipjunt (L= g +1v),
s=0

(4.9)
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whereq = xp; + (1 —x)pj, u = yujji + (L= y)uiji, v=yvijk + (1 — y)vij1,

ikl ikl _
B = 3 3 ATUB0BL) s=013
A2+A3=3—s A1+Arg=s

B gy = 3 > ABLWBLW
A2+rz=1r1+21g=2
ijikl ijikl
+ [xbyion + (L= by 1y BE()
ijkl ijkl
+[xaify + (1= vaydyy 1A - ) BE ()
and B (4, v) is similarly defined. Note that the coefficients BS/* and B/ of the
shooting polynomialsrelate only to the Bézier coefficients of layer s (see Fig. 8).

Shooting Rays

P,

0003 pk

Fig. 8. Each coefficient of the shooting polynomials depends on one layer Bézier coefficients. Layers
are shaded separately.

Fig. 9. Smooth join of two nonconvex face Fig. 10. Smooth join of plane with nonconvex
patches with edge patch. patch.
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Fig. 11. Adjacent tetrahedra, the numbering of the weights of the cubic functions.

Figs. 6, 7, 9 and 10 show various cases of face A-patches and edge A-patches. See
Section 6 for a detailed description.

4.2. Construction of rational functions

Now we determine the coefficients of F step by step (see Fig. 11 for the numbering of
the coefficients of the polynomial pieces).

Sepl. Inorderto havethe constructed surfaceinterpolate the vertices of 7, we take the
number O coefficients to be zero.

Sep 2. Thenumber 1 coefficients are determined by formula (2.1) from normals. From
the construction of the face tetrahedraof X, we have f(%kl) >0, fz%g‘l) >0, fééékl) > 0.
Sep3.  If [p; pj pi] is positive (or negative) convex, then by interpolating the directional
derivative

}[(pk — )" (pi = p))

— )T (p: — p;
- (Pk—Pi)+(pk pi) (pj — pi)

lpi — pjll® lpi — pjll?

T
(px — Pj)] (ni +nj)

at the point %(pi + p;) where the direction is in the face [p; p; px] and perpendicular to
the edge [p; p;1, we can derive that

(ijk) (ijk) 1r ,(ijk) (ijk)
1110 + 91110 = 31500 + ficbo

" "
+a(pr, pir ) fodhe + (L —a(pr, pis p)) faibg ] (4.10)

wherea(pi, pi, pj) isdefined by (3.1). By making F interpolate the other two directionél
derivatives at the mid-point of the edge [ p; px] and [ p; p« ], respectively, we have



232 G. Xu et al. / Computer Aided Geometric Design 18 (2001) 221243

(@ijk) Gjk)y _ 1t (Gjk) (ijk)
f1110 + €110 = 3[fos0 + fao1o0

+alpj, pis po) fishd + (L= a(pj, pis pi)) fbd], (4.11)

fitho + 01110 = 3[ ot + S0
+alpi, pjs PO Fishe + (L= a(pi, pjs po) fadd)]. (4.12)
Though for any given fl(’l’llg , (4.10)~(4.12) define uniquely af{f&, bf{f@, and ci’{f&. But

we take fl(ﬂ'f)) to be the average value of the right-handed sides of (4.10)—4.12), such
that ailffc; bi’{f& and cillffg, are as small as possible. If [p; p; p«] is nonconvex, we have
three fl(i/i]é) , that are determined by right-handed sides of (4.10)—(4.12) with «(px, pi, p;),
a(pj, pi» pr) ada(pi, pj, pi) arereplacedby a(c, pi, pj), a(c, pi, pr) anda(c, pj, pi),
respectively.

Sep 4. The number 3 coefficients féijlkl), fl%kl) and fl(glkl) are determined by the same

approach as the number 2 but the directions are in the faces [p; pju;j«]1, [pi pruijx] and
[pjpruijk], respectively. From these we get

Foil) = 3L+ fodot + aiji, pis pj) fopho + (L — aGuije, pis p7)) foibo )
Fior = 3L fog0r + faoor +uiji, pi p) fiso + (L= auiji, pi p) fitg ]
W = S+ foihn + o uijn, pj P fighs + (1= ausje, pj ) Fiiho ]
From the construction of the face tetrahedra (see Section 3.1), we know that féijlkl) 20,
Fiiby >0and figj} > 0.
Sep 5. The number 4 coefficients are free. We choose them so that the polynomial part

approximates a quadratic in the least square sense. That is, we solve the equation
4

4
ik 1
f;;&;*?»“ -3 Z NiG@riiohgha—e; s Z Ai=3, A=0,1, (4.13)
i=1 i=1
for unknowns g;,,x,3.314—¢;» Where g; i represent the coefficients of the quadratic in BB
form. Then take
1.2 4
-
fk(:jkz)*?’“ -3 Z)‘iQ)Ll)LzAg)m—ei’ Zli =3, Ma=2, (4.14)
i=1 i=1

with goooz = f o asafreeparameter. If the tetrahedron [ py p; pu;jx ] is subdivided, then
the undetermined coefficients are determined by the Clough—Tocher scheme (see (Baj g et
al., 1995b)) for detail).

Sep 6.  In order to make the face A-patch and edge A-patch smooth and single sheeted
(see the proof in Appendix), we need to specify lower bounds B;;r and B;;; for the

number 6 coefficients fo%g) and féégg. Firstly, qqmpute Biji so that the face A-patch
in[pip; pruiji] issmooth and single sheeted if fé&,’g > Bjj. Applying Lemma 2.3 to the
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shooting polynomial defined in (4.8) with b3 =0, 8 = Land b = fy , we obtain bmin(q)
and then define B;jx to be max,c(p; p; p1 bmin(q). This maximal value can be numerically
computed. B;j; issimilarly computed.

Second, we set féé’olg = Bijx + b and féé’olg = B;ji + b with b as a parameter. Then
computenumber 5, 6, 7 coefficients by the C° and €1 conditions (see Steps 7-9for details).
These coefficients depend linearly on the parameter 5. Applying Lemma 2.3 for the
shooting polynomial in (4.9) with 8 = B3(y) + 3v1B3(y) + 51aB3(») + B3(») + y(1—),
we can determine alower bound B; j; for b so that the edge A-patch is smooth and single
sheeted if fé&fo’éf > Bijk + Biju and fgfé,{,’é > Biji + Bijki-

Third, modify the bounds B;;; and B;;; by adding B; i to themif B;;; > 0.

Sep 7. The number 5 coefficients are taken to be zero. The coefficients of the rational
function on the edge tetrahedron are given by the C* conditions (2.3). Let

4
Wiji = WPk + u2pi + U3p;j + maltiji, Z,us =1
s=1
, (4.15)
Uijk = Villjji +Vv2p; +Vv3pj +vapi, Z vy =1
s=1
Then
@ijkl) _ (ijk) (ijk) (ijk) (ijk)
bijor’ = Mafiion T H2Sfoz01 T M3 Sor11 T HaSoioz -
@ijkl) __ (ijk) (@ijk) @ijk) (@ijk)
b1 = M1fionr T H2foi1n T H3Socpr T HaSooiz -

(ijkl) _ @jl) @ijl) @ijl) @ijl)
ajio; = Viforo0 + v2S1500 + V31120 + vaSiior

@ijkl) __ @jh @ijl) @ijl) @jl)
apy = Vifogo + v2fifig +V3figo + vaSions-

It follows from (4.14) that 5731 and b/%! depend linearly on fas). Similarly, a\ 7 and

- _ Hot
aﬁ{n) depend linearly on f500-

Sep 8. The number 6 coefficients are free parameters which provide a smooth and
single sheeted A-patch family if they are above the lower bounds provided in Step 6. One
may also choose desirable shape surfaces from this family by suitably adjusting the free
parameters. The default choice of the free parametersis to make the cubic approximate a
linear function. That is, we solve the equations

4 4
1
Dhpizrars = 7 Z i Dagrorsha—e; s Z ri=3, 24=0,1, (4.16)
i=1 i=1

for unknowns p;.;a,nz0.4—e; » Were gy ;5,145, are defined by Egs. (4.13) and p;jx; represent

the coefficients of the linear function in BB form. Then take féégg to be max{ poooz, Bijk}-
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Sep9.  Thenumber 7 coefficients are given by C* condition (2.3). For example,
ijkl ijk ijk ijk [ jk
Ficos’ = 11 fiopg + 2oty + 13 foths + Hafoah - (4.17)
Step 10.  The remaining coefficients in the negative side of 7 are determined similar to
the corresponding coefficientsin the positive side of 7.

Note.  As the approach of Bgjaj, Chen and Xu (1995b), if [p; p; p«] is nonconvex, we
could use one cubic instead of three if the face is not coplanar with its neighbor faces and
the three inner products of the face normal and its three adjacent face normals have the
same signs. In this case, the number 2 coefficient in Step 3 is freely chosen, the number
3 coefficients in Step 4 are defined by €1 condition (2.3). We could adjust the number 2
coefficients so that the number 3 coefficients are positive. All other steps are the same.
However, F constructed may not interpolate the partial derivatives at the mid-points of
the edge. We strongly believe that the interpolation of properly chosen partials at the mid-
points of the edges will make the constructed surface has better shape. For this reason, we
prefer using the three cubic approach.

4.3. Properties of A-patches

Theorem 4.1. For the given triangulation 7 with a constructed simplicial hull X, the
surface defined by the union of all edge A-patches, face A-patches and zero convex faces
of 7 interpolates the vertices and normals of the triangulation, and is smooth and single
sheeted and topologically equivalentto 7.

Proof. We first show that the function F is C1 over X. Note that the rational function
is well defined even if at the points the denominator is zero. Hence F is a well defined
functionon X. Since F isobvioudy smoothin theinterior of each tetrahedron, we consider
only the smoothness of F at the common faces of tetrahedrain .

At theface [p; pju;j«], the rational functionsand their first order partial derivatives are
polynomials. Hence the coefficients determined by the C* condition (2.3) make F be C1
everywhere on the common face. For the common face [p; p; px], since the number 1 and
the number 3 coefficients are defined by interpolating C* data at vertices and edges of the
face, hence the polynomialsin the two face tetrahedra have a C* join. Therefore, F is C1
there.

Now we show that the constructed surface hasthe required properties. We first note that
the surface patch F;jx or E;; is smooth and single sheeted since the construction of F
satisfies the conditions of Lemma 2.3 (the detail proof of thisfact is givenin Appendix A).
Also, these surface patches interpolate corresponding vertices and have the given normals
on the vertices. Second, the edge A-patch and face A-patch are continuous at the common
face since the surface points there are derived from the same equation (see (4.5)—(4.7)).
Furthermore, since F is C*, the two surface patches smoothly join on the common face.

Now we show that the zero convex face joins suitably with its neighbor surface patches.
Let [p; p; pr] beazero convex face. Then the surface patch is the face itself. If its adjacent
face, say [p; p; pi1, isaso zero-convex, then the two faces are coplanar since they sharethe
same surface normals at the common vertices p; and p;. If [p; p; pi] is not zero-convex,
then by the construction of F, we know that F;;; contains the edge [p; p;1. In particular,
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the face [ p; p; pr] and the surface patch F;j; €Y join at the edge. Since both the surface
patches have the same three normal s on the edge and the normal functions are polynomial
vectorsof degreetwo, they are uniquely defined by the three normalsthat are perpendicular
to the face. Hence the normal function is perpendicular to the face everywhere on the edge.
That is, [p; p; pk] and F;j; have the same normals on the edge. Therefore, the two surface
patchesjoin smoothly.

Finally, since each edge and each face of X corresponds to one surface patch (the
zero convex edge correspondsto itself), the constructed surface is topologically equivalent
to7. O

The scheme proposed above makes the constructed surface have the plane recovery
property. Furthermore, the scheme also has quadratic precision. This is made precise in
the following theorem and corollary.

Theorem 4.2. Suppose the three normals at the vertices of the triangle [p; p; pi] are
extracted from a quadratic surface Q(p) = 0 that interpolates the three vertices. For

any given fogbe, if the coefficients £} of Fl(p,p;p,u;) are defined by (4.14) with

qoo02 -= f(gé]{)]f?,) and qklk2A3A4()"4 =0, 1) are defined by (413)1 then F|[pkp,'pjuijk](p) =
O(p) + [ fors — Quij)le,

Note that o = B3y,,(«t) is aquadratic Bézier base function at u;ji. Hence the theorem

saysthat we have a quadratic surface family with féé{g as parameter. Each member in this

family has the same normals as Q(p) = 0 at the vertices. If we take the parameter fc%/o]g
to be Q(u;;1), then the constructed function coincides with Q.

The proof of the theorem is based on the following facts:

(a) F interpolatesfunction values and first order partial derivativesof Q at the vertices
pi, pj and pg, and F interpolates directional derivatives of Q in any direction that
is perpendicular to edges of the triangle at the mid-points of the three edges.

(b) The number 4 coefficients are defined by degree elevation formula.

(c) Therational function degeneratesto zero.

The detailed discussion needs to distinguish the cases when the face is convex or
nonconvex. We omit these details here.

Now consider the edge [p; p;] with [p; p; p] and [p; p; pi] as its adjacent faces. If we
want the function defined on the edge tetrahedron [u;; p; p ju;j« ] to recover aquadratic, we
then require the functions defined on [ px p; pjuijr] and [u;j: pi p; pi] to recover the same
quadratic. Therefore, we have the following

Corollary 4.3. Suppose the four normals at the vertices of the two adjacent triangles
[pipjpr] and [p;p;pi] are extracted from a quadratic surface Q(p) = O that passes

through the four vertices. For any given f o and fA) satisfying, vil fag) — Quiji)] =
M[fééf(c)%)_ O(uijr)] with v1 and p4 are defined by (4.15), if the coefficients fx(isz)xsz
and fp) 0 OF Flipepipjuin) @ Fliugpip, ), respectively, are defined as those in
Theorem 4.2 correspondingly, then the function F |, ; p; p,u;;+1 1S quadratic and is the same
asthe functions defined on [ px p; pju;ji] and [u;ji pi pj pil.
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Fig. 12. Regular 20-faces polyhedron as a Fig. 13. Constructed sphere from the 20-faces
discretization of sphere. polyhedron.

Fig. 13 shows the quadric recovery property. The input (Fig. 12) is a regular 20-faces
polyhedron that is a discretization of a sphere. The curves over the surface are isophotes
that show the sphereis perfectly recovered.

4.4. Closed form of the surface patch

The shooting polynomial, defined by (4.8) and (4.9), for evaluating the surface point is
of degreethree. Its coefficients depend continuously upon several parameters. For each set
of the parameters, the polynomial in general has three roots. These roots are computed
by the well known Cardan’s formulas (see (4.18)—4.20)). However, it is possible that for
different sets of parameters different formulas are used. In this subsection, we will answer
the following question: Which formula among the three should we use? Let the shooting
polynomial be expressed in the following form

dB3(1) + cB3(t) + bB3(t) + aB3(t) = (L — 1)3(d + 3cs + 3bs? 4 as®),

wheres =t/(1—1t) € [0, 00) fort € [0, 1). Let s = x — b/a. Then the cubic polynomial in
s could bewritten as x3 + px + ¢ with p = 3(ac — b?) /a?, q = (2b3 — 3abc + a?d)/a®.
Theroots of x3 + px + ¢ = 0 are given by Cardan’s formulas

x1 = \3/—q/2+\/Z+\3/—q/2—«/Z, (4.18)
X2 = a)\s/ —q/2+\/Z+a)2\3/ —q/2—«/Z, (4.19)
X3 = wz\e/—q/Z-l—\/Z—i-a)\?/—q/Z—\/Z, (4.20)

where A = (¢/2)2 + (p/3)3 isthe discriminant of the equation and w = (—1+i+v/3)/2. If
A <0, —g/24 /A arenonreal complex numbers. We define

V—aq/2+ VA= |—qj2+ VA3, (4.21)
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where +6 = arg(—q/2 + \/Z) € (—m, ). Taking £6 € (—m, ], instead of [0, 27),
assures that x1 is real. It is well known that (i) if A > 0 the equation has one real root
(i.e., x1) and two nonreal complex roots (i.e., x2 and x3); (ii) if A = 0 the equation has
three real roots, but at least two of them are the same (x2 = x3); (iii) if A < 0 the equation
has three different real roots.

In our application of the Cardan’s formulas, the coefficients depend continuously upon
some parameters. For face patches these parameters are o := (a1, a2, @3) Wwith «; >
0, > «; =1 (see (4.8)). For edge patches these parametersare o := (x, y) € [0, 1] x [0, 1]
(see (4.9)). However, the continuity of the coefficientsdoes not imply that x ; := x ; (o) vary
continuously with «, since the cubic root function defined by (4.21) is not continuous at
A =0andg > 0. Now we have the following

Result. (i) Let Dt = {a: A(x) > 0}, D® = {a: A(a) =0}. Then for anya« € DT U D9,
x1() istherequired root for the surface patch.

(i Let D™ ={a: A(x) <Oland D; ¢ D™,i=1,...,k (k> 1), suchthat each D; is
connectedregion, D, N D =#fori # j and|J D;” = D~ Thenif {a: g(a) < 0}N DY #
#, x1(e) isthe required root on D;”, where D? = D° N D, and D;” isthe closure of D; .

Proof. (i) For the pointsin D, the equation has only onereal root, i.e., x1. For the points
in D%, xo = x3. Since the minimal root is simple, x1 istherequired root.

(ii) From (i) we know that, at the pointsof {¢g < 0} N D?, therequiredroot is x1. Now we
show that the required root cannot switch to xz or x3 in D;” . For example, if x1 switchesto
xz20rxzatapointe” in D;”, then from the connectednessof D, ™, thereis acontinuous path
LinD; startingwithapointa’in{g <0}N D? and endingwith «”. Since x1 iscontinuous
at o’ andin D;”, x1 is continuous on the path L. With loss of generality (WLG), we may
assume «” is the first point on this path such that x1 switches to x2 or x3. Then by the
continuity of x; in D;”, x1 = x2 or x1 = x3, we have a contradiction to the fact that the
rootsaredistinct when A <0. O

Corollary. If ab > 0, then there exists only one of the x; that is our required root for all
the «. Furthermore, if DT U DO + ¢, then x1(«) isthe required root.

Proof. Now we show that if ab > 0 the set D% N {g(«) > 0} is empty. Since the required
root of the shooting polynomial issimpleand since xo = xgwhen A =0, x1 =23 —¢/2is
the required root. Sinceour root ¢ € [0, 1) or s = x — b/a € [0, c0), then

x1—b/a>0, of x1>b/a>0, or ¢g<0.

Therefore, xj () are continuousfunctions. Hence only one expression could be used, since
any transform from one to another will lead to the intersection of the functions. This
contradicts the fact that the minimal root is simple. Furthermore, if D+ U D° = ¢, from
Result(i), x1(«) must betherequiredroot. O

It follows from Lemma 2.3 that ab > 0 always could be achieved by increasing the
coefficient fégo'g.
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5. Display of the C* surfaces
5.1. Theface A-patch

For each face [p; p; pk] € Tnon-zero, We shall produce a piecewise triangular approxima-
tion for the surface patch F;j;. Let n be a given positive number, which represents the
resolution of the piecewise approximation. Then the piecewise triangular approximation
is defined by the naive connection of the points fiy.(x +y +z=n, x,y,z > 0). Here
fxyz isthe intersection point of the polygonal line [u;jkgxy;]1 U [¢xy;vijk] and the surface
F =0, whereqy,, = % p; + 2 p; + £ p and the intersection point is computed by solving
the cubic polynomial equation F{p, p; pu;jn] (1 = 0)qxyz + tujjx) = 0 if F(gxyz) <0 or
solving asimilar equation F|[p, ; p,v;;1 (1 = )qxyz +tvijk) = 0if F(gyxy;) > O, wherethe
required root is the minimal one.

5.2. The edge A-patch

For each edge in Znon-zero, We shall produce a piecewise quadrilateral approximation for
the surface patch defined in the two edge tetrahedra that share the edge. Let m, n be two
given positive numbers, which represent the resol ution of the piecewise approximation and
n should have the same value as above, let [ p; p ;] be aedge of Tnon-zero and [u;j; pi pjuijk]
and [v;;; pi pjvijx] bethe edge tetrahedra. Then the piecewise quadrilateral approximation
is defined by connecting the points exy(x = 0,...,n; y =0,...,m). Here ¢,, is the
intersection point of the polygonal line [u1,4.]U [¢xv,] and the surface F = 0, where

n—x ) Y -

X + +m +m
qx=—pi+——pj, Uy=wiji+——Uijk, Vy = Vi + —Vijk
n ! J y m ) n tj y m ) n tj

and the intersection point is computed by solving the cubic polynomial equation
Fliugpipju) (L= Dgx +tuy) =0 if F(gx) <0,

or solving asimilar equation
F|[Ui/'/PinUi/‘k]((1_ gy + tvy) =0 if F(gy)>0.

Again, we use the minimal root.

Note that the linear decomposition of the A-patches are identical on the common faces
and edges of the hull X, so there are no cracks or diasing artifacts present in the display
of thefinal C? surface.

5.3. Interactive change of the surface shape

From the construction of F, we know that the coefficient féé’(‘B > Biji isfreefor each
face [p; p; pi]. This degree of freedom can be used to control interactively the shape of
the designed surface. When féé& approachesto the lower bound B, the surfaceis lifted
towards the top vertex, while fc;éga goes to infinity, the surface is depressed to the bottom
triangle (see Fig. 2). Now we show that the surface could be quickly displayed when

el o _
Fabos changes. Let 3% B0 (q) B3(t) = Flip p;pjuy) (1= 1) + tuiji) betheshooting
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polynomial for the face [ p; p; pr] (see (4.8)). Then the main computation for evaluating a
surface point is to compute the coeffici ents Bs(” k) (¢) and then find the roots of a cubic
polynomial. Since Bé” Dig) = f0003, the costs of the computation of B{/¥ (¢) is zero if

BS(” k)(q) are pre-computed (before the interactive control step) and kept, for s =0, 1, 2
and g = g, (see Section 5.1). Since there exists a closed form for finding the roots of a
cubic polynomial, the cost of finding these roots is very small.

For displaying the edge A-patch, the situation is similar, but forming

ijkl kl
BE(’,U )(q’ I/t) — Z (’] )B3
A1+rg=3

needs little computation (see (4.9)) when f:,fé’olg) or fé(’,g;’) changes.

6. Conclusions and examples

There aretwo main contributionsof this paper. Thefirst isthe use of rational termsin the
modeling function. These provide enough degrees of freedom so that: (i) we do not need
to subdivide the edge patch and hence the overall number of patches is reduced; (ii) the
modeling function interpolates additional data on the middle of the edges and hence leads
to better shaped A-patches (see Figs. 6, 7, 9, 10, 2 and 3); (iii) the A-patch can smoothly
join planar faces (see Fig. 10) and also has the quadratic precision property. The second
major contribution is that multiple sheeted surfaces are allowable in the hull. This widens
the class of the algebraic spline surfacesto select nicer looking shaped C* surface models.
However, we have provided a robust scheme to select a sheet of the surface for afinal C*
surface which is topologically equal to the triangulation. The implementation of the paper
and our test examples show that these two techniqueswork very well to makeit a practical
method for free form modeling. We point out that the techniques proposed in this paper can
be used in the C1 quadric A-patch introduced by Guo (1991a) and the C2 quintic A-patch
introduced by Bajgj, Chen and Xu (1995a).

Figs. 6, 7, 9 and 10 show the different join configurations of two face A-patches. In
Fig. 6, the two given faces [ p1p2p3] and [p1p2pal are convex, where p1 = (—2,0,0)7,
p2=1(2,0,00T, p3= (0,4, —1)T and ps4 = (0, —4, —1)T. The corresponding normals are
chosenasny = (—1,0,1)",no=(1,0,1)7, n3=(0,1,1)T andns = (0, —1,1)". InFig. 7,
theverticesarethe sameasin Fig. 6. Thenormalsnz and n4 arereplaced by (0, 1, 1.5)T and
(0,1, 1.5)". Hencethe face [ p1 p2 p3] isconvex and face [ p1 p2 pal is nonconvex. In Fig. 9,
the vertices are the same as before, but the normals are chosen as n1 = n2 = (1,0, 17,
n3 = (0,—1,1.5)7, and na = (0,1, 1.5)T. Hence the two faces are nonconvex and the
common edge [ p1 p2] is aso nonconvex. Fig. 10 shows a smooth join of a nonconvex face
A-patch with a degenerate planar patch, where p1 = (—2,0,0)7, p» = (2,0,0)7, p3 =
(0,4,—1)T and ps = (0, —4,0)". The normals are chosen as n1 = n» = ng = (0,0, 1)T
and n3 = (0, —1, 1.5)T. Hence, the face [ p1p2p3] is nonconvex and the face [ p1p2p4l is
zero convex. The number 3 and number 4 coefficients of the constructed functionin Figs. 6,
7, 9 and 10 are determined by the default choice (see Step 5 and Step 7 in Section 4.2).

Fig. 2 shows the surface family with changes in parameters fc%jo]é) and feféfolg, and keeping
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Fig. 14. Edge patches and face patches for a Fig. 15. Rational A-patch construction for a
head. head.

the vertices and normals the same as in Fig. 6. The vertices and normals used in Fig. 3
is the same as those in Fig. 9. This example shows the multiple sheeted property of the
zero contour. The free parameters are taken near the lower bound B; ., hencethe surfaceis
nearly singular at the point where the two sheets of the surface approximately touch. This
showsalso that the lower bound B; . givenin Step 6 of Section 4.2 isexact. Figs. 14 and 15
show a smooth A-patch construction model of a human head. In this example, the number
3 and 4 coefficients in the construction of the function are given by the default choice of
Section 4.2. In Fig. 14, edge patches and face patches are shown separately by different
shading, to depict the topology of the input triangulation as well as its adaptivity. The
higher curved regions have more triangles. If the input triangulation is relatively flat at an
edge, then the edge patch is correspondingly degenerate. Fig. 17 isthe A-patch construction
for the triangulation shown in Fig. 16. Again, the edge A-patches and face A-patches are
shown by different shading, and mirror each other’s topology.
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Fig. 16. Theinput triangul ation of ateapot.

Fig. 17. The edge patches and face patches for the teapot.

Appendix A. Theregularity of the surface patch

Consider first afacepatchin [ p; p; pru;j«] for aconvex face[p; p; pi]. Let Flipipipjuiji]
be extended to R? using its closed form (4.1) in [pipjpruijr] (we still use F to denote
the extended function). Then F is C! in R3. Let ¢,(t) = F(p(t,q)) be the shooting
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polynomial & g € [p; p; px] and tmin(g) be the minimal root in defining the surface point
r(q) := p(tmin(q). q), Where

p(t,q) =1 —1)q + tujji. (A1)
Then since tmin(g) isasimple zero of ¢,

do, (tmi

¢>q(+n(q)) =VF(P(CI))T(uijk —q)#0. (A.2)

WLG, we may assume V F(p(¢)) T (uijx — q) > 0. Then by the C* continuity of F, there
is an open sphere NV, with center p(q), such that

VE(p) (uijk —q(p)) >0 for¥peN,, (A3)
where

q(p)=sp+ L —uije, s=(c—uije) niji/(p —uije) nijk,
c=(pi + pj + pr)/3 and n;ji isthe normal of the face [p; p; pi1. g(p) isthe projection
of p onto the plane (p; p; px) in the direction p — u;;. Condition (A.3) impliesthat F is
monotonic in the direction u;;x — ¢(p) in the sphere V. Let S; = {F = 0} N N. Then
S, is a smooth surface, since VF(p) # 0 for p € NV,. Hence each surface point p € S,

define a simple zero ¢(p) of the corresponding shooting polynomial ¢, (¢). It follows
from (A.1) that

t(p) = (c — p) niji/(c — uiji) "niji. (A.4)
Our goal is to prove that there exists a neighborhood AV C A, of p(g) such that
1(p) = tmin(g(p)) for p € N N S,. If thisis not true, there exists a sequence p® es,,
such that || p® — p(g)|| — O (this and (A.4) imply that z(p®) converge to fmin(g)), and
tmin(g (p®)) # 1 (p®). Suppose min(g) > 0 (the discussion is similar for the other cases).
WLG, we may assume fmin(g(p")) converge to ¢ and tmin(g(p®)) < t(p?). Since
F(p(g(p®)) = 0, the continuity of F implies that F(p(t',q)) = 0. If ' < tmin(g), @

contradictionisyielded since rmin(g) is minimal zero. Hencet’' = fmin(g). Then by Rolle's
theorem, thereisa&®) e (tmin(g (p®)), 1 (p®), such that

F(p) = F(pa(p™)) , DT ,
0= 0™ —tmnta )~ VT PE D) T = a ()]

From the continuity, we have V F (p(tmin(g), q)T[Mijk — q] =0, acontradiction to (A.2).
Therefore, the neighborhood V) does exist. Let S, = S, N A7 . Then the surface patch S,
is defined by the minimal root of the shooting polynomial. Let N, = {q(p): p € S[i}. Then
by (A.3) N, is an open neighborhood of ¢. Since all the N, form an open covering of
[pip;pkl, then by Heine-Borel theorem (see (Royden, 1968) p. 42), there exists a finite
number of N, such that their union covers|p; p; pi]. For any pointin N e N Ny, the
shooting polynomial is the same and hence the surface point is the same. Therefore, the
composite surface is connected.

If theface[p; p; pr]isnonconvex, we could dividethe faceinto several connected closed
regions D;" and D;", such that F > 0 on D;", and F < 0 on D; . After carrying out the
proof above for each of the regions, we have a connected surface over each region. On the
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common boundaries (at where F = 0) of these regions, the surface points coincide with
boundary points, hence the composite surface is connected. For the edge surface, the proof
of the connectnessis similar.
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