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Abstract

We approximate a manifold triangulation inR3 using smooth implicit algebraic surface patches,
which we call A-patches. Here each A-patch is a real iso-contour of a trivariate rational function
defined within a tetrahedron. The rational trivariate function provides increased degrees of freedom
so that the number of surface patches needed for free-form shape modeling is significantly reduced
compared to earlier similar approaches. Furthermore, the surface patches have quadratic precision,
that is they exactly recover quadratic surfaces. We give conditions under which aC1 smooth and
single sheeted surface patch is isolated from the multiple sheets. 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

We begin with a manifold triangulation (often considered the preprocessing step
of computational geometric design). We construct aC1 smooth collection of implicit
algebraic (polynomial) surface patches defined within tetrahedra, which we call A-patches
(Bajaj et al., 1995b; Bajaj, 1997). This family of A-patches are real iso-contours of
trivariate rational functions (ratio of polynomials) which interpolate the vertices of the
input manifold triangulation and provide smooth approximations of the input shape.
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Fig. 1. (a) Face tetrahedra. (b) Face tetrahedra and edge tetrahedra.

Various approaches of using implicit surface representation in modeling geometric
objects or reconstructing the image to scattered data have been described in papers (see,
for example (Bajaj, 1993; Dahmen and Thamm-Schaar, 1993; Guo, 1991a; Lodha, 1992;
Sederberg, 1985; Bajaj et al., 1995b)). Prior schemes using implicit surface representations
interpolating vertices of a surface triangulationT use various simplicial hulls (see
(Dahmen and Thamm-Schaar, 1993; Guo, 1991a, 1991b; Bajaj et al., 1995b; Bajaj, 1997)).
It consists of the following three steps:

(a) Generate a normal for each vertex ofT which will also be the normal of the
constructed smooth surface at the vertex.

(b) Build a surrounding simplicial hullΣ (consisting of a series of tetrahedra) of the
triangulation.

(c) Construct a piecewise trivariate polynomialF within that simplicial hull, and use
the zero contour ofF to represent the surface.

Dahmen (1989) first proposed an approach for constructing a simplicial hull ofT . In
this approach, for each face[pipjpk] of T , two pointsuijk andvijk off each side of the
face are chosen and two tetrahedra[pipjpkuijk] and[pipjpkνijk] (called face tetrahedra)
are constructed. For each edge ofT , two tetrahedra (called edge tetrahedra) are formed
that blend the neighboring face tetrahedra (see Fig. 1). The collection of these tetrahedra
contains the tangent plane near the vertices and have no self-intersection. Since such
simplicial hulls are nontrivial to construct for arbitrary triangulation, several improvements
have been made in later publications to overcome the difficulties (see (Dahmen and
Thamm-Schaar, 1993; Guo, 1991a, 1991b; Bajaj et al., 1995b)). For the construction of
the surface withinΣ , Dahmen (1989) used six quadric patches for each face tetrahedron
and four quadric patches for each edge tetrahedron. Guo (1991a) uses a Clough–Tocher
split to subdivide each face tetrahedron of the simplicial hull, hence utilizing three cubic
patches per face ofT . The edge tetrahedra are subdivided into two. Dahmen and Thamm-
Schaar (1993) do not split the face tetrahedra, but the edge tetrahedra is split. All of these
papers provided heuristics to overcome the multiple-sheeted and singularity problem of
the implicit patches. Since the multi-sheeted property may cause the constructed surface
to be disconnected, Bajaj et al. (1995b) constructed A-patches that were guaranteed to be
nonsingular, connected and single sheeted within each tetrahedron.

We too use the simplicial hull approach in this paper, however, we give up the
requirement of being single sheeted within each tetrahedron. The idea we exploit is to
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Fig. 2. Surface family. Fig. 3. Multiple sheeted surface.

separate a smooth and single sheeted surface piece from the multi-sheeted patches within
each tetrahedron, to construct a smooth and connected surface. Since the single sheeted
requirement of the real zero contour in tetrahedra leads to much stronger conditions on the
coefficients ofF than that of allowing the existence of multi-sheeted surfaces, the present
scheme yields much broader candidates of allowable surface families. Fig. 2 shows such a
surface family over two adjacent triangles. Fig. 3 shows the multiple sheets property of the
surface.

We use A-patches derived from rational trivariate functions, that isF is piecewise
rational function defined onΣ . This rational form provides extra degrees of freedom in
the construction of theC1 function F so that often we do not need to split the edge
or face tetrahedra. Supposev, e and f are the vertex, edge and face numbers of the
triangulationT . Then, if the surface considered is of genus zero, Euler’s formula yields
v + f − e = 2. It follows from this formula thate = 3v − 6, f = 2v − 4. Then the
ratio of the patch numbers of our earlier scheme (Bajaj et al., 1995b) and the present
one is about 8: 5. Therefore, the patch number is significantly reduced. Although the
modeling functionF is rational in form, it is evaluated as easily as a cubic polynomial
(details in Sections 4 and 5). Furthermore, the constructed surface has the “plane recovery”
property, that is, if the three normals at the vertices of a triangle are all perpendicular to
the triangle, then the surface coincides with the triangle. Having this feature is important
since many geometric CAGD models have planar regions adjacent to curved patches.
Even further, the surface constructed could also recover quadric, i.e., possesses quadratic
precision.

The paper is organized as follows. Section 2 provides notation and some necessary
lemmas. Section 3 builds the simplicial hull. The construction of the trivariate rational
function F and the computation of the coefficients ofF are provided in Section 4. In
Section 5, we present schemes to evaluate the rational patches. Examples that show the
effectiveness of the schemes are presented in Section 6. The proof the regularity of the
constructed A-patches is given in Appendix A.



224 G. Xu et al. / Computer Aided Geometric Design 18 (2001) 221–243

2. Notations and preliminary details

The trivariate polynomials and rational functions used in this paper are expressed
in Bernstein–Bézier (BB) form over tetrahedra. Letp1,p2,p3,p4 ∈ R

3 be affine
independent. Then the tetrahedron with verticesp1,p2,p3, andp4 is defined by

[p1p2p3p4] :=
{
p ∈R

3: p =
4∑
i=1

αipi, αi � 0,
4∑
i=1

αi = 1

}
.

For anyp =∑4
i=1αipi ∈ [p1p2p3p4], α = (α1, α2, α3, α4)

T is the barycentric coordinate
ofp. Any polynomialF(p) of degreen then can be expressed as BB form over[p1p2p3p4]
asF(p)=∑

|λ|=n bλBnλ (α), λ ∈Z4+, where

Bnλ(α)=
n!

λ1! · · ·λ4!α
λ1
1 · · ·αλ4

4

is Bernstein polynomial,|λ| =∑4
i=1λi with λ = (λ1, . . . , λ4)

T =∑4
i=1λiei , the coeffi-

cientsbλ = bλ1λ2λ3λ4 (as a subscript, we simply writeλ asλ1λ2λ3λ4) are called weights,
andZ4+ stands for the set of all four dimensional vectors with nonnegative integer compo-
nents. To simplify notation, we useF(x, y, z), F(p), F(α) andF(α1, . . . , α4) to denote
the same trivariate functionF . Lemmas 2.1 and 2.2 in the following give conditions ofC1

join of BB form polynomials.

Lemma 2.1 (Farin, 1990).Let F(p) =∑
|λ|=n bλBnλ (α) be defined on the tetrahedron

[p1p2p3p4], then

b(n−1)ei+ej = bnei +
1

n
(pj − pi)T∇F(pi), j = 1, . . . ,4; j �= i, (2.1)

where ∇F(p)= [ ∂F (p)
∂x

,
∂F (p)
∂y
,
∂F (p)
∂z
]T.

Lemma 2.2 (Farin, 1990).Let F(p) =∑
|λ|=n aλBnλ (α) and G(p) =∑

|λ|=n bλBnλ (α)
be two polynomials defined on the tetrahedra [p1p2p3p4] and [p′1p2 p3p4], respectively.
Then F and G are C1 at the face [p2p3p4] iff

a0λ2λ3λ4 = b0λ2λ3λ4, λ2+ λ3+ λ4= n, (2.2)

b1λ2λ3λ4 =
4∑
i=1

βia0λ2λ3λ4+ei , λ2+ λ3+ λ4= n− 1, (2.3)

where (β1, β2, β3, β4)
T is the barycentric coordinate of p′1 about [p1p2p3p4].

Lemma 2.3. Let F(t, b) =∑3
i=0biB

3
i (t) + βt2b with b0 < 0 and 0< β . Let Fj (t) =∑j

i=0 biB
j
i (t), j = 0, . . . ,3, and

b
(1)
min= min

t∈[0,1]max

{
−3F2(t)

βt2
, −F3(t)

βt2

}
, b

(2)
min= min

t∈[0,1]∩{t :F1(t)�0}

{
−F3(t)

βt2

}
.

Then for any given real b, if b > bmin :=min{b(1)min, b
(2)
min}, the minimal real zero of F(t, b)

in [0,1) is simple (see Fig. 4).
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∑
biB
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i
(t) on the right end by adding the term βt2b so that its minimal zero

in [0,1) is simple.

Proof. Suppose b > b(1)min. Let tmin ∈ [0,1] be the point at which the minimal value of

the function that defines b(1)min is achieved. Then tmin > 0 and b > −3F2(tmin)/βt
2
min,

b >−F3(tmin)/βt
2
min. Since t2 = B2

2 (t)= B3
2 (t)/3+B3

3 (t), we have

F2(tmin)+ βB2
2 (tmin)b/3> 0,

F3(tmin)+ β
[
B3

2 (tmin)/3+B3
3 (tmin)

]
b > 0.

Since F0(tmin) = b0 < 0, then by the subdivision formula (see (Farin, 1990), p. 88) we
know that the coefficients of the Bézier form of F(t, b) over [0, tmin] have a one time sign
change. By the variation diminishing property of BB form, F(t, b) has exactly one real
zero in [0, tmin]. Hence, the minimal real zero of F(t, b) in [0,1] is simple. If b > b(2)min, the
lemma is similarly proved. ✷
Note. The minimal value b(1)min and b(2)min can be obtained by computing the critical points
in (0,1] of the rational functions considered, which leads to solving quadratic and cubic
polynomial equations since the coefficients of the highest degree are vanishing.

Lemma 2.3 plays a central role in the construction of our A-patches for separating a
single sheeted surface piece from the multiple-sheeted patches, in which the coefficients bi
and β are given and b is a free parameter (see Section 4.2).

3. Simplicial hull

For the given triangulation T , the normals on the vertices are determined such that
they point to one side of the input triangulation. We call this side the positive side. The
other side is the negative side. Since the constructed C1 surface will have the normals at
the vertices, the value of these normals provide a mechanism to control the shape of the
surface. Our criterion for determining these normals is to avoid producing bumpy surfaces.
The estimation of surface normals from a surface triangulation is important and has several
solutions, such as using interpolatory subdivision schemes (see (Dyn et al., 1990; Kobbelt,
1997)), or limit surface normal of Loop’s subdivision (see (Loop, 1987)), or constraint
fitting (see (Xu and Bajaj, 1997)). We use Loop’s subdivision scheme.

Let [pipj ] be an edge of T , if (pj − pi)Tnj (pi − pj )Tni � 0 and at least one of
(pj −pi)Tnj and (pi −pj )Tni is positive, then we say the edge is positive convex. If both
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Fig. 5. (a) Positive convex edge; (b) Zero convex edge; (c) Nonconvex edge.

the numbers are zero then we say it is zero convex. The negative convex edge is similarly
defined. If (pj −pi)Tnj (pi −pj)Tni < 0, then we say the edge is nonconvex (see Fig. 5).
Let [pipjpk] be a face of T . If its three edges are nonnegative (positive or zero) convex and
at least one of them is positive convex, then we say the face [pipjpk] is positive convex.
If all the three edges are zero convex then we label the face as zero convex. The negative
convex face is similarly defined. All the other cases [pipjpk] are classified as nonconvex.

Let T = Tnonzero ∪ Tzero, where Tnonzero and Tzero are the collections of the faces of
T that are not zero convex and zero convex, respectively. A simplicial hull of Tnonzero,
denoted by Σ , is a collection of nondegenerate tetrahedra which is constructed as
follows:

3.1. Build face tetrahedra

Let [pipjpk] be a face of Tnonzero. Let c = (pi + pj + pk)/3, nijk be the normal of
face [pipjpk] that points to the positive side of T . Then choose point uijk if the face is
positive convex or nonconvex and point vijk if the face is negative convex or nonconvex as
follows.

uijk = c+ tmaxnijk , vijk = c+ tminnijk

with

tmax = max{0, ti + ε, tj + ε, tk + ε, tij , tjk, tik},
tmin = min{0, ti − ε, tj − ε, tk − ε, tij , tjk, tik},

where ε > 0 is a small number, tl is defined by

(c− pl + tlnijk)Tnl = 0,

i.e., tl = (pl − c)Tnl/nT
ijknl, l = i, j, k. tl plus a positive ε guarantees that the Bézier coef-

ficients f (ijk)0201 , f
(ijk)

2001 , f
(ijk)

0021 of the surface patch are positive (see Section 4.2 Step 2). tlm is

defined so that the Bézier coefficients f (ijk)0111 , f
(ijk)

1101 , f
(ijk)

1011 are nonnegative (see Section 4.2
Step 4). This leads to

tlm = [pl − c+ α(c,pl,pm)(pl − pm)]
Tnl

(nl + nm)Tnijk

+ [pm − c+ α(c,pm,pl)(pm −pl)]
Tnm

(nl + nm)Tnijk
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Fig. 6. Convex faces, normals, tetrahedra and
surface patches.

Fig. 7. Convex and nonconvex faces, normals,
tetrahedra and surface patches.

(l,m)= (i, j), (j, k), (i, k) and

α(c,pm,pl)= [2(c− pl)+ (c− pm)]
T(pm − pl)

‖pm − pl‖2 . (3.1)

Then the positive face tetrahedron [pipjpkuijk] and/or the negative face [pipjpkvijk ] are
formed.

For two adjacent faces [pipjpk] and [pipjpl], if the constructed face tetrahedra
[pipjpkuijk] and [pipjpluij l] or [pipjpkvijk ] and [pipjplvij l ] intersect, we locally
modify the common edge [pipj ] by the Butterfly subdivision scheme (see (Dyn et
al., 1990)) and then re-compute the normal and re-build the face tetrahedra. The local
subdivision may take several steps if necessary until the adjacent face tetrahedra do not
intersect.

3.2. Build edge tetrahedra

Let [pipj ] be an edge of T where [pipjpk] and [pipjpl] are the two adjacent faces
in Tnonzero. If the edge is positive convex or nonconvex, the positive face tetrahedra
[pipjpkuijk] and [pipjpluij l] have been constructed. The positive edge tetrahedron is
then [pipjuijkuij l ]. Similarly, the negative edge tetrahedron [pipjvijkvij l ] is constructed
if the edge is negative convex or nonconvex.

Figs. 6 and 7 show two adjacent triangles, vertex normals, tetrahedra as well as surface
patches. The detail of the input is described in Section 6.

4. C1 modeling by rational functions

In this section, we construct a piecewise C1 rational function F over Σ . Its real zero
contour {p: F(p)= 0} possesses a separate subset S such that S ∪ Tzero (i) passes through
the vertices of T , (ii) has the given normal at each vertex, and (iii) is a smooth and single
sheeted surface.
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4.1. A-patches from rational functions

Let [pipjpk] ∈ Tnonzero, then if [pipjpk] is positive convex, define

F |[pkpipj uijk ] =
∑
|λ|=3

f
(ijk)
λ B3

λ(α)

+ a
(ijk)

1110α2α3 + b(ijk)1110α1α3 + c(ijk)1110α1α2

α2α3 + α1α3 + α1α2
B3

1110(α). (4.1)

Similarly, if [pipjpk] is negative convex, define

F |[pkpipj vijk ] =
∑
|λ|=3

f̃
(ijk)
λ B3

λ(α)

+ ã
(ijk)

1110α2α3 + b̃(ijk)1110α1α3 + c̃(ijk)1110α1α2

α2α3 + α1α3 + α1α2
B3

1110(α). (4.2)

If [pipjpk] is nonconvex, define F |[pkpipj uijk ] as the composite of three cubics that are
defined on [cpipjuijk], [pkcpjuijk] and [pkpicuijk], respectively, where c = (pi + pj +
pk)/3. F |[pkpipjvijk ] is similarly defined. As in the the papers of Dahmen and Thamm-
Schaar (1993), Guo (1991a; 1991b), Bajaj, Chen and Xu (1995b), we could use one
cubic instead of three in some cases. However, using three cubics yields some nice shape
advantages (see the Note in Section 4.2).

Let [pipj ] be an edge of T that is not zero-convex, with [pipjpk] and [pipjpl] are two
adjacent faces in Tnonzero. If [pipj ] is positive convex or nonconvex, define

F |[uijlpipj uijk ] =
∑
|λ|=3

f
(ijkl)
λ B3

λ(α)+
a
(ijkl)

1101 α1 + b(ijkl)1101 α4

α1 + α4
B3

1101(α)

+ a
(ijkl)

1011 α1 + b(ijkl)1011 α4

α1 + α4
B3

1011(α). (4.3)

If [pipj ] is negative convex or nonconvex, define

F |[vijlpipj vijk ] =
∑
|λ|=3

f̃
(ijkl)
λ B3

λ(α)+
ã
(ijkl)

1101 α1 + b̃(ijkl)1101 α4

α1 + α4
B3

1101(α)

+ ã
(ijkl)

1011 α1 + b̃(ijkl)1011 α4

α1 + α4
B3

1011(α). (4.4)

Now we define our A-patches from which a smooth surface approximation of the
triangulation T is constructed.

Face A-patch. Let [pipjpk] ∈ Tnonzero. If [pipjpk] is positive convex, then the face A-
patch of [pipjpk], denoted by Fijk , is defined by

Fijk =
{
p ∈R

3: F(p)= 0; p = (1− tmin)q + tminuijk; ∀q ∈ [pipjpk];
tmin ∈ (−∞,0) if F(q) > 0; tmin ∈ [0,1] if F(q)� 0

}
, (4.5)
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where tmin is the minimal t in absolute value among all t ′s that satisfy the required
condition. If [pipjpk] is negative convex, Fijk is similarly defined. If [pipjpk] is
nonconvex, Fijk is defined by

Fijk =
{
p ∈R

3: F(p)= 0; p = (1− tmin)q + tminuijk if F(q)� 0;
or p = (1− tmin)q + tminvijk if F(q) > 0;
tmin ∈ [0,1); ∀q ∈ [pipjpk]

}
, (4.6)

where tmin is the minimal of all the t ′s in [0,1) satisfying the required condition.

Edge A-patch. Let [pipj ] be a nonzero-convex edge of T with [pipjpk] and [pipjpl]
are two adjacent faces, then the edge A-patch of [pipj ], denoted by Eij , is defined by

Eij =
{
p ∈R

3: F(p)= 0; p = (1− tmin)q + tminu, ∀u ∈ [uijkuij l ] if F(q)� 0;
or p = (1− tmin)q + tminv, ∀v ∈ [vijkvij l ] if F(q) > 0;
tmin ∈ [0,1); ∀q ∈ [pipj ]

}
, (4.7)

where tmin is the minimal of all the t ′s in [0,1) satisfying the required condition.

That is, Fijk and Eij are defined by the minimal zero of so called shooting polynomials
in t . For face A-patches, the shooting polynomials, that are cubic in variable t , are

3∑
s=0

B
(ijk)
s (q)B3

s (t) := F |[pkpipj uijk ]
(
(1− t)q + tuijk

)
,

(4.8)
3∑
s=0

B̃
(ijk)
s (q)B3

s (t) := F |[pkpipj vijk ]
(
(1− t)q + tvijk

)
,

where q = α1pi + α2pj + α3pk ∈ [pipjpk] and

B
(ijk)
s (q) =

∑
λ1+λ2+λ3=3−s

f
(ijk)
λ1λ2λ3s

B3−s
λ1λ2λ3

(α1, α2, α3), 1 � s � 3,

B
(ijk)

0 (q) =
∑

λ1+λ2+λ3=3

f
(ijk)

λ1λ2λ30B
3
λ1λ2λ3

(α1, α2, α3)

+ a
(ijk)

1110α2α3 + b(ijk)1110α1α3 + c(ijk)1110α1α2

α2α3 + α1α3 + α1α2
B3

111(α1, α2, α3)

and B̃(ijk)s (q) is similarly defined. If [pipjpk] is nonconvex, B(ijk)s (q) and B̃(ijk)s (q) are
similarly but defined piecewise with the rational part being zero. For edge A-patches, the
shooting polynomials are

3∑
s=0

B
(ijkl)
s (q,u)B3

s (t) := F |[uijlpipj uijk ]
(
(1− t)q + tu),

(4.9)
3∑
s=0

B̃
(ijkl)
s (q, v)B3

s (t) := F |[vijlpipj vijk ]
(
(1− t)q + tv),
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where q = xpi + (1− x)pj , u= yuijk + (1− y)uijl , v = yvijk + (1− y)vij l ,
B
(ijkl)
s (q,u) =

∑
λ2+λ3=3−s

∑
λ1+λ4=s

f
(ijkl)
λ B3−s

λ2
(x)Bsλ4

(y), s = 0,1,3,

B
(ijkl)

2 (q,u) =
∑

λ2+λ3=1

∑
λ1+λ4=2

f
(ijkl)
λ B1

λ2
(x)B2

λ4
(y)

+ [
xb
(ijkl)

1101 + (1− x)b(ijkl)1011

]
yB2

1 (y)

+ [
xa
(ijkl)

1101 + (1− x)a(ijkl)1011

]
(1− y)B2

1 (y)

and B̃(ijkl)s (q, v) is similarly defined. Note that the coefficients B(ijk)s and B(ijkl)s of the
shooting polynomials relate only to the Bézier coefficients of layer s (see Fig. 8).
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Fig. 9. Smooth join of two nonconvex face
patches with edge patch.

Fig. 10. Smooth join of plane with nonconvex
patch.
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Fig. 11. Adjacent tetrahedra, the numbering of the weights of the cubic functions.

Figs. 6, 7, 9 and 10 show various cases of face A-patches and edge A-patches. See
Section 6 for a detailed description.

4.2. Construction of rational functions

Now we determine the coefficients of F step by step (see Fig. 11 for the numbering of
the coefficients of the polynomial pieces).

Step 1. In order to have the constructed surface interpolate the vertices of T , we take the
number 0 coefficients to be zero.

Step 2. The number 1 coefficients are determined by formula (2.1) from normals. From
the construction of the face tetrahedra of Σ , we have f (ijk)0201 > 0, f (ijk)2001 > 0, f (ijk)0021 > 0.

Step 3. If [pipjpk] is positive (or negative) convex, then by interpolating the directional
derivative

1

2

[
(pk − pj )T(pi − pj )
‖pi − pj‖2 (pk − pi)+ (pk − pi)

T(pj − pi)
‖pi − pj‖2 (pk − pj )

]T

(ni + nj )

at the point 1
2 (pi + pj ) where the direction is in the face [pipjpk] and perpendicular to

the edge [pipj ], we can derive that

f
(ijk)

1110 + a(ijk)1110 = 1
2

[
f
(ijk)

1200 + f (ijk)1020

+ α(pk,pi,pj )f (ijk)0210 + (1− α(pk,pi,pj ))f (ijk)0120

]
, (4.10)

where α(pk,pi,pj ) is defined by (3.1). By making F interpolate the other two directional
derivatives at the mid-point of the edge [pipk] and [pjpk], respectively, we have
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f
(ijk)
1110 + c(ijk)1110 = 1

2

[
f
(ijk)
0210 + f (ijk)2010

+ α(pj ,pi,pk)f (ijk)1200 +
(
1− α(pj ,pi,pk)

)
f
(ijk)

2100

]
, (4.11)

f
(ijk)

1110 + b(ijk)1110 = 1
2

[
f
(ijk)

0120 + f (ijk)2100

+ α(pi,pj ,pk)f (ijk)1020 +
(
1− α(pi,pj ,pk)

)
f
(ijk)

2010

]
. (4.12)

Though for any given f (ijk)1110 , (4.10)–(4.12) define uniquely a(ijk)1110 , b(ijk)1110 and c(ijk)1110 . But

we take f (ijk)1110 to be the average value of the right-handed sides of (4.10)–(4.12), such

that a(ijk)1110 , b(ijk)1110 and c(ijk)1110 are as small as possible. If [pipjpk] is nonconvex, we have

three f (ijk)1110 , that are determined by right-handed sides of (4.10)–(4.12) with α(pk,pi,pj ),
α(pj ,pi,pk) and α(pi,pj ,pk) are replaced by α(c,pi,pj ), α(c,pi,pk) and α(c,pj ,pk),
respectively.

Step 4. The number 3 coefficients f (ijk)0111 , f (ijk)1101 and f (ijk)1011 are determined by the same
approach as the number 2 but the directions are in the faces [pipjuijk], [pipkuijk] and
[pjpkuijk], respectively. From these we get

f
(ijk)

0111 = 1
2

[
f
(ijk)

0201 + f (ijk)0021 + α(uijk ,pi,pj )f (ijk)0210 +
(
1− α(uijk ,pi,pj )

)
f
(ijk)

0120

]
,

f
(ijk)
1101 = 1

2

[
f
(ijk)
0201 + f (ijk)2001 + α(uijk ,pi,pk)f (ijk)1200 +

(
1− α(uijk,pi ,pk)

)
f
(ijk)
2100

]
,

f
(ijk)

1011 = 1
2

[
f
(ijk)

2001 + f (ijk)0021 + α(uijk ,pj ,pk)f (ijk)1020 +
(
1− α(uijk,pj ,pk)

)
f
(ijk)

2010

]
.

From the construction of the face tetrahedra (see Section 3.1), we know that f (ijk)0111 � 0,

f
(ijk)
1101 � 0 and f (ijk)1011 � 0.

Step 5. The number 4 coefficients are free. We choose them so that the polynomial part
approximates a quadratic in the least square sense. That is, we solve the equation

f
(ijk)
λ1λ2λ3λ4

= 1

3

4∑
i=1

λiqλ1λ2λ3λ4−ei ,
4∑
i=1

λi = 3, λ4 = 0,1, (4.13)

for unknowns qλ1λ2λ3λ4−ei , where qijkl represent the coefficients of the quadratic in BB
form. Then take

f
(ijk)
λ1λ2λ3λ4

= 1

3

4∑
i=1

λiqλ1λ2λ3λ4−ei ,
4∑
i=1

λi = 3, λ4 = 2, (4.14)

with q0002 = f (ijk)0003 as a free parameter. If the tetrahedron [pkpipjuijk] is subdivided, then
the undetermined coefficients are determined by the Clough–Tocher scheme (see (Bajaj et
al., 1995b)) for detail).

Step 6. In order to make the face A-patch and edge A-patch smooth and single sheeted
(see the proof in Appendix), we need to specify lower bounds Bijk and Bijl for the

number 6 coefficients f (ijk)0003 and f (ij l)3000 . Firstly, compute Bijk so that the face A-patch

in [pipjpkuijk] is smooth and single sheeted if f (ijk)0003 >Bijk . Applying Lemma 2.3 to the
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shooting polynomial defined in (4.8) with b3 = 0, β = 1 and b= f (ijk)0003 , we obtain bmin(q)

and then define Bijk to be maxq∈[pipjpk] bmin(q). This maximal value can be numerically
computed. Bijl is similarly computed.

Second, we set f (ijk)0003 = Bijk + b and f (ij l)3000 = Bijl + b with b as a parameter. Then
compute number 5, 6, 7 coefficients by theC0 andC1 conditions (see Steps 7–9 for details).
These coefficients depend linearly on the parameter b. Applying Lemma 2.3 for the
shooting polynomial in (4.9) with β = B3

0 (y)+ 2
3ν1B

3
1 (y)+ 2

3µ4B
3
2 (y)+B3

3 (y)+y(1−y),
we can determine a lower bound Bijkl for b so that the edge A-patch is smooth and single

sheeted if f (ijk)0003 >Bijk +Bijkl and f (ij l)3000 >Bijl +Bijkl .
Third, modify the bounds Bijk and Bijl by adding Bijkl to them if Bijkl > 0.

Step 7. The number 5 coefficients are taken to be zero. The coefficients of the rational
function on the edge tetrahedron are given by the C1 conditions (2.3). Let

uijl = µ1pk +µ2pi +µ3pj +µ4uijk,

4∑
s=1

µs = 1,

(4.15)

uijk = ν1uijl + ν2pi + ν3pj + ν4pl,

4∑
s=1

νs = 1.

Then

b
(ijkl)
1101 = µ1f

(ijk)
1101 +µ2f

(ijk)
0201 +µ3f

(ijk)
0111 +µ4f

(ijk)
0102 ,

b
(ijkl)

1011 = µ1f
(ijk)

1011 +µ2f
(ijk)

0111 +µ3f
(ijk)

0021 +µ4f
(ijk)

0012 ,

a
(ijkl)

1101 = ν1f
(ij l)

2100 + ν2f
(ij l)

1200 + ν3f
(ij l)

1110 + ν4f
(ij l)

1101 ,

a
(ijkl)

1011 = ν1f
(ij l)

2010 + ν2f
(ij l)

1110 + ν3f
(ij l)

1020 + ν4f
(ij l)

1011 .

It follows from (4.14) that b(ijkl)1101 and b(ijkl)1011 depend linearly on f (ijk)0003 . Similarly, a(ijkl)1101 and

a
(ijkl)

1011 depend linearly on f (ij l)3000 .

Step 8. The number 6 coefficients are free parameters which provide a smooth and
single sheeted A-patch family if they are above the lower bounds provided in Step 6. One
may also choose desirable shape surfaces from this family by suitably adjusting the free
parameters. The default choice of the free parameters is to make the cubic approximate a
linear function. That is, we solve the equations

qλ1λ2λ3λ4 =
1

2

4∑
i=1

λipλ1λ2λ3λ4−ei ,
4∑
i=1

λi = 3, λ4 = 0,1, (4.16)

for unknowns pλ1λ2λ3λ4−ei , where qλ1λ2λ3λ4 are defined by Eqs. (4.13) and pijkl represent

the coefficients of the linear function in BB form. Then take f (ijk)0003 to be max{p0001,Bijk}.
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Step 9. The number 7 coefficients are given by C1 condition (2.3). For example,

f
(ijkl)
1002 = µ1f

(ijk)
1002 +µ2f

(ijk)
0102 +µ3f

(ijk)
0012 +µ4f

(ijk)
0003 . (4.17)

Step 10. The remaining coefficients in the negative side of T are determined similar to
the corresponding coefficients in the positive side of T .

Note. As the approach of Bajaj, Chen and Xu (1995b), if [pipjpk] is nonconvex, we
could use one cubic instead of three if the face is not coplanar with its neighbor faces and
the three inner products of the face normal and its three adjacent face normals have the
same signs. In this case, the number 2 coefficient in Step 3 is freely chosen, the number
3 coefficients in Step 4 are defined by C1 condition (2.3). We could adjust the number 2
coefficients so that the number 3 coefficients are positive. All other steps are the same.
However, F constructed may not interpolate the partial derivatives at the mid-points of
the edge. We strongly believe that the interpolation of properly chosen partials at the mid-
points of the edges will make the constructed surface has better shape. For this reason, we
prefer using the three cubic approach.

4.3. Properties of A-patches

Theorem 4.1. For the given triangulation T with a constructed simplicial hull Σ , the
surface defined by the union of all edge A-patches, face A-patches and zero convex faces
of T interpolates the vertices and normals of the triangulation, and is smooth and single
sheeted and topologically equivalent to T .

Proof. We first show that the function F is C1 over Σ . Note that the rational function
is well defined even if at the points the denominator is zero. Hence F is a well defined
function onΣ . Since F is obviously smooth in the interior of each tetrahedron, we consider
only the smoothness of F at the common faces of tetrahedra in Σ .

At the face [pipjuijk], the rational functions and their first order partial derivatives are
polynomials. Hence the coefficients determined by the C1 condition (2.3) make F be C1

everywhere on the common face. For the common face [pipjpk], since the number 1 and
the number 3 coefficients are defined by interpolating C1 data at vertices and edges of the
face, hence the polynomials in the two face tetrahedra have a C1 join. Therefore, F is C1

there.
Now we show that the constructed surface has the required properties. We first note that

the surface patch Fijk or Eij is smooth and single sheeted since the construction of F
satisfies the conditions of Lemma 2.3 (the detail proof of this fact is given in Appendix A).
Also, these surface patches interpolate corresponding vertices and have the given normals
on the vertices. Second, the edge A-patch and face A-patch are continuous at the common
face since the surface points there are derived from the same equation (see (4.5)–(4.7)).
Furthermore, since F is C1, the two surface patches smoothly join on the common face.

Now we show that the zero convex face joins suitably with its neighbor surface patches.
Let [pipjpk] be a zero convex face. Then the surface patch is the face itself. If its adjacent
face, say [pipjpl], is also zero-convex, then the two faces are coplanar since they share the
same surface normals at the common vertices pi and pj . If [pipjpl] is not zero-convex,
then by the construction of F , we know that Fijl contains the edge [pipj ]. In particular,



G. Xu et al. / Computer Aided Geometric Design 18 (2001) 221–243 235

the face [pipjpk] and the surface patch Fijl C0 join at the edge. Since both the surface
patches have the same three normals on the edge and the normal functions are polynomial
vectors of degree two, they are uniquely defined by the three normals that are perpendicular
to the face. Hence the normal function is perpendicular to the face everywhere on the edge.
That is, [pipjpk] and Fijl have the same normals on the edge. Therefore, the two surface
patches join smoothly.

Finally, since each edge and each face of Σ corresponds to one surface patch (the
zero convex edge corresponds to itself), the constructed surface is topologically equivalent
to T . ✷

The scheme proposed above makes the constructed surface have the plane recovery
property. Furthermore, the scheme also has quadratic precision. This is made precise in
the following theorem and corollary.

Theorem 4.2. Suppose the three normals at the vertices of the triangle [pipjpk] are
extracted from a quadratic surface Q(p) = 0 that interpolates the three vertices. For
any given f (ijk)0003 , if the coefficients f (ijk)λ1λ2λ32 of F |[pkpipj uijk ] are defined by (4.14) with

q0002 := f (ijk)0003 and qλ1λ2λ3λ4(λ4 = 0,1) are defined by (4.13), then F |[pkpipj uijk ](p) =
Q(p)+ [f (ijk)0003 −Q(uijk)]α2

4 .

Note that α2
4 = B2

0002(α) is a quadratic Bézier base function at uijk . Hence the theorem

says that we have a quadratic surface family with f (ijk)0003 as parameter. Each member in this

family has the same normals as Q(p) = 0 at the vertices. If we take the parameter f (ijk)0003
to be Q(uijk), then the constructed function coincides with Q.

The proof of the theorem is based on the following facts:
(a) F interpolates function values and first order partial derivatives ofQ at the vertices

pi,pj and pk , and F interpolates directional derivatives of Q in any direction that
is perpendicular to edges of the triangle at the mid-points of the three edges.

(b) The number 4 coefficients are defined by degree elevation formula.
(c) The rational function degenerates to zero.

The detailed discussion needs to distinguish the cases when the face is convex or
nonconvex. We omit these details here.

Now consider the edge [pipj ] with [pipjpk] and [pipjpl] as its adjacent faces. If we
want the function defined on the edge tetrahedron [uijlpipjuijk] to recover a quadratic, we
then require the functions defined on [pkpipjuijk] and [uijlpipjpl] to recover the same
quadratic. Therefore, we have the following

Corollary 4.3. Suppose the four normals at the vertices of the two adjacent triangles
[pipjpk] and [pipjpl] are extracted from a quadratic surface Q(p) = 0 that passes

through the four vertices. For any given f (ijk)0003 and f (ij l)3000 satisfying, ν1[f (ij l)3000 −Q(uijl )] =
µ4[f (ijk)0003 − Q(uijk)] with ν1 and µ4 are defined by (4.15), if the coefficients f (ijk)λ1λ2λ32

and f (ij l)2λ2λ3λ4
of F |[pkpipj uijk ] and F |[uijlpipjpl ], respectively, are defined as those in

Theorem 4.2 correspondingly, then the function F |[uijlpipj uijk ] is quadratic and is the same
as the functions defined on [pkpipjuijk] and [uijlpipjpl].
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Fig. 12. Regular 20-faces polyhedron as a
discretization of sphere.

Fig. 13. Constructed sphere from the 20-faces
polyhedron.

Fig. 13 shows the quadric recovery property. The input (Fig. 12) is a regular 20-faces
polyhedron that is a discretization of a sphere. The curves over the surface are isophotes
that show the sphere is perfectly recovered.

4.4. Closed form of the surface patch

The shooting polynomial, defined by (4.8) and (4.9), for evaluating the surface point is
of degree three. Its coefficients depend continuously upon several parameters. For each set
of the parameters, the polynomial in general has three roots. These roots are computed
by the well known Cardan’s formulas (see (4.18)–(4.20)). However, it is possible that for
different sets of parameters different formulas are used. In this subsection, we will answer
the following question: Which formula among the three should we use? Let the shooting
polynomial be expressed in the following form

dB3
0 (t)+ cB3

1 (t)+ bB3
2 (t)+ aB3

3 (t)= (1− t)3
(
d + 3cs + 3bs2 + as3),

where s = t/(1− t) ∈ [0,∞) for t ∈ [0,1). Let s = x− b/a. Then the cubic polynomial in
s could be written as x3+px + q with p = 3(ac− b2)/a2, q = (2b3− 3abc+ a2d)/a3.
The roots of x3 + px + q = 0 are given by Cardan’s formulas

x1 = 3
√
−q/2+√∆+ 3

√
−q/2−√∆, (4.18)

x2 = ω 3
√
−q/2+√∆+ω2 3

√
−q/2−√∆, (4.19)

x3 = ω2 3
√
−q/2+√∆+ω 3

√
−q/2−√∆, (4.20)

where ∆= (q/2)2+ (p/3)3 is the discriminant of the equation and ω= (−1+ i
√

3)/2. If
∆< 0, −q/2±√∆ are nonreal complex numbers. We define

3
√
−q/2±√∆= ∣∣−q/2±√∆∣∣1/3e±iθ/3, (4.21)
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where ±θ = arg(−q/2 ± √∆) ∈ (−π,π]. Taking ±θ ∈ (−π,π], instead of [0,2π),
assures that x1 is real. It is well known that (i) if ∆ > 0 the equation has one real root
(i.e., x1) and two nonreal complex roots (i.e., x2 and x3); (ii) if ∆ = 0 the equation has
three real roots, but at least two of them are the same (x2 = x3); (iii) if ∆< 0 the equation
has three different real roots.

In our application of the Cardan’s formulas, the coefficients depend continuously upon
some parameters. For face patches these parameters are α := (α1, α2, α3) with αi �
0,

∑
αi = 1 (see (4.8)). For edge patches these parameters are α := (x, y) ∈ [0,1] × [0,1]

(see (4.9)). However, the continuity of the coefficients does not imply that xj := xj (α) vary
continuously with α, since the cubic root function defined by (4.21) is not continuous at
∆= 0 and q > 0. Now we have the following

Result. (i) Let D+ = {α: ∆(α) > 0}, D0 = {α: ∆(α)= 0}. Then for any α ∈D+ ∪D0 ,
x1(α) is the required root for the surface patch.

(ii) LetD− = {α: ∆(α) < 0} andD−i ⊂D−, i = 1, . . . , k (k � 1), such that eachD−i is
connected region,D−i ∩D−j = ∅ for i �= j and

⋃
D−i =D−. Then if {α: q(α) < 0}∩D0

i �=
∅, x1(α) is the required root on D−i , where D0

i =D0 ∩ D̄−i , and D̄−i is the closure of D−i .

Proof. (i) For the points in D+, the equation has only one real root, i.e., x1. For the points
in D0, x2 = x3. Since the minimal root is simple, x1 is the required root.

(ii) From (i) we know that, at the points of {q < 0}∩D0
i , the required root is x1. Now we

show that the required root cannot switch to x2 or x3 in D−i . For example, if x1 switches to
x2 or x3 at a point α′′ inD−i , then from the connectedness ofD−i , there is a continuous path
L inD−i starting with a point α′ in {q < 0}∩D0

i and ending with α′′. Since x1 is continuous
at α′ and in D−i , x1 is continuous on the path L. With loss of generality (WLG), we may
assume α′′ is the first point on this path such that x1 switches to x2 or x3. Then by the
continuity of xj in D−i , x1 = x2 or x1 = x3, we have a contradiction to the fact that the
roots are distinct when ∆< 0. ✷
Corollary. If ab > 0, then there exists only one of the xj that is our required root for all
the α. Furthermore, if D+ ∪D0 �= ∅, then x1(α) is the required root.

Proof. Now we show that if ab > 0 the set D0 ∩ {q(α) > 0} is empty. Since the required
root of the shooting polynomial is simple and since x2 = x3 when∆= 0, x1 = 2 3

√−q/2 is
the required root. Since our root t ∈ [0,1) or s = x − b/a ∈ [0,∞), then

x1 − b/a � 0, or x1 � b/a > 0, or q < 0.

Therefore, xj (α) are continuous functions. Hence only one expression could be used, since
any transform from one to another will lead to the intersection of the functions. This
contradicts the fact that the minimal root is simple. Furthermore, if D+ ∪D0 �= ∅, from
Result(i), x1(α) must be the required root. ✷

It follows from Lemma 2.3 that ab > 0 always could be achieved by increasing the
coefficient f (ijk)0003 .
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5. Display of the C1 surfaces

5.1. The face A-patch

For each face [pipjpk] ∈ Tnon-zero, we shall produce a piecewise triangular approxima-
tion for the surface patch Fijk . Let n be a given positive number, which represents the
resolution of the piecewise approximation. Then the piecewise triangular approximation
is defined by the naive connection of the points fxyz(x + y + z = n, x, y, z � 0). Here
fxyz is the intersection point of the polygonal line [uijkqxyz] ∪ [qxyzvijk] and the surface
F = 0, where qxyz = x

n
pi + y

n
pj + z

n
pk and the intersection point is computed by solving

the cubic polynomial equation F |[pkpipj uijk ]((1 − t)qxyz + tuijk) = 0 if F(qxyz) � 0 or
solving a similar equation F |[pkpipj vijk ]((1− t)qxyz+ tvijk)= 0 if F(qxyz) > 0, where the
required root is the minimal one.

5.2. The edge A-patch

For each edge in Tnon-zero, we shall produce a piecewise quadrilateral approximation for
the surface patch defined in the two edge tetrahedra that share the edge. Let m,n be two
given positive numbers, which represent the resolution of the piecewise approximation and
n should have the same value as above, let [pipj ] be a edge of Tnon-zero and [uijlpipjuijk]
and [vijlpipjvijk] be the edge tetrahedra. Then the piecewise quadrilateral approximation
is defined by connecting the points exy(x = 0, . . . , n; y = 0, . . . ,m). Here exy is the
intersection point of the polygonal line [uyqx] ∪ [qxvy ] and the surface F = 0, where

qx = x
n
pi + n− x

n
pj , uy = y

m
uijl + m− y

n
uijk, vy = y

m
vijl + m− y

n
vijk

and the intersection point is computed by solving the cubic polynomial equation

F |[uijlpipj uijk ]
(
(1− t)qx + tuy

)= 0 if F(qx)� 0,

or solving a similar equation

F |[vijlpipj vijk ]
(
(1− t)qx + tvy

)= 0 if F(qx) > 0.

Again, we use the minimal root.
Note that the linear decomposition of the A-patches are identical on the common faces

and edges of the hull Σ , so there are no cracks or aliasing artifacts present in the display
of the final C1 surface.

5.3. Interactive change of the surface shape

From the construction of F , we know that the coefficient f ijk0003 > Bijk is free for each
face [pipjpk]. This degree of freedom can be used to control interactively the shape of

the designed surface. When f ijk0003 approaches to the lower bound Bijk , the surface is lifted

towards the top vertex, while f ijk0003 goes to infinity, the surface is depressed to the bottom
triangle (see Fig. 2). Now we show that the surface could be quickly displayed when
f
ijk
0003 changes. Let

∑3
s=0B

(ijk)
s (q)B3

s (t) := F |[pkpipj uijk ]((1− t)q+ tuijk) be the shooting
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polynomial for the face [pipjpk] (see (4.8)). Then the main computation for evaluating a

surface point is to compute the coefficients B(ijk)s (q) and then find the roots of a cubic
polynomial. Since B(ijk)3 (q) = f ijk0003, the costs of the computation of B(ijk)s (q) is zero if

B
(ijk)
s (q) are pre-computed (before the interactive control step) and kept, for s = 0,1,2

and q = qxyz (see Section 5.1). Since there exists a closed form for finding the roots of a
cubic polynomial, the cost of finding these roots is very small.

For displaying the edge A-patch, the situation is similar, but forming

B
(ijkl)

3 (q,u)=
∑

λ1+λ4=3

f
(ijkl)
λ B3

λ4
(y)

needs little computation (see (4.9)) when f (ijkl)3000 or f (ijkl)0003 changes.

6. Conclusions and examples

There are two main contributions of this paper. The first is the use of rational terms in the
modeling function. These provide enough degrees of freedom so that: (i) we do not need
to subdivide the edge patch and hence the overall number of patches is reduced; (ii) the
modeling function interpolates additional data on the middle of the edges and hence leads
to better shaped A-patches (see Figs. 6, 7, 9, 10, 2 and 3); (iii) the A-patch can smoothly
join planar faces (see Fig. 10) and also has the quadratic precision property. The second
major contribution is that multiple sheeted surfaces are allowable in the hull. This widens
the class of the algebraic spline surfaces to select nicer looking shaped C1 surface models.
However, we have provided a robust scheme to select a sheet of the surface for a final C1

surface which is topologically equal to the triangulation. The implementation of the paper
and our test examples show that these two techniques work very well to make it a practical
method for free form modeling. We point out that the techniques proposed in this paper can
be used in the C1 quadric A-patch introduced by Guo (1991a) and the C2 quintic A-patch
introduced by Bajaj, Chen and Xu (1995a).

Figs. 6, 7, 9 and 10 show the different join configurations of two face A-patches. In
Fig. 6, the two given faces [p1p2p3] and [p1p2p4] are convex, where p1 = (−2,0,0)T,
p2 = (2,0,0)T, p3 = (0,4,−1)T and p4 = (0,−4,−1)T. The corresponding normals are
chosen as n1 = (−1,0,1)T, n2 = (1,0,1)T, n3 = (0,1,1)T and n4 = (0,−1,1)T. In Fig. 7,
the vertices are the same as in Fig. 6. The normals n3 and n4 are replaced by (0,1,1.5)T and
(0,1,1.5)T. Hence the face [p1p2p3] is convex and face [p1p2p4] is nonconvex. In Fig. 9,
the vertices are the same as before, but the normals are chosen as n1 = n2 = (1,0,1)T,
n3 = (0,−1,1.5)T, and n4 = (0,1,1.5)T. Hence the two faces are nonconvex and the
common edge [p1p2] is also nonconvex. Fig. 10 shows a smooth join of a nonconvex face
A-patch with a degenerate planar patch, where p1 = (−2,0,0)T, p2 = (2,0,0)T, p3 =
(0,4,−1)T and p4 = (0,−4,0)T. The normals are chosen as n1 = n2 = n4 = (0,0,1)T
and n3 = (0,−1,1.5)T. Hence, the face [p1p2p3] is nonconvex and the face [p1p2p4] is
zero convex. The number 3 and number 4 coefficients of the constructed function in Figs. 6,
7, 9 and 10 are determined by the default choice (see Step 5 and Step 7 in Section 4.2).
Fig. 2 shows the surface family with changes in parameters f (ijk)0003 and f (ij l)3000 , and keeping
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Fig. 14. Edge patches and face patches for a
head.

Fig. 15. Rational A-patch construction for a
head.

the vertices and normals the same as in Fig. 6. The vertices and normals used in Fig. 3
is the same as those in Fig. 9. This example shows the multiple sheeted property of the
zero contour. The free parameters are taken near the lower bound Bijk , hence the surface is
nearly singular at the point where the two sheets of the surface approximately touch. This
shows also that the lower boundBijk given in Step 6 of Section 4.2 is exact. Figs. 14 and 15
show a smooth A-patch construction model of a human head. In this example, the number
3 and 4 coefficients in the construction of the function are given by the default choice of
Section 4.2. In Fig. 14, edge patches and face patches are shown separately by different
shading, to depict the topology of the input triangulation as well as its adaptivity. The
higher curved regions have more triangles. If the input triangulation is relatively flat at an
edge, then the edge patch is correspondingly degenerate. Fig. 17 is the A-patch construction
for the triangulation shown in Fig. 16. Again, the edge A-patches and face A-patches are
shown by different shading, and mirror each other’s topology.
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Fig. 16. The input triangulation of a teapot.

Fig. 17. The edge patches and face patches for the teapot.

Appendix A. The regularity of the surface patch

Consider first a face patch in [pipjpkuijk] for a convex face [pipjpk]. Let F |[pkpipj uijk ]
be extended to R

3 using its closed form (4.1) in [pipjpkuijk] (we still use F to denote
the extended function). Then F is C1 in R

3. Let φq(t) = F(p(t, q)) be the shooting
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polynomial at q ∈ [pipjpk] and tmin(q) be the minimal root in defining the surface point
p(q) := p(tmin(q), q), where

p(t, q)= (1− t)q + tuijk . (A.1)

Then since tmin(q) is a simple zero of φq ,

dφq(tmin(q))

dt
=∇F (

p(q)
)T
(uijk − q) �= 0. (A.2)

WLG, we may assume ∇F(p(q))T(uijk − q) > 0. Then by the C1 continuity of F , there
is an open sphere Nq with center p(q), such that

∇F(p)T(
uijk − q(p)

)
> 0 for ∀p ∈Nq, (A.3)

where

q(p)= sp+ (1− s)uijk, s = (c− uijk)Tnijk/(p− uijk)Tnijk,
c = (pi + pj + pk)/3 and nijk is the normal of the face [pipjpk]. q(p) is the projection
of p onto the plane 〈pipjpk〉 in the direction p − uijk . Condition (A.3) implies that F is
monotonic in the direction uijk − q(p) in the sphere Nq . Let Sq = {F = 0} ∩Nq . Then
Sq is a smooth surface, since ∇F(p) �= 0 for p ∈ Nq . Hence each surface point p ∈ Sq
define a simple zero t (p) of the corresponding shooting polynomial φq(p)(t). It follows
from (A.1) that

t (p)= (c− p)Tnijk/(c− uijk)Tnijk. (A.4)

Our goal is to prove that there exists a neighborhood N ′q ⊂ Nq of p(q) such that

t (p) = tmin(q(p)) for p ∈ N ′q ∩ Sq . If this is not true, there exists a sequence p(l) ∈ Sq ,

such that ‖p(l) − p(q)‖→ 0 (this and (A.4) imply that t (p(l)) converge to tmin(q)), and
tmin(q(p

(l))) �= t (p(l)). Suppose tmin(q) > 0 (the discussion is similar for the other cases).
WLG, we may assume tmin(q(p

(l))) converge to t ′ and tmin(q(p
(l))) < t (p(l)). Since

F(p(q(p(l)))) = 0, the continuity of F implies that F(p(t ′, q)) = 0. If t ′ < tmin(q), a
contradiction is yielded since tmin(q) is minimal zero. Hence t ′ = tmin(q). Then by Rolle’s
theorem, there is a ξ(l) ∈ (tmin(q(p

(l))), t (p(l)), such that

0= F(p
(l))− F(p(q(p(l)))

t (p(l))− tmin(q(p(l)))
=∇F (

p(ξ(l), q
(
p(l)

))T[
uijk − q

(
p(l)

)]
.

From the continuity, we have ∇F(p(tmin(q), q)
T[uijk − q] = 0, a contradiction to (A.2).

Therefore, the neighborhood N ′q does exist. Let S′q = Sq ∩N ′q . Then the surface patch S′q
is defined by the minimal root of the shooting polynomial. Let Nq = {q(p): p ∈ S′q}. Then
by (A.3) Nq is an open neighborhood of q . Since all the Nq form an open covering of
[pipjpk], then by Heine–Borel theorem (see (Royden, 1968) p. 42), there exists a finite
number of Nq(l) such that their union covers [pipjpk]. For any point in Nq(m) ∩Nq(n) , the
shooting polynomial is the same and hence the surface point is the same. Therefore, the
composite surface is connected.

If the face [pipjpk] is nonconvex, we could divide the face into several connected closed
regions D+l and D−l , such that F � 0 on D+l , and F � 0 on D−l . After carrying out the
proof above for each of the regions, we have a connected surface over each region. On the
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common boundaries (at where F = 0) of these regions, the surface points coincide with
boundary points, hence the composite surface is connected. For the edge surface, the proof
of the connectness is similar.

References

Bajaj, C., 1993. The emergence of algebraic curves and surfaces in geometric design, in: Martin, R.
(Ed.), Directions in Geometric Computing, Information Geometers Press, pp. 1–29.

Bajaj, C., 1997. Implicit surface patches, in: Bloomenthal, J. (Ed.), Introduction to Implicit Surfaces,
Morgan Kaufmann, pp. 98–125.

Bajaj, C., Chen, J., Xu, G., 1995a. Modeling with C2 quintic A-patches. Computer Science Technical
Report, CSD-TR-95, Purdue University.

Bajaj, C., Chen, J., Xu, G., 1995b. Modeling with cubic A-patches. ACM Trans. on Graphics 14 (2),
103–133.

Dahmen, W., 1989. Smooth piecewise quadratic surfaces, in: Lyche, T., Schumaker, L. (Eds.),
Mathematical Methods in Computer Aided Geometric Design, Academic Press, Boston, pp. 181–
193.

Dahmen, W., Thamm-Schaar, T.-M., 1993. Cubicoids: modeling and visualization. Computer Aided
Geometric Design 10, 89–108.

Dyn, N., Levin, D., Gregory, J.A., 1990. A butterfly subdivision scheme for surface interpolation
with tension control. ACM Trans. on Graphics 9 (2), 160–169.

Farin, G., 1990. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 2nd
edn. Academic Press.

Guo, B., 1991a. Modeling Arbitrary Smooth Objects with Algebraic Surfaces, Ph.D. Thesis.
Computer Science, Cornell University.

Guo, B., 1991b. Surface generation using implicit cubics, in: Patrikalakis, N. (Ed.), Scientific
Visualization of Physical Phenomena, Springer-Verlag, Tokyo, pp. 485–530.

Kobbelt, L., 1997. Discrete fairing, in: Goodman, T., Martin, R. (Eds.), The Mathematics of Surfaces
VII, Information Geometers Ltd, pp. 101–129.

Lodha, S., 1992. Surface approximation with low degree patches with multiple representations, Ph.D.
Thesis. Computer Science, Rice University.

Loop, C., 1987. Smooth subdivision surfaces based on triangles, Master’s Thesis. Department of
Mathematics, University of Utah.

Royden, H.L., 1968. Real Analysis, 2nd edn. Macmillan Publishing, New York.
Sederberg, T., 1985. Piecewise algebraic surface patches. Computer Aided Geometric Design 2, 53–

59.
Xu, G., Bajaj, C., 1997. The estimation of normal and hessians from surface triangulation. Institute

of Computational Mathematics, Chinese Academy of Sciences, Technical Report, ICM-98-02.


