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Abstract

In this paper (part three of the trilogy) we use low degféeandG2 continuous regular algebraic
spline curves defined within parallelograms, to interpolate an ordered set of data points in the
plane. We explicitly characterize curve families whose members have the required interpolating
properties and possess a minimal number of inflection points. The regular algebraic spline curves
considered here have many attractive features: They are easy to construct. There exist convenient
geometric control handles to locally modify the shape of the curve. The error of the approximation is
controllable. Since the spline curve is always inside the parallelogram, the error of the fit is bounded
by the size of the parallelogram. The spline curve can be rapidly displayed, even though the algebraic
curve segments are implicitly defined.2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the first two parts (Xu et al., 2000a, 2000b) of this trilogy of papers, we
have introduced the concept of a discriminating family of curves by which regular
algebraic curve segments are isolated. Using different discriminating families, several
characterizations of the Bernstein—Bézier (BB) form of the implicitly defined real bivariate
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polynomials over the plane triangle and the parallelogram are given, so that the zero
contours of the polynomials define smooth and single sheeted real algebraic (called regular)
curve segments. In this part three of the trilogy of papers, we use segments of low degree
algebraic curves;,,, (u, v) = 0 in tensor product BB form defined within a parallelogram

or rectangle to construat! and G2 splines. A tensor product BB-form polynomial
Gmn(u,v) = Y 1L, Z?zob,jB;" (u)B} (v) of bi-degree(m,n) has total degree: + n,
however, the class of;,,,(u, v) is a subset of polynomials of total degree+ n. G*
(respectivelyG?) continuity implies curve segments share the same tangent (curvature) at
join points (knots). In each of th&! and G2 constructions, we develop a spline curve
family whose members satisfy given interpolation conditions. Each family depends on one
free parameter that is related linearly to the coefficients gf (u, v).

Prior work on using algebraic curve spline in data interpolation and fitting focus on
using bivariate barycentric BB-form polynomials defined on plane triangles (see (Xu et al.,
2000a, 2000b) for references). Compared with A-spline segments defined in triangular
(barycentric) BB-form (Bajaj and Xu, 1999), these algebraic curve segments in tensor
product form have the following distinct features:

(1) They are easy to construct. The coefficients of the bivariate polynomial that define

the curve are explicitly given.

(2) There exist convenient geometric control handles to locally modify the shape of the
curve, essential for interactive curve design.

(3) The spline curves, for the rectangle schemegageror controllable where is the
pre-specified width of the rectangle.

(4) These splines curves have a minimal number of inflection points. Each curve
segment of the spline curve has either no inflection points if the corresponding edge
is convex, or one inflection point otherwise.

(5) Since the required bi-degrée:, n) for G and G2 is low (in this paper, min,

n} < 2), the curve can be evaluated and displayed extremely fast. We explore both
display via parameterization as well as recursive subdivision techniques (see (Peters,
1994)).

(6) In the six spline families defined by Theorems 4.1-4.4, 5.1 and 5.2 in Sections 4
and 5, there are four cases with inn} = 1. In these cases, rational parametric
expressions are easily derived. Hence, we have both the implicit form and the
parametric form. Such dual form curves prove useful in several geometric design
and computer graphics applications.

(7) In treating a nonconvex edge in the triangular scheme (see (Bajaj and Xu, 1999)),
we need to break the edge into two parts by inserting an artificial inflection point.
In the present parallelogram or rectangle scheme, we need not divide the edge and
the inflection point occurs only when necessitated by the end point interpolating
conditions.

These features make these error-bounded regular algebraic spline curves promising in

applications such as interactive font design, image contouring etc.

The rest of the paper is as follows. In Section 2 we show how a number of data fitting
problems reduce to interpolating or approximating a polygonal chain of line segments
with error bounds. Some notation and geometric conventions are introduced in Section 3.
In Section 4, we discuss the problem of polygonal chain approximatio6bgand G2
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Dg4-regular spline curves defined on parallelograms. In Section 5, we discuss the problem
of polygonal chain approximation b¢! D3z-regular spline curves defined on rectangles.
Examples are given in Section 6. Section 7 concludes the paper. Proofs are detailed in
Appendix A.

2. Polygonal chains

A polygonal chain is an ordered sequence of polygonal line segments, where any three
adjacent points are not collinear. Several geometry processing tasks generate polygonal
chains for shape representation i 2Examples include shape or font design, fitting
from “noisy” data, image contouring, snakes (Kass et al., 1988) and level set methods
(Sethian, 1996). In this section, we mention a few of them that have some attached error or
uncertainty.

a. Noisy vertex data

The vertex data (position) comes from a multi-sampling process with possible error. The
error boundke is known in advance. Fig. 2.1 shows such a case. The white circles are the
repeatedly sampled points, the black dots are approximations of the sampled points. The
approximation of the point can be computed as the center of gravity or center of bounding
circular fits. The polygonal chain is obtained by connecting these black dots. The spline
curve to be constructed interpolates the vertices of the polygonal chain. Hence the error
around each vertex is bounded dy

b. Noisy curve data

Suppose a curve is sampled within somerror band around the curve. The sampled
point sequencév;} could be dense. To produce a polygonal chain to these points, we
use a “strip pasting” technique. Choose the strip width to be no less thafh2n use
the minimal number of strips to cover the sample points (see Fig. 2.2). The vertices
of the polygonal chain are the intersection points of two mid-lines of adjacent strips.
A computational method for obtaining the minimal number strips can be found in
(Bhaskaran et al., 1993). A greedy method to obtain a minimal “strip pasting” uses an
adaptive piecewise linear least square fitting, starting from one end of the dat&*The
Ds-regular curves developed in Section 5 are very suitable to interpolate these polygonal
chains.

Fig. 2.1. Polygonal chain extracted from over-sampled points.
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Fig. 2.2. Polygonal chain from noisy curve data and using adaptive “strip pasting”: The white circles
are original sampled points with error, and the black dots are the vertices of an extracted polygonal
chain.

'"-q.\.‘._,.,....-" T et

Fig. 2.3. From an image to polygonal chains.

c. Contour froman image

A 2D image can be treated as a piecewiSeilinear function interpolating the intensity
values at each pixel. A linear isocontour of the function is a polygonal chain. Of course,
such a polygonal chain may be quite dense, hence a simplification step is often used
to obtain coarser or multiresolution representations. Fig. 2.3 shows an image and an
isocontour with two simplified polygonal chains. The simplification method is established
based on geometric error (Euclidean distance) control, that is, a point is removed if the
distance of the point to the line, that interpolates its two neighbor points, is less than a
givene. Hence all original points are within aaneighborhood of the simplified polygonal
chain. Again, theG1 D3-regular curves defined on rectangles with rectangle-wietarg
just the right family of curves to provide smooth approximation of these polygonal chains.
The two simplified polygonal chains in Fig. 2.3 are obtained by taking be Q05 and
0.25, respectively.

d. Polygonal chain to polygonal chain

One polygonal chain can be produced from another polygonal chain by subdivision or
corner cutting. Fig. 2.4 shows four polygonal chains obtained by corner cutting with cutting
ratios 025 and 05, respectively and subdivision. When the cutting ratio.& €hen each
edge of the new polygonal chain @¢envex (see the next section for the definition of a
convex edge) if the tangents at the vertices are taken to be the original edges. Smooth
approximations of these polygonal chains are suitable for triangular A-splines (Bajaj and
Xu, 1999) as well as oubz-regular curves (see Section 5.1). The vertices of the polygonal
chain (c) are located away from the original edge by a specified diséaWde call this an
“offset corner cutting” scheme. The offset will make construdiigdregular curves be in
a bounded neighborhood of the original vertices and hence appropriate for over-sampled
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Fig. 2.4. Polygonal chains (of black vertices) produced from polygonal chains (of white vertices):
(a) Corner cut with cutting ratio.@5; (b) Corner cut with cutting ratio.B yielding a convex polygon;
(c) Offset corner cut with cutting ratio.B5; (d) Interpolatory subdivision.

noisy vertex data. For the same purpose, an interpolatory subdivision scheme (see, e.g.
(Warren, 1995)) could also be employed (see Fig. 2.4(d)) such as the 4-point rule with
mask(—1/16,9/16,9/16, —1/16) (see (Dyn et al., 1987)).

3. Some notationsand preliminaries

Tensor BB form
The regular spline curve discussed in this paper consists of a chain of curve segments.
Each segment is defined by the zero contour of a bivariate polynomial

m n

G (1, v) = ZZbijBim(u)B;‘(v)

i=0 ;=0

on a parallelogranip1 po p3pal, where (u, v)T € [0, 1] x [0, 1] relates to a poinp =
(x, )" € [p1papapal by the map

p=(p3—pvu+(p2— p1)v+p1. (3.1)

We assume thapi, p2, ps, p3 are clockwise, any three of them are not collinear and
p1— p2 = p3 — pa. From map (3.1), we have

[u,v]" = [p3 — p1, p2 — p11 " *[p — p1l = M[p — pal.

Derivative data

A polygonal chain is denoted by its verticas} ¥ ;. On each vertex, we assume that the
first (for G continuity) and the second (f@¥? continuity) order derivatives are given. We
assume these derivatives are the evaluation results of an (unknown) parametric form curve
r(l) atl = ;. Hence these derivatives are plane vectors denote,H)oy: rD, j=1,2.
These derivatives can be estimated from the given data by some known techniques, such
as divided differences or local interpolation by parametric curve (see, for e.g., (Bajaj and
Xu, 1999)). Other types of data, for instance functional curve data or implicitly defined
curve data, could be converted to parametric data (see (Bajaj and Xu, 1999)). Furthermore,
without loss of generality, we assume that the paraniésghe arc length of the curve. Itis
well known that, ifl is the arc length of the curve, the derivative vectors have the following
geometric interpretatiom® (/) is the tangent vector with unit lengtk? (/) is the normal
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Fig. 3.1. (a) Decomposition af%) on p3 — p1 andpy — p1; (b) The decomposition afz+*) in the
local (u, v) system.

(i.e.,rQNOTr@ @) = 0) and|r@ ()| is the curvature. If is not the arc length, we can
transform the derivatives by

3 s T
”i(l) = ri(l)/”ri(l) ri(Z) = ri(Z)/Hri(l) H2 - (ri(l) ri(Z))ri(l)/Hri(l) H4

’

S0 thatfi(l) andfl.(z) have the required properties.

Decomposition of derivative data
Let [p1p2p3pal be a parallelogram. Then we can decompose veetdrg) andr@ (1)
onto the directiorps — p1 andps — p1 (see Fig. 3.1), i.e.,

r®O ) = [p3 — p1, p2 — prl[exD), B D] = M~ e (1), (D] 3.2)

The decomposition coefficients (1), Bx (1) will be frequently used later without further
interpretation. It is easy to see that(/) = 0 if »© (1) is parallel top, — p1. Similarly,
Be()) = 0 if r® (1) is parallel topz — p1. Using map (3.1) and decomposition (3.2), we
may convert the curve construction problem[gnap2p3p4] into that on[0, 1] x [0, 1] in

the (u, v)-system.

G and G2 continuity

Let G, (u, v) = 0 be the curve defined dmpi1p2paps]. Suppose the curve is parame-
terized as-(1). ThenH (1) := G,y (u(l), v(1)) := G (M[r (1) — p1]) = 0. Differentiating
H (1) =0 about/ once and twice, we have

rPNTMTVG,., =0, (3.3)
rPN™MVGm +r PO TMTV2GMrO () =0, (3.4)

wWhereVG u, =[0G pn /01, 3G my/0v]" andV2G ,, = V(VG ). Condition (3.3) forces

the curveG,,., (1, v) = 0 tangent with the curve(/), hence the curve i&! continuous if
VG # 0. Condition (3.4) forces the cun@&,,, (u, v) = 0 to be doubly tangent with the
curver(l), hence the curve i§? continuous. Higher order continuity formulas can be
derived by differentiating (3.4), but they will have more terms. In this paper, we consider
only continuity up toG2. Using decomposition (3.2), (3.3) and (3.4) become

[@1(), B1(D]VGiun =0, (3.5)
[e20), B2(D]V Gn + [e1 D), BLD)] VPG [e1 D), (D] =O. (3.6)
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Fig. 4.1. Parallelogram chain.

In the next two sections, we shall use these relations to congtfuahd G2 curves.

Convexity of an edge

For an edgé¢v; _1v;] of a polygon chair{vi}f\’zo, if the vectorgl.(f)1 andri(l) atv;_1 and
v; lie on opposite sides of the lingv; — v;_1), then the edge is callemnvex. Otherwise it
is nonconvex (see Fig. 3.2). In Fig. 4.1pov1], [v3v4] and[v4us] are convex edgegyiva]
and[vov3] are nonconvex edges.

4. Polygonal chain approximation by Da-regular spline curves

Given an input polygonal chairﬁvi}f\’zo, we use Dg-regular curves to smoothly
approximate it, by interpolating the vertices with given first (€t continuity) and the
second (forG? continuity) order derivatives.

Sep 1. Form a parallelogram chain

For each line segment (edge) of the polygonal chain, construct a parallelogram such
that (see Fig. 4.1, where the arrows are tangent vectors): (i) the line segment is one of
the diagonals of the parallelogram; (ii) the tangent line of a vertex is contained in the two
incident parallelograms.

For a convex edgév;_1v;], the corresponding parallelogram can be formed by the
four points p2, v;_1, ps,v;, where ps is the intersection point of the two tangents,
p3 =vj—1 + v; — p2. For a nonconvex edge, take one point on each side of the edge
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Fig. 4.2. (a) Symmetric parallelogram about the tangent and the curve family for a convex edge. The
dotted curve isBso. The shaded part i§1; (b) The curve family for a nonconvex edge. The dotted
curves ard.g and L. The shaded part i5,.

such thatps — v;_1 = v; — p2. These two points and the endpoints of the edge form the
parallelogram.

Assumption 4.1. For the convex edgév;_1v;], the tangent lines;_1 + sri(f)l and
v + trl.(l) have intersection point &*, ¢*) with s* > 0.

It should be noted that under Assumption 4.1, it is always possible to construct a
parallelogram chain, and that this construction is not unique. In the constructién of
curves for convex edges, we shall allpg and p3 to vary along a line (see Fig. 4.2(a) and
relation (4.2) for varying,, p3 that depend on a parameiér In other cases, these points
are fixed.

Sep 2. Construct D4-regular curves

For each parallelogram, construct-regular curve, such that it interpolates the
endpoints of the line segment and has the given first order or second order derivatives. Let
Gun(u, v) = 0 be the curve defined dp1p2pap3], whereps andpy are the interpolation
points. In the following, we shall determine the minimahlndn, and provide the formulas
for computing the coefficients @, (u, v) for Gl andG? continuity. These formulas are
derived usingG! and G2 conditions (3.5) and (3.6). The detailed algebraic derivation is
given in Appendix A.

4.1. A Gt curve spline family

A. Convex edge

Let [p1pa] be a convex edge, angip2p3ps] be the parallelogram. Assumeg =
r(a), pa=r(b)for somea andb with a < b, and assumgi (a) > a1(a), B1(b) < a1(b).
Takem =n=1.

1. Construction formulas.

1—-x
boo=b11=0, bio=1, bor=

€(=1,0, r>1, (4.1)

p2=Aph+ (1 —1)p5  p3=(1—21)p5H+Aps, (4.2)
where p;, is the intersection point of the tangent lines pf and p4 (see Fig. 4.2(a)),
p5 = p1+ pa— py anda is a free parameter.
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2. Reformulation.  Let p = (p5— p1)s + (p, — p1)t + p1. The curveG1(u, v) = 0 could
be redefined on the smaller parallelogrgmp, p p4] as:

By [4s — (s +0?]A2 —[4s — (s +D?]A +s(1—1) = 0. (4.3)

3. Bounding curves. Wheni = 1, the curveG11(u, v) = 0 degenerates to straight lines
s = 0 (the edge{p1p,]) andt = 1 (the edge{p,p4]), while wheni = oo, the curve
G11(u, v) = 0 degenerates to the cura,: 4s — (s + )2 =0.

4. Interpolation of an interior point. ~ For any given poinp™ = (p5 — p1)s* + (p5 —
p1)t* + p1in the interior of the regio®; enclosed by the curve® and B, there exists
a uniquex € (1, c0), that is
1 t* ¥
=2 i (4.4)

2 /48*—(8*—‘1-1‘*)2’

such that the curv&11(u, v) = 0 interpolates the point*.

Theorem 4.1. For a convex edge, there exists a degree (1,1) (m = n = 1) D4-regular
curve family G11(u, v) = 0, defined by (4.1)—(4.2), with a free parameter A € (1, 00), in
theregion &1 enclosed by the curves B; and B,.. Each curvein the family G1 interpolates
the endpoints of the edge. For any given point p intheinterior of &1, there exists a unique
curve, defined by (4.1)—(4.2) and (4.4), in this family that inter polates the point p.

Note that the curva, defined by (4.3) ofip1p, p5pal is notin the formGy;. However,
if we transform it into barycentric form on the triandlg1 p, pa], then we can show that
the curve isDj-regular on the triangle.

It is obvious that for fixedp, and p3 that satisfy (4.2), there exists a unique curve
G11(u, v) = 0 thatG! interpolates the edge.

Parameterization
FromGi1(u, v) = 0, we obtain the parameterized expression

u

= 0, 1].
u—bor(1—u) uel0.1]

v

B. Nonconvex edge
We assumeBi(a) > a1(a), B1(b) > a1(b). Takem = 1,n = 2. If B1(a) < a1(a),
B1(b) <a1(b), takem =2,n =1.

1. Construction formulas.
boo=b12=0, bio=1, (4.5)
1 1
b01=—§5<0, b11=—§7/b02>0, (4.6)

where$ = a1(a)/B1(a), y = a1(b)/B1(b) and bg2 < 0 is a signed free parameter (see
Fig. 4.2(b) for the curve family).
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2. Bounding curves.

Lo:u(l—v)—8(1—u)v=0,
L_: 1—u)v—yu(l—v)=0.
3. Interpolation of an interior point.  For any given poinp = (1, v)" in the interior of
the regioné; enclosed by.g andL _ ., take
1=v)[u@l—v) =81 —u)v]
v[(1—u)v —yv(l—v)]

then the curve determined by, interpolates the point.

Theorem 4.2. For a nonconvex edge, there exists a degree (1, 2) (or (2, 1)) D4-regular
curve family, defined by (4.5)—(4.6) with a free parameter bg2 € (0, —o0), intheregion &>
enclosed by Lo and L _ ., whose members G interpolate the endpoints of the edge. For
any given point p in &, there exists a unique curve, defined by (4.5)—(4.7), in this family
that interpolates the point p.

Parameterization
Sincem =1, n = 2, the curve can be expressed in rational parameterized form
bo1B (v) + bo2B3(v)

- _ , € [0, 1].
“T T B20) + (b1 — bop B2(v) — boaB2(v)”

Shape control handles

For the given polygonal chain, the shape control handles are: (i) the direction of the
tangent vector at each vertex; (ii) an interpolating pginin the region&1, for convex
edges, o€y, for nonconvex edges.

4.2. A G? curve spline family
A. Convex edge

Let [p1p4] be a convex edge anflpipzpsps] be the parallelogram. Again, we
assumesi(a) > a1(a), f1(b) < a1(b). Furthermore, we assume that the parallelogram

is constructed so that; (a) = f1(b) = 0. Now we need to take =n = 2.

1. Construction formulas.

boo = bo1=b12="022=0, boz= -1, (4.8)
2 b 2

b]_() = 'Bl(a) > 0, 21— _Ol]_( ) > 0, (49)
az(a) B2(b)

4b11 = 2b10+ 2bo1+ 1 — byo, (4.10)

wherebyg is a free parameter (see Fig. 4.3(a) for the curve family).
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Py

(a)

Fig. 4.3. (a)G2 curve family for a convex edge. The shaded pa&4s(b) G2 curve family for a
nonconvex edge. The shaded paifjs

2. Interpolation of an interior point. Parametebs can be used to interpolate one point
(u,v)" in the interior of the parallelogram witi < v. By G22(u, v) = 0, we have

_ B§)B3(v) — b10BY(u) B5(v) — [b21B5 () + b11 B ()1 B (v)

b
20 B2(u) BZ(v)

(4.11)

3. Reformulation. Let a1 =1—v, a2 =v — u, a3 = u. RepresentGa(u, v) in the
barycentric coordinate for22(a1, a2, a3) over the triangld p1 p2p4l:

Goolen, a2, 03) = Y aiju By (en, a2, @3) (4.12)
i+jth=3
with
2b10+ 2b21 + bo2 — b2o
azp0= a210= apo3= aop12="0, ai1= 5 , (4.13)
2 2 1
azo1= :—,)blo, aioz= §b21, ai120=ao21= :—,)boz, ao3o=bo2.  (4.14)

Theorem 4.3. For a convex edge, say [p1pa], there exists a degree (2, 2) convex curve
familyinthetriangle £3 = [ p1p2p4], defined by (4.8)—(4.10), with bg asa free parameter.
Each member in the family G2 interpolates the endpoints of the edge. If boo > 0, the curve
is D4-regular in the parallelogram [ p1 p2papsl. If boo < 0, the curve, that is re-defined by
(4.12—(4.14),is Dy -regular onthetriangle [ p1p2 pal. For any given point p intheinterior
of &3, there exists a unique curve, defined by (4.8)—(4.11), in this family that interpolates
the point p.

B. Nonconvex edge

Assumefi(a) > a1(a), B1(b) > a1(b) and the parallelogram is constructed so that
a1(a) =0 oray(b) = 0. That is, at least one of the tangent linegpatand p4 coincides
with one of the edges of the parallelogram (see Fig. 4.3(b)). Again, weitake = 2.

1. Construction formulas.
boo=b22=0, bo1= —éb10, bo1=—yb1o, (4.15)
4b11=2(b12+ bo1+ b1o+ b21) — (bo2 + b20), (4.16)
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1
b= {e1@[B1@) — cr(@)][yB2(b) - a2(b)]
+ 201(a) (@) [B1(b) — a1 (b)) b2o
1
- S {B@[B1@) — 1@)][7B2b) — a2(h)] oz (4.17)

1
b= —{a1®)[B1(b) — cr(B) ][e2(@) — 8B2(a)]
+ 201(0) LB [a@) — a1(@) 2} boa
1
— Z{B®[P15) — aa®)][ez(@) — 8B2@)] 20, (4.18)

wheres = a1(a)/B1(a), y = aa1(b)/B1(b), A = [az(a) — B2(a)]lyB2(b) — a2(D)], boz =
—1 andbyo > 0 is a free parameter (see Fig. 4.3(b) for the curve family).

2. Bounding curves. The bounding curves of the curve family are defined by taking
b2o = 0 and bpg = oco. Let Gao(u, v, boo, bop) be defined by (4.15)—(4.18). Then
Goo(u, v, bo2, 0) = bo2G22(u, v,1,0), Gao(u, v, 0, bog) = booG22(u, v,0,1). Hence the
bounding curves ar€22(u, v, 1,0) =0, G22(u, v,0,1) = 0.

Theorem 4.4. For a nonconvex edge, we have a one parameter Dg4-regular curve
family {b20G22 (u,v,0,1) — G2a(u,v, 1,0) = 0: byg > 0} whose members G2 in-
terpolate the edge and have only one inflection point. For any given point p =
(u*,v*)T in the interior of the region &4 enclosed by the curves Gox(u, v, 0,1) = 0 and
G22(u, v,1,0) = 0 in the parallelogram, there exists a unique curve in the family with
boo= Goo(u*,v*,1,0)/Gao(u*, v*, 0, 1) that interpolates the point p.

Curve evaluation and display

SinceGa2(u, v) could be expressed @fzo B; (v)Bl.z(u) with Bg(v) < 0, B2(v) > 0on
(0, 1), the curveG22(u, v) = 0 can be evaluated for eactin (0, 1) by finding the zeros of
a quadratic polynomial, herg; (v) = Z?:o bi; sz.(v). For the case of a convex edge, it is
possible that the quadratic has two zerogdnl), and the correct one is such thak v.
For the nonconvex edge, the quadratic has exactly one z&0o Ii.

For intensive evaluation of the curve, the quarterly subdivision process fg(i, v)
on the rectangl¢0, 1] x [0, 1] could be used (see (Peters, 1994)) while discarding those
sub-rectangles on which the subdivision polynomials have only positive or negative
coefficients. On each sub-rectangle, a bilinear function, that interpolates function values on
the four vertices, is used to evaluate the curve intersection points. It follows from (Dahmen,
1986) that such a subdivision will have quadratic convergence. For example, ten steps of
subdivision will reduce the distance between the polynomial and the BB net to become
(172192 ~ 10~ times the initial distance. By keeping a tree data structure, we achieve a
progressive display scheme for our curve splines.

Shape control handles
For the given polygonal chain, the shape control handles of the curve are:
(i) the direction of tangent vector at each vertex;
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(i) the magnitude of the second order derivative vector (related to curvature) at each
vertex;
(i) aninterpolating pointin the regiofiz for convex edges, df4 for nonconvex edges.

5. Polygonal chain approximation by D3-regular curves

We shall useD3-regular curves to smoothly approximate the polygon by interpolating
the vertices together with the given tangents at the vertices. We could also interpolate
second order derivatives at the polygon vertices to achigdeontinuity. Here we only
detail G1 continuity. TheG2 construction is very similar. The construction consists of the
following two steps:

Sep 1. Formarectangular chain

For each line segment (edde)-_1v;] of the polygonal chain, construct a rectangle such
that (see Fig. 5.1, where the arrows are tangent vectors) the line segment is in the middle
of the rectangle. That is, two edges are parallel to the line segment at an equal distance
from it, and the other two edges are orthogonal to the line segment and pass through the
endpoints of the line segment. Since the determined curve shall lie within the rectangle,
serves as a natural error controller of the approximation. The effegtvaifl be discussed
further in Section 5.2.

Assumption 5.1. For each edgev;_1vi], (v; — v,-,l)Tri(f)l >0, (v — v,-,l)Trl.(l) > 0.

Sep 2. Construct the Dz-regular curves

For each rectangle, construcig-regular curve, such that it interpolates the endpoints
of the line segment and has given first order derivatives. [lpgb2p3pa] be a given
rectanglevo = (p1 + p2)/2, v1 = (p3 + p4)/2 be the interpolation points anél), ril)
be the tangent vectors.

Fig. 5.1. Rectangular chain. The width of the rectangle for édge, v; ] is 2; .
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Vo vy

(a) (b) (@ (b)

Fig. 5.2. (a) Nonconvex curve; (b) Convex curveBig. 5.3. (a) The case < 8; (b) The case
(the solid curves). The shaded partis a > B.

5.1. A G curve spline family

A. Convex edge

Supposéugv1] be a convex edge. From Assumption 5.1, we haMe) > 0, a1(b) > 0.
Now assumedi(a) > 0, B1(b) < 0 (the caseB1(a) < 0, B1(b) > 0 is similar) and take
m=2,n=1.

1. Construction formulas.

boo=1, b1 = —boo, bor=-1, (5.1)
bio+b11=2a =—2Bbrs,  bao=—af 1>0, (5.2)

wherea = B1(a)/a1(a), B = B1(b)/a1(b), b11 is a free parameter (see Fig. 5.2(b) for the
curve family).

2. Limitations on free parameters. To make the curveds-regular and convex, we
enforce

b11 < b= min{,/—aﬁl,—%—i—a[l—i—ﬁl]}. (5.3)

Theorem 5.1. For a convex edge, let G21(u, v, b11) be defined by (5.1)—(5.2), then we
have a convex D3-regular curve family {G21(u, v, b11) = 0: b11 < b7;}, Wwhose members
G1 interpolate the endpoints of the edge. For any given point p = (u*, v*)T in the region
&s enclosed by the curve Gai(u, v, bj;) = 0 and the line v = 1 there exists a unique
b11 satisfying Go1(u*, v*, b11) = 0 such that the curve G21(u, v, b11) = O interpolates the
point p.

B. Nonconvex edge
AssumeBi(a) >0, B1(b) > 0. Takem =3,n = 1.

1. Construction formulas.

boo=b30=1, bo1=b31=—1, (5.4)
4 4

bio+b11= 3% bao+b21= —:—gﬂ, (5.5)

b11+ b2o=b1o+ b21, (5.6)

2 2
bio= b0+ 5(014-,3), bp1=b11— é(a—i-ﬁ), (5.7)
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wherea = B1(a)/a1(a), B = B1(b)/a1(b), byo Or b11 is a free parameter (see Fig. 5.3 for
the curve family).

2. Limitations on free parameters.  To ensure the curves aies-regular and have only
one inflection point, we require

—B—2 — o —2p2

b20>max{b;0,°‘ ﬁga o ";ﬁ P } whena < 8. (5.8)
—a+20% a—B+2

b11 < min{bfl,ﬁ 0;: - ,a ﬁ;; a’B} whena > 8, (5.9)

whereb3, is the largest negative root @f(bo) = 0, b3, is the smallest positive root of
g(b11) =0 with

h(bao) := 1+ 4b3y+ 4b3, — 3b3h5, — 6b10b20,
g(b11) :=1— 4b3, — 4b3, — 3b2,b3, — 6b11b21.

3. Interpolationto anormal. It should be noted that all the curves pass through the same
point (u*, 3)T with u* = 745 (see Fig. 5.3). Since

1)_[ 208 _2<a3+ﬂ3>_<6bzo+4ﬂ)aﬂ]T

VG“(“ '2) 7 e+ B @+p)? (@~ B)2

by assigning a normal at*, %)T, the uniquéyg is determined.

Theorem 5.2. For a nonconvex edge, there exists a D3-regular curve family {G31(u, v) =
0} that has the following properties:
(i) Eachcurvein the family G interpolates the edge.
(i) Each curve passesthrough the point (u*, %)T.
(iii) Thereisonly onecurvein that family that has the given normal at (u*, %)T.
(iv) Thecurvev = % andthecurvegivenby boo = b (if o < B) or b1y = b3, (ifa > B)
are the two limit curves of the family.

Parameterization
Since the curve is defined 1 (1, v) = Y7L o bioB!" (u)+v Y1 o(bio—bi1) B! (1) =
0, it follows from (3.1) that

Z:n:obiOBim ()
i—o(bio — bi1) B" (u)

p=(173—pl)u—(pz—pl)Z +p1, wuel01].

5.1.1. Shape control handles

For the given polygonal chain, the shape control handles of the curve are: (i) the direction
of the tangent vector at each vertex; (ii) an interpolating point in the regjpfor convex
edges, or a normal &t*, %)T, for nonconvex edges.
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5.2. The effect of the size of rectangle

In the construction of rectangles in Step 1 at the beginning of this section, the widths of
the rectangles, namely2 are arbitrarily chosen. One may ask: what is the effect of this
g; on the constructed curves for a given edge 1v;]? The conclusion is the following:
The curve family for smaller ¢; is a subset of the curve family for larger ¢;, for each of the
two cases discussed in Section 5.1. That;isyill not change the shape of the curves but
changes the “number” of curves in the family. When- 0 becomes successively smaller,
more and more curves are expelled from the curve family, and the remaining curves (still
infinitely many) are successively close to edge (see Figs. 6.1(c) and (d)). To prove this
conclusion, suppose is magnified by a factof > 1, and suppose the notation on the
enlarged rectangle is the same as the original one but with an added prime. It is then easy
to see that

1

1
O =e1(),  PDO=0"1p). u=u, v=9(v’—§>+§.

Hence

1 _1‘ 1.,/ 1‘ _ 1.,/
Bo(v)—2(1+9)Bo(v)+2(l 0)Bi(v"),

1 _1‘ _ 1.7 1‘ 1.7
Bi(v) = S(1—0)By(v) + 5 (1+6) BL(v).

Substituting these int6&,,,1 (4, v), we have

m 1
Gmi(u,v) =0G! (', v') =6 Z Z b}, B"(u') B}
i=0 j=0
with
;A +6bio+ (1—-0)biy , A =0)bio+ (1+6)bix
i0 — 20 ’ il1— 20
Using these relations, we verify thaf. satisfies all the relations dg; does. Therefore,
curveG,1(u, v) = 0 defined on the smaller rectangle is in the curve family defined on the
larger rectangle. Note that this statement holds for both the cases of the convex edge and
the nonconvex edge discussed in Section 5.1.

Note

In the six spline families we discuss in Sections 4 and 5, there are four cases with
min{m, n} = 1. In these cases, rational parametric expressions are easily derived. Hence,
for these cases, we have both the implicit form and the parametric form. For example,
the G1 Ds-regular curve could be transformed into a parametric rational Bézier curve of
degree 4. The right figure of Fig. 5.4 shows the Bézier points 6faDs-regular curve
as well as the rectangle chain for the input polygonal chain (right figure). It is clear that
the rectangles enclose the curve more tightly than the convex hull of the Bézier points.
Furthermore, the shape of curve is easier to control using its implicit form than using its
parametric form, since the implicit form has one free parameter while the rational Bézier
of degree 4 has many more degrees of freedom. Also, the parameter change of the rational
Bézier form may lead the curve out of ti¢ Dz-regular curve family.
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Fig. 5.4. The left figure shows the input polygon. The right showscfeD,-regular curves and
Bézier points interpolating the vertices of the polygon within prescribed bounds.

6. Examples

To illustrate the data fitting flexibility of the spline curves introduced in the last two
sections, we provide several examples. In order to illustrate the features for each case, we
use first the following regular data:

{U[}Z{(l, 1)7 (07 2)7 (_17 1)7 (17_1)5(05 _2)7(_15_1)}5
[rP={0,1), (~1,0), (0, -1), (0, 1), (~1,0), (0, 1)},
[r®) ={(-=1,0),(0,-1),(1,0), (~1,0),(~1,0), (1,0)}.

In each case, ten curves are plotted (see Figs. 6.1(a)—(d)) for ten different parameters to
show the curve family. The features of the curves shown in the figures coincide with the
analysis in Sections 4 and 5.

For the convex edge, th@! curves (in Fig. 6.1(a)) within a parallelogram are located
away from the convex edge. In contrast, ié curves (Figs. 6.1(c), 6.1(d)) within a
rectangle are located near the convex edge. Gheurve family within a parallelogram
(Fig. 6.1(b)) has both these features.

For the nonconvex edge, th@! curves (in Fig. 6.1(a)) within a parallelogram tend
to go directly from one vertex to the other. Hence the curves have sharp changes in the
tangent direction at the end points for the parameters near the boundary of its domain, even
though the curves are rather straight in the middle. TReurves within a parallelogram
(Fig. 6.1(b)) do not have sharp changes in the tangent direction. Ghecurves
(Figs. 6.1(c), 6.1(d)) within a rectangle closely follow the lefeand additionally, all pass
through the same point. The curves in Fig 6.1(d)@tewithin the rectangle, but within a
smaller size (width =2, ands; = 0.2, in contrast witke; = 1.0 in Fig. 6.1(c)) of rectangle.

As one can observe, these curves shrink towards the edges of the shrunken rectangle.

In summary,Ds-regular andD4-regular curves have several common features and have
different features as well. For example, both of them can be sharp (rapid change of tangent
line) at the vertices. HoweveRs-regular curves can also be very flat (slow change of
tangent line) around vertices and sharp at other pBggegular curves cannot be very flat
around vertices it; is small. These features can be utilized in shape design where sharp
and flat features are required.

The features of the curves introduced in this paper strongly suggest that these tensor-
product BB-form curve families serve a variety of geometric design and computer graphics
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Fig. 6.1. (a)G! families on parallelograms. (t()2 families on parallelograms. (& families on
rectangles with; = 1.0. (d) G families on rectangles with; = 0.2.

Fig. 6.2. The figure on the left shows a stack of input polygon contours of a human femur. The
middle and right show th&1 and G2 D4-regular curves interpolating the vertices of the contours,
respectively.

applications. Figs. 6.2 and 6.3 show some fitting examples from real data. Here the input
data are normalized into the cupe3, 3]°. The polygonal chains in Fig. 6.2 (left) are the
simplified contours stack of a human femur. Fig. 6.2 (middle and right) are the results
of G! and G? Dy-regular curve approximation. The polygonal chains in the first row of
Fig. 6.3 are the simplified results of the polygonal chain shown in Fig. 2.3. The polygonal
chains in the third row of Fig. 6.3 are three fonts. The second and fourth rows are the curve
approximations.

7. Conclusions and futurework

We have characterized the lowest bi-degree tensor BB-form polynomial to achieve
G1 and G2 continuous regular algebraic spline curves. Using the lowest bi-degree, we
constructed explicit spline curve families whose members satisfied giveand G2
interpolation conditions. We also derived a geometric interpretation of each spline curve
family, so that the shape of the individual curves can be controlled intuitively.
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Fig. 6.3. The figures in the first row show the multiresolution representation of the input data
with geometry errors 01, 0.05 and 025, respectively. The second row is the corresponditiy
D3-regular curves with rectangle chains, where the width of the rectangles are chosen3oTie0
third and fourth rows are input polygons of three Chinese fonts and the correspantig-regular
curves (with certairG? vertices to capture the sharp features of the fonts).
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(a) (b)

Fig. 7.1. Implicit space spline curve segment defined within (a) parallelepiped and (b) cubicoid, using
dual trivariate tensor product polynomial functions in BB-form.

Finally, we point out that theDz and Ds-regular curves used in this paper can
be extended to 3D space curves. The parallelogram and the rectangle become the
parallelepiped (see Fig. 7.1(a)) and the cubicoid (see Fig. 7.1(b)) volume cells, respectively.
The G and G? regular space spline curve segments are now defined by the intersection
of two zero contours of trivariate tensor product polynomial functions in BB-form within
each volume cell. Properties and data fitting schemes for these implicitly defined space
curves are currently being researched.

Appendix A

Proof of Theorem 4.1. Let [p1p4] be a convex edge, arighi p2p3pa] be the parallel-
ogram that maps to the unit square by (3.1). Assyme-=r(a), p4 = r(b) for some

a and b with a < b. It is easy to see that (see Fig. 3.1) the edge is convex if and
only if B1(a) > a1(a), B1(b) < a1(b) or Bi(a) < ai(a), P1(b) > a1(b). Now we as-
sumeBi(a) > a1(a), f1(b) < a1(b) (for the other case the discussion is the same, in
fact, we need only exchange the indexmf and p3). Using the interpolation condition
Gmun(0,0) =G, (1,1) =0, we have

VGun(0,0) = [mbio, nboal",  VGun(L, 1) = —[mby—1.m,nbyn-11". (A1)

If we takem = n = 1, then by interpolating1 and p4 and the normalization condition, we
have (4.1) and then by (3.5) and (A.1) we haxéa) + B1(a)bo1 =0, a1(b)bo1+ B1(b) =
0. Hencebp1 = —a1(a)/B1(a), bo1= —pB1(b)/a1(b). Therefore, we require that

ai(a)a1(b) = B1(a)B1(b). (A.2)
Let n1 = —r@(a) and ng = —r@(b) be the normal ofr(1). Then by (3.2) and the
orthogonal condition® ()T (1) = 0, we have

a1(a)n] (p3 — p1) = —Pi(a)ni (p2 — p1).

a1(b)n(p2 — pa) = —PL(bIng(p3 — pa).
Hence (A.2) holds if and only if

n1(p3— pOng(p2 — pa) =ni(p2 — pn(ps — pa) #0. (A.3)

This can be achieved if and onlyrifI(pz — p1) > 0 and the parallelogram gsymmetric
about the normals. That ig»> and p3 are on the line(Z2324, pl), where p), is the
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intersection point of the tangent linespf and p4 (see Fig. 4.2(a)). Let = p1+ pa— p).
Then there exists a > 1 such that
p2=hpp+A=1ps  pa=L—A)ph+ips (A-4)
Substitutingp, and p3 into (A.3) and noting that] (p) — p1) = 0 andnj (p, — pa) =0,
we can show that Eg. (A.3) holds, and
1-A
bo1= - (A.5)

That is,bo1 € (—1,0) whena e (1, 00). Let p = (pg — p1)s + (p5 — po)t + p1. Then by
(3.1) and (A.4) we have

_ As+G =D
S:A.M‘i‘(l-)\.)l} r u= A+Aa—1 (A 6)
t=A—-MNu+2xrv v = A=Dsth '
- A=1+r

It follows from (A.5) and (A.6) that the curv€11(u, v) = bo1B3 (1) B (v) + Bi(u) Bi(v)
= 0 can be rewritten as

By [4s — s +02|A% —[4s — s + D?]a+s(1—1) = 0.

Wheni = 1, the curveG11(u, v) = 0 degenerates to the straight lines- 0 andr = 1,

while A = oo, the curveG11(u, v) = 0 degenerates to the curis,: 4s — (s + )2 = 0.

Hence if we allow the pointg, and p3 to vary along the lingp, p53), that is, 1 varies
in (1, c0), then we have a curve family between the limit cunB®sand B, with A as
parameter. For any given poipt = (p5 — p1)s* + (p, — p1)t* + p1 in the interior of the
region&; enclosed by the curve®;, and B, (thatis 4* — (s* +1*)2> 0,0 <s* < 1,0 <

t* < 1), there exists a uniquee (1, co) defined by (4.4) such that the cur@a1(u, v) =0

interpolates the poing*. O

Proof of Theorem 4.2. It is easy to see that the edge is nonconvex if and onfy () >
ai(a), B1(b) = air(b) or Bi(a) < ai(a), B1(b) < ai1(b). We assumeBi(a) > ai(a),

B1(b) > a1(b). As for the convex edge case, we are lead to requirement (Au2Hf = 1.

This equality contradicts the nonconvex assumption. Hence wenakel, n = 2. If

B1(a) < a1(a), B1(b) < a1(b) we takem = 2, n = 1 and the discussion is similar. Then by
the interpolation condition and the normalization condition, we have (4.5). Relation (4.6)
follows from (3.5) and (A.1), whergg, < 0 is a free parameter. Therefore, we havea
regular curve family withbg, € (0, —occ), whose memberg'! interpolate the endpoints.
Whenbg, = 0, bg2 = —oo the limit curves are

Lo:u(l—v)—8(1—u)v=0, L_oo: l—uw)yv—yul—v)=0.

Both Lo and L_, are conics and each of the6i! interpolates one endpoint ar@’
interpolates the other. For any given pojmt= (x,v)" in the interior of the regiorf;
enclosed byLo and L_, there is a uniquég, defined by (4.7) such that the curve
determined by interpolates the poirng. O

Proof of Theorem 4.3. Let [p1pa] be a convex edge arigh1 p2 p3p4] be the parallelo-
gram. Again, we assumg (a) > a1(a), B1(b) < a1(b). Furthermore, we assume that the
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parallelogram is constructed so thata) = 81(b) = 0. Now we need to take: = n = 2.
Since

b b
VG25(0,0) = [ 10} . VGl 1) =-2 [ 12] : (A7)
bo1 b1
boo— 2b 2(b11—bo1—b
¥2G9(0.0) :2[ 20 10 (b11— bo1 10)]’ A8)
2(b11— bo1— b10) bo2 — 2bo1
bo2 — 2b 2(b11—bo1—b
V2Gpp(1. 1) = 2 [ 02 12 (b11—b21 12)] ’ (A.9)
2(b11— b1 — b12) boo— 2b21

we have, from the interpolation and normalization conditions and (3.5)—(3.6), relations
(4.8) and (4.9). Note thatz(a) > 0, B2(b) < 0. Now b11 andbyg are free. One way to
choose them is to takeg = 1, hence the curve iB4-regular for anyb11. This parameter
could be used to interpolate any single point in the interior of the parallelogram. However,
the resulting curve may not be convex. If we require the curve be convex (note the edge
is convex), we assume the curve is cubic. That is, the leading coefficigrnt 0, v) is
zero which gives (4.10). Now we have a one parameter curve family, whose mériber
interpolates the edge, withpg being the free parameter. This degree of freedom can be
used to interpolate one point, v)" in the interior of the parallelogram with < v. That
is, takebog as (4.11).

It is easy to see that 29 > 0, the curve isD4-regular. In the following we shall show
that if b2 < 0, then the curve i®1-regular in the trianglép1 papal. Let (a1, a2, a3)T be
the barycentric coordinate ¢f, v) " in the trianglg p1p2pal. Thenay = 1—v, a2 = v—u,
a3 = u. RepresenGa(u, v) in the barycentric coordinate forﬁzz(al, a2, a3) over the
triangle[ p1p2pa4l:

Goolar, az, a3) i= Z aijkB?jk(al,az,as),
i+j+k=3
we get (4.];3)—(4.14). Henceéxor > 0, ai02 > 0, a120 < 0, agz1 < 0 andagzg < O.
Therefore,Goo(a1, a2, @3) = 0 is Di-regular. If bog — oo, the curve degenerates to
boundary lines ofp1p2ps]. O

Proof of Theorem 4.4. Since the edge is nonconvex, we haga) > a1(a), p1(b) =
a1(b) or Bi(a) < ai(a), f1(b) < ar(b). Now we assumei(a) > ai(a), B1(b) = a1(b)
and the parallelogram is constructed so thata) = O or «1(b) = 0. Again, we take
m = n = 2 and the interpolation implies thabo = b22 = 0. It follows from (3.5)—(3.6)
and (A.7)—(A.9) that

bo1= —db10, bo1=—ybia, (A.10)
a2(a)b1o+ B2(a)bor + a1(a)?(bo — 2b10)
+ day(a)Br(a) (b11 — bo1 — b10) + B1(a)(boz — 2bo1) =0, (A.11)

—aa(b)b12 — B2(b)ba1 + a1(b)?(bog — 2b12)
+ da1(b) B1(b) (b11 — ba1 — b12) + B1(b)?(b2o — 2b21) =0, (A.12)
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whered = a1(a)/B1(a), y = a1(b)/B1(b). Again, we assume&o(u, v) is cubic. That is,
the leading coefficient is zero, which yields

4b11=2(b12+ bo1+ b1o+ b21) — (bo2+ b20). (A.13)

Substituting (A.10) and (A.13) into (A.11) and (A.12) and then solving (A.11) and (A.12)
for the unknownsh1g and b12, we have (4.17) and (4.18), whebg2 and byg are free
parameters. From the construction of the parallelogram chain and the assumptions on the
derivatives we know that

az(a) — 8f2(a) > 0, yB2(b) — a2(b) > 0.

HenceA > 0 andb1g > 0,b12 < 0 if bp2 < 0, bog > 0. It follows from (A.10) thathg1 < O,
b21 > 0. Hence the curve iB4-regular. Since the total degree@$: is three, the curve has
only one inflection point. By normalizinbp, to be—1, we have one free parameters

Proof of Theorem 5.1. Supposgugv1] is a convex edge. As (3.2), let) = a1(p3 —
p1) + B1(p2 — p1). From the construction of the rectangular chain, we hamMe) > 0,
a1(b) > 0. Now assumesi(a) > 0, B1(b) < 0 (the caseB1(a) < 0, B1(b) > 0 is similar)
and takem = 2, n = 1. Then from theG® and normalization conditions we have (5.1).
Since

1 1
VG21<0, E) = [b10+ b11, 2bo1]", VG21<1, E) = —[b10+ b11, 2b20]",

(3.5) givesbig + b11 = 20 = —2Bb2o, Wherea = B1(a)/a1(a), B = B1(b)/a1(b). Then
we have (5.2). Hence we get a curve family with as a free parameter. In order to have
the curve to beDs-regular, we require (see Lemma 2.3 of (Xu et al., 2000b))

b11 < v/bo1b21=/b2o=+/—ap L.

Then bybig= —b11+ 20 > —/—aB~1 = —/boob2o, the curve isD3-regular. However,

the curve may not be convex (see Fig. 5.2(a)). If we further enforce (5.3), then the curve
is convex. In fact, whet1 = —% +a [1+ /3*1], the curve is a conic and hence convex.
Whenb1, satisfies (5.3), then the curve is below this conic curve (see Fig 5.2(b)) and again
the curve is convex (see Theorem 3.1 of (Bajaj and Xu, 1999)).

Proof of Theorem 5.2. Assumegi(a) > 0, B1(b) > 0 (the caseBi(a) <0, B1(b) <0
is similar) and taken = 3, n = 1. Note that the curve will intersect the lime= % at least
three times, henca = 3 is the minimal degree in. Takebgp = b3o=1, bo1=b31=—1,
then theG° condition is satisfied. Since

VGs1| 0 L = 3(19 + b11), =2 !
31| 0.5 ) = | 5(bro+ b1). ,

1 3 T

VG31<1, —) = [—§(b20+b21), —2] ,

2

condition (3.5) yields (5.5). Again, we assume the leading coefficie6tefu, v) is zero,
which leads to (5.6). Hence we have (5.7). It follows from Lemma 2.4 of (Xu et al., 2000b)
that the considered curve I33-regular if and only if
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h(bao) := 1+ 4b3y+ 4b3y — 3b3b3, — Bb10b20 > O,
g(b11) :=1— 4b3, — 4b3, — 3b2,b3, — 6b11b21 > 0.

Let b3, be the largest negative root 6fbo0) = 0, b7, be the smallest positive root of
g(b11) = 0. Then it is easy to check that if

boo> b3y, whena <B; or bii<bi;, whena> B, (A.14)
the curve isDs-regular. Furthermore, it should be noted that all the curves pass through
the same poin*, 3)T with u* = 745 (see Fig. 5.3). Since

VG31<M*, %) _ |: Zaﬂ 2(0‘3+,33) (61720_|_4[3)0(18:|T7

e+ B (@+p)B (@ + B)?

by assigning a normal &t:*, %)T, the uniquebyg is determined. Ifhog or resultingb1

satisfy (A.14), then the curve B3-regular. To ensure that the curve has a minimal number

of inflection points, we require that the curve is below the tangentdinge trgl) and is

above the tangent ling + tr(ll). Onthe linevg + trél), G31(u, v) is a polynomial of degree

3 with the constant and linear terms being zero, since the curve is tangent with the line.
From this we get @&x — 8) + 3 (b11 — b10) < 0. Substituting the second tangent line into
G31(u, v), we obtain 2o — 8) + 38(b20 — b21) > 0. Using (5.5) and (5.6), we obtain

bll</3—oz+2a2 b20>oz—,3—201,3
3 ’ 3 ’
b20>,3—oz—2,32 bll<oz—,3+2a,3
38 3B

Combining these with (A.14), we have (5.8) and (5.9
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