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ABSTRACT

Anisotropic diffusion has been widely used in image pro-
cessing for its efficiency of smoothing the noisy images while
preserving the sharp edges. In this paper we will explore a
general version of anisotropic diffusion schemes for vector-
valued images, based on the polar-coordinate representation
of the vectors. As an example, we will apply our method to
color images and show its ability of edge-preserving smooth-
ing on vector-valued images.

1. INTRODUCTION

Image smoothing, as a preprocessing step, plays a very im-
portant role in image processing and other image-related
research areas. Conventional Gaussian filter [11] can be
viewed as an isotropic diffusion, making the entire image
uniformly smoothed and thus blurring the image edges. To
remedy this problem, Perona and Malik [1] proposed a non-
linear anisotropic version of the heat diffusion equations, in
which the conduction coefficient is a decreasing function of
the magnitude of the image gradient:

O =V (e VIV W

The elegant property of the anisotropic diffusion scheme
is that it preserves all important edge features while smooth-
ing out image noises. Due to this reason, this approach has
drawn a lot of attention since it was proposed {see [3, 4, 5]
for examples). While lots of research work has been de-
voted to the theoretical properties and practical applications
of this technique, its extension to vector-valued images has
also been discussed by many authors [6, 7, 8, 9]. The most
straightforward way to extend the anisotropic diffusion to
vector-valued images is to simply apply equation (1) sepa-
rately to each comporent of the vectors over the image do-
main. However, it was shown that this simple scheme did
not work very well when different conduction coefficients
were used for each component of the vectors [10]. Hence,
most anisotropic diffusion schemes for vector-valued im-
ages are using a common diffusion tensor which combines
the information from all components of the vectors.
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In the present paper we will consider a new type of
anisotropic vector diffusion, in which we build the diffusion
equations using the polar-coordinate representation (magni-
tude and orientation separately) of the vectors instead of the
conventional Cartesian-coordinate representation as seen in
most anisotropic diffusion schemes. As we will see in next
section, the diffusion scheme based on conventional Cartesian-
coordinate representation is actually a special case of our
diffusion method based on polar-coordinate representation
of the vectors. Furthermore, for some particular applica-
tions, it is more convenient to consider the diffusions sepa-
rately on magnitude and orientation of the vectors. For ex-
ample, we have successfully applied this technique to gra-
dient vector diffusion for image segmentation, where only
2D vector diffusion were discussed {2]. Other applications
include extraction of median axis of gray-scale images and
construction of Voronoi diagrams based on gradient vector
diffusion (see [13] for details of gradient vector diffusion).
However, those topics are out of the scope of this paper and
in the following we will concentrate on the algorithm of 3D
anisotropic vector diffusion as an extension of our past work
[2]. But as an example, we will consider the application of
our method in the color image smoothing where the RGB
values are viewed as a 3D vector at each image pixel.

We organize this paper as follows. In next section we
will describe the details of the anisotropic vector diffusion
technique (in 3D case), based the polar-coordinate represen-
tation of vectors. And then, in section 3, we will briefly dis-
cuss the application of our algorithm in color image smooth-
ing and some results will also be shown there. Finally we
give our conclusion and future work.

2. ANISOTROPIC VECTOR DIFFUSION

2.1. Analysis

As we know, equation (1} says that the new value I"*¥(z, y}
at point {z,y) is determined by the old value 7°*{z, y) and
the weighted average of the image gradients in the direc-
tions from (z,y) to each of its neighbors. Hence, to study
the new vector values at a point, we just need to study how
each of the neighboring vectors affects the vector being con-
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Fig. 1. Illustration of different diffusion schemes

sidered. Without loss of generality, we will consider a vec-
tor ¥ at point (z,y} and one of its neighboring vectors &
(as seen in fig.1}. The diffusion scheme, based on Cartesian-
coordinate representation of the vectors, makes @ move
along the direction frem ; to ¥z and the new vector OC is
a linear combination of 7, and ¥, if we are using a common
conduction coefficient for the diffusion equations on each
component of the vectors. On the other hand, the diffusion
scheme based on polar-coordinate representation makes
move towards ¥, within the plane determined by ¢ and 7
but the resulting vector is a nonlinear combination of #1; and
#; (shown as OF in fig.1). As we will see in the follow-
ing, the diffusion scheme based on conventional Cartesian-
coordinate representation can actually be viewed as a spe-
cial case of our diffusion scheme if we carefully choose the
coefficients for diffusion equations on magnitude and ori-
entation of the vectors, such that the resulting vector OPis
exactly the same as the vector GC.

In the following we will consider the diffusion schemes
separately for magnitude » and orientation 8 and y, where
the transformation from polar coordinate (r,8,y) to Carte-
sian coordinate {z,y, z) is given by:

z =71 - cos(y) - cos(8)
y =71 cos(y) - sin(d)
z=r-sn(y)

forr > 0,v€[-x/2,7/2) and @ € (-, 7}

2.2. Diffusion Equation on r

The diffusion equation on magnitude r is the same as classic
anisotropic diffusion of scalar values:

or

a
where #y is the vector being considered and 77 is the neigh-
boring vectors. The coefficient ¢; (#1, 72 ) can be chosen as
a decreasing function of | ¥r | or | ||| — |[#2]| ] as seen in
classic anisotropic diffusion scheme. But usually it is better
to choose ¢; {.) as a decreasing function of ||oy — 72|

= V(eL(r, 72) V), {2

(b} for Theorem

(a) for Lemma

Fig. 2. [ilustration of Lemma and Theorem

2.3. Diffusion Equations on & and v

Similar to the conventional Cartesian-coordinate based scheme,
the diffusion equations on 8 and +y cannot be diffused sepa-
rately to guarantee that the resulting vector should be within
the plane determined by the vector 91 and one of its neigh-
boring vectors 7. Assume the angle between ¢ and ¥ is
. Then we can compute how much ¥, will move to the new
position ¥ {or OF as seen in fig.2(b)} along the direction
from ; to U2 by using a similar strategy as in equation (2)
but the coefficient ¢{.) may be different from ¢;(.). Sup-
pose the value we got is Aa. Now the problem we need
to solve is that how to represent the new vector §* in polar
coordinates using the known 47 and 7. Keep in mind that
here we are considering only one of the neighbors. The final
position of vector ¥, should be determined by the weighted
average of all such #™'s affected by all the neighboring vec-
tors. In the following we first give a Lemima without proof.
Lemma: Consider a point O in 3D space with three lines
(O A, OB and OC) passing through it (as shown in fig.2(a)).
Suppose the planar angle between two planes AOB and
BOCis¢,and LAOB = 3, LBOC = a. Lety be LAOC.

Then we have:

cos(y) = cos(a)cos(B) + sin{a)sin(B)cos(¢). (3)

Now let's go back to the problem of how to compute the
polar coordinates (8*,v*) of the diffused vector v*, given a
vector ¥, : (81, 1) and one of its neighbors @ : (62, 72) (as
shown in fig.2(b)). First of all, we can easily compute the
angle & between 7, and ¥z:

a = cosH{eos{y )ecos{va)cos(8y — 8y) + sin(fyl)sin('zj))).

Consider the three lines OF, OT, OF. Assume the pla-
nar angle between plane OEF and plane OET is . Then
by Lemma we have:

cos(§ —4*) = cos(§ — m)cos(La)+

sz‘n(% — m)sin{Aa)eas(yp), (5)
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or equivalently,

sin(y*) = sin{y)cos(Aa) + cos(v)sin(Aa)cos(p).
(6)

Similarly consider the three lines OE, OT, OG and we have:
cos(§ — 12) = cos(§ — m)cos{a)+
sin(% — 11 )sin{a)cos{y), )]
or equivalently, |
sin(yz) = sin(y1)cos(a) + cos{m)sin{a)eos(yp). (8)
By calculating sin{a) x (6) — sin{Aa) x (8) we have:

sin{y*)sin{a) — sin(y2)sin{Aa) = sin{y)sin(a — La).
9

And thus,

sin{y2)sin(Aa) + sin{y)sin(a — Aa)
sin{a)

sin(y") =

(10)

Notice that equaticn (10} is true only if o« # 0 and @ # 7,
or in other words, vectors ¥; and ¥ should be independent
on each other.

Now let’s consider the three lines OFE, QF, OT again.
Obviously the planar angle between plane OET and plane
OFT is A9, where A@ = |8; —6"| (Remember that ZCOD
is sometimes not equal to |§; — 87| because 8 is periodically
defined on (—, 7). But for simplicity we will ignore this in
the following}. By Lemma we have:

cos(Da) = cos(§ — i eos(§ — v )+
sz’n(% - 'yﬂ.;in(% — " )cos(AF), (1)
or equivalently,

cos{Aa) = sin{m)sin{y*) + cos('yl)cos('y")cos(A?).)
12

So we get:

cos(Aa) — sin{m)sin(y*)

cos{Lg) = cos{y1)cos(y*)

{13)

Notice that equation {13) is true only if y; # +7 and
¥ # =7 which means #) and v* can not be parallel to axis
z. After we know /AAd, we can easily find out 8* by either
8, + A8 or 8; — A8 (depending on which side vector ¥z lies
on, with respect to vector 71).

From (10) and (13) we have the following theorem for
determining the new position of a vector “attracted” by one

of its neighbors:

Theorem: Given a vector & : (#1, ¥ ) and one of its neigh-
bors t : {82, 72), the polar coordinate of the diffused vector
¥™ : (8*,4*) can be described by:

,r. = sin_1(ain(wz)aiﬂ(ﬁa)+ain(11)ain(a-—&a) )

sin{a)

(14)

_ —1 rcos(Da)=sin(r1)sin(y*)
8 =6y +cos ( caa('n)cus}"f’) )
where o is the angle between ¥ and @3, and Ac is the angle
difference by which #), moves towards 2. |

As a summary of this section, let’s suppose we are going
to determine the new position of the vector ¥ : (8, 7) at
(z,%). First we need to find out all the neighbors of (z,y)
using 4-neighbor scheme (or other schemes). Each of the
neighboring vectors (denoted by #;, 1 = 1,2,3,4) makes
the vector ¥ rotate along a specific direction and thus we
get: Avy;, A8;, 1 =1,2,3,4. Ay, Ab; are calculated using
Ay = 4f —yand Ad; = @} — 8, where ] and 8} are
obtained by equation (14). Then the new position of vector
¥ after diffusion (for each iteration) can be determined by:;

new — old 4 ) Z?:l Ay,
(15)
v = 4o 2 AL, A4

where 0 < A < % for the solutions to be stable [1]. And
77 is separately determined by equation (2).

3. EXAMPLE: COLOR IMAGE SMOOTHING

In previous section we described a general version of anisotropic

vector diffusion based on the polar-coordinate representa-
tion of a vector. This algorithm can be applied to various
types of vector-valued images for smoothing. In this section
we will consider the color images and show some smooth-
ing results using our method.

We will take the simple RGB color madel in our imple-
mentation, That means the RGB values at each pixel will be
viewed as a vector for that pixel. Some other authors con-
sidered other more complicated color models, For example,
Lucchese and Mitra [12] considered anisotropic diffusion
on the complex chromaticity and lightness of the color im-
ages. This idea, in some sense, is very similar to our polar-
coordinate representation of a vector if we think the mag-
nitude as the lightness and the orientation as the chromatic-
ity. However, their approach was designed in particular for
color image smoothing, while our vector diffusion methed
can be used not only for color image smoothing but also
for other purposes such as image segmentation and skeleton
extraction.

Fig.3 shows two noisy color images for testing. One is
an artificial image and the other is a real image. Both images
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(a)

Fig. 3. Testing images added with randomly generated
noises: (a) is an artificial image and (b) is a real image.

(a)

Fig. 4. Resulls by using isotropic diffusion

are degraded with randomly generated noises. The results of
isotropic diffusion on both images arc shown in fig.4(a) and
(b). respectively. It is very obvious that the edges are blurred
although the images are smoothed quite well elsewhere. As
compared to the isotropic diffusion, our anisotropic vector
diffusion scheme smoothes out the noises guite well while
sharp edges arc preserved (see fig.5(a} and (B)).

4. CONCLUSION

In this paper we presented a general version of anisotropic
diffusion for vector-valued images. Our scheme is based on

(@)

Fig. 5. Results by using our anisctropic vector diffusion

the polar-coordinate representation of vectors. As an exam-
ple we tested our algorithm on color image for its ability of
smoothing out noises. Experiments showed that our scheme
had the same elegant property of conventional anisotropic
diffusion of scalar images. We have already successfully ap-
plied our method to gradient vector diffusion for the purpose
of image segmentation. Our future work will concentrate
on the relationship between our anisotropic vector diffusion
and construction of Voronoi diagrams as well as extraction
of median axis.
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