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Abstract. In this paper, we present an approach for image segmen-
tation, based on the existing Active Snake Model and Watershed-based
Region Merging. Our algorithm includes initial segmentation using Nor-
malized Gradient Vector Diffusion (NGVD) and region merging based
on Region Adjacency Graph (RAG). We use a set of heat diffusion equa-
tions to generate a vector field over the image domain, which provides us
with a natural way to define seeds as well as an external force to attract
the active snakes. Then an initial segmentation of the original image can
be obtained by a similar idea as seen in active snake model. Finally an
RAG-based region merging technique is used to find the true segmen-
tation as desired. The experimental results show that our NG VD-based
region merging algorithm overcomes some problems as seen in classic ac-
tive snake model. We will also see that our NG VD has several advantages
over the traditional gradient vector diffusion.

Keywords. Image segmentation, Gradient vector diffusion, Heat diffu-
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1 Introduction

Since it was proposed by M.Kass etc. [1], active snake model has drawn a lot
of attention from researchers in image-related fields. Due to its efficiency of
converging to the desired features within an image by simply defining an energy
function, it has found many applications, including edge detection [1], shape
modeling [14], segmentation [15], and motion tracking [15,16].

The traditional snake model is defined by an energy functional:

= / Slallx ()1 + 1" ()] + Feot (x(s))ds. 1)

where x(s) = [(z(s),y(s)], and s € [0,1]. The first two terms within the above
integral stand for the internal force that is determined by the geometric proper-
ties of the snakes, while the third term is thought of as the external force that
is the issue mostly discussed in active snake models.

Generally there are several difficulties with this traditional model. First, the
initial guess of the contour must be carefully chosen to be close to the true



boundaries. This is because the snake moves partially in the direction of external
force Egy;:(x) which is based on the images gradient. Therefore, the external
force exists only at those points close to the boundaries. Some approaches have
been proposed to solve this problem, e.g., multi-scale method [8], where different
Gaussian factor ¢ are used to create a scalable potential force to attract the snake
to the desired boundaries; distance potential force [5], in which the distance map
is produced first and then, based on the gradient of the distance map, a potential
force is obtained to generate a large attraction range. Recently Xu et.al. proposed
another method [2], called gradient vector flow (GVF), to find the external force
based on a group of heat diffusion equations.

The second problem with the traditional model is that it is difficult for the
snake to move into the boundary concavities. If we consider the energy func-
tional (1) again, we can see that the first two terms in the integral always make
the snake as straight as possible. Thus, if the external force Ee,:(x) is not large
enough to push the snake into the boundary concavities, the snake will always
stop near the “entrance” of the concavities. Although many ways have been tried
to solve this problem (see [9-12]), most of them did not give satisfying results.
Xws GVF method and its generalized version [3] were originally proposed to
rectify this problem but still did not work very well in the case of long and
thin boundary concavities (see next section for analysis). Furthermore, bound-
ary “gaps” or weak boundaries are always overwhelmed by the nearby strong
boundaries.

The third problem with the traditional model is how to select the initial
snakes. A good guess of the initial snakes makes a great impact on the final seg-
mentation. Many of the existing methods, including Xu’s methods [2—4], choose
the initial snakes by hand. Some other approaches find the initial snakes by
“balloons” or by the locus of the zero-crossing of the Laplacian of the smoothed
images (see [18] for a summary). In the present paper we will see a very natural
way to find the initial snakes (or seeds).

To overcome these problems we proposed a new type of diffusion equations
to generate the gradient vector flow. Our new diffusion equations are similar to
those in [2] except that ours are based on the normalized gradient vector diffusion
(NGVD). This slightly modified scheme does tremendously improve the vector
diffusion behaviors, compared to other vector diffusion methods [2—4]. First, it
is very easy to deal with the boundary concavities such that the snakes can
easily move into the concavities. Second, weaker but obvious boundaries can be
preserved even they are close to much stronger boundaries. Third, the snakes can
correctly stop near the boundary “gaps”. Based on the obtained vector field, we
then propose an approach to generate the image segmentation in the following
way. First, all the source points are identified over the image domain, then an
initial segmentation can be easily obtained from the previously produced vector
field. Finally an RAG-based approach was used to find the true segmentation
of the original image. We will also see an interesting relationship between our
NGVD-based approach and the classic watershed method and how our approach
is better in some aspects than watershed method.



We organize the rest of this paper as follows: in next section we will review
the work by Xu etc. [2,3]. Then in section 3, our approach of generating vector
field will be given and we will see the difference between our NGVD approach
and Xu's method. Sections 4 discusses how the gradient vector flow generated by
our method can be applied to the image segmentation, including initial segmen-
tation, region merging and the comparison between our approach and watershed
method. And then we will present some segmentation results on different types
of images in section 5. Finally in section 6, we give our conclusion.

2 Review of Gradient Vector Flow

In this section we give a brief description of this approach. We refer the readers
to [2—4] for more details.

2.1 Edge Map

This method begins by defining an edge map f(z,y) derived from the original
image I(z,y). The edge map should have the property that f(z,y) is large near
the image boundaries and small within the homogeneous regions. There are many
ways to define an edge map. Commonly used are:

f(z,y) = =IIVI(z,y)II%, (2)

or
f(@,y) = =[IVIGo(z,y) * I(z,y)]|I*. 3)

Then take the gradient of the edge map as the initial values of the vector flows,
that is, u(® = 8f/8z,v®) = df/dy. In the following we will denote 8f/0z and
0f /0y as f, and f,, respectively.

From the definition, we know that the initial vectors determined by V f(z,y)
always point toward the image boundary and have large magnitudes near the
boundaries and low magnitudes in the homogeneous regions.

2.2 Gradient Vector Flow

In the work of Xu et.al.[2—4], the following energy functional was used to propa-
gate the vectors from the boundaries to the inner parts of homogeneous regions:
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where v(z,y) = [u(z,y),v(z, y)], and as we mentioned above, the initial value of
v(z,y) is determined by V f(z,y). p is a regularization parameter to be set on
the basis of noise present in the image [2].

This variational formula consists of two terms. The first term, the sum of
the squares of the partial derivatives of the vector field, makes the resulting



vector flow v(z,y) varying smoothly. The second term stands for the difference
between the vector flow and its initial status. Thus minimizing this energy will
force v(z,y) nearly equal to the gradient of the edge map where ||V f(z,y)|| is
large.

It can be shown that equivalent diffusion equations can be derived from
the minimization of the energy functional defined above (treating u and v as
functions of time):

% — V% — (u— £,)(f2 + f2)
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These two equations can be separately solved by numerical method, resulting
a vector flow over the entire image domain mostly with non-zero magnitudes if

enough number of iterations are executed. And it was shown that an appropriate
choice of time step At guaranteed the convergence of GVF.

(5)

2.3 Generalized Gradient Vector Flow

As pointed out in [3], the GVF method described above has some difficulties
when the boundary concavities are long and thin. To remedy this problem, Xu
etc. proposed a method called generalized gradient vector flow(GGVF). The es-
sential idea is to introduce two weighting functions for (5):

&u = g(IVAI)V2u = R(IVFI) (u = fo)

5t = 9(IVFIDVZv = h(IIV £ (v = fy)

(6)

where

g(IVfIl) = e~ VIR, AUV =1 = g(IVFID-

As claimed in [3], the problem with GVF [2] is caused by excessive smoothing
of the field near the boundaries. Hence, the weighting functions g(||V f||) and
h(||Vf||) are introduced to decrease the smoothing effect near strong gradient.
Consider a boundary concavity (see fig.1(a) ACB). As we know, the force coming
from C is decreasing from left to right. Therefore, if D is far from C (assuming the
concavity is arbitrarily long), the force from C will decrease to zero. On the other
hand, the forces from A and B are relatively much stronger, resulting vectors
pointing either up or down at the “entrance” of the concavity (see fig.1(b)).
This problem prevents the snakes moving into the concavity. Although in the
generalized GVF method the weighting functions g(||Vf]|) and A(||Vf]|]) are
used such that the force coming from C' becomes stronger compared to that
calculated in GVF method, but, as we can see in equations (5) and (6), the
diffusion equations are isotropic, thus the forces from A and B also become
stronger. The resulting vectors near the “entrance” of the concavity are still
pointing either up or down. Remember that here we ignore the forces coming



from the right (where R is shown in fig.1(b)) to the concavity since the analysis
is the same. Therefore the true problem does not occur at the “entrance” of the
concavity, but in the central area of the concavity. The readers will see this fact
soon in next section.

Another problem with GGVF (and GVF as well) is how to stop the curves
from moving out of the boundaries “gap”. If the boundary gap is isolated (like the
examples in [2, 3]), these algorithms work correctly on the boundaries with gaps.
However, if there is another boundary near this gap (as seen in fig.1(a) where
G is shown), all the vectors around G resulting from equation (5) or (6) will
point to F'. This makes the curves move out of G and causes a problem. Similar
problem happens when weak boundaries are close to relatively much stronger
boundaries such that the weaker boundaries are overwhelmed after diffusion.
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(a) Problems with traditional GVF (b) Vector diffusion by GVF

Fig. 1. Illustration of the problems seen in traditional GVF method

3 Normalized Gradient Vector Diffusion

In this section we will describe our normalized gradient vector diffusion, which
overcomes the problems seen in traditional gradient vector diffusion. For sim-
plicity we will call this method NGVD in the following.

3.1 Analysis: the Ideas

The traditional GVF and even the generalized GVF methods cannot efficiently
solve the problems as we have seen above. The key observation behind these
problems is that a weak vector (with almost zero magnitude) makes a very little
impact on its neighbors that have much stronger magnitudes. However, if we
normalize the vectors before we apply the diffusion equations, the results will be
quite different. Fig.2 gives an example of how these two different ways diffuse
two vectors and have totally different results. For the normalized vector diffusion
method, a very weak vector can tremendously affect a strong vector, both on
its magnitude and on its orientation. This is the essential idea behind our new
diffusion approach.
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(a) Traditional GVF (b) Normalized GVD

Fig. 2. Two ways to diffuse vectors: the way on the left shows the traditional method
that results in a vector almost pointing up, while the method on the right shows our
normalized GVD in which the resulting vector is equally influenced by both V; and V»
regardless their magnitudes.

3.2 Heat Equations and Algorithms

There are two different ways to implement the normalized vector diffusion: one
is isotropic diffusion, similar to Xu’s method, the other is anisotropic diffusion.
Both ways produce almost the same vector field although their implementations
are slightly different.

Isotropic Diffusion The heat equations of the isotropic vector diffusion are
very similar to the equations used in the traditional GVF method as we saw
in previous section. The only difference is that in our NGVD method we need
to normalize all the vectors before we apply the diffusion operations. The heat
equations can be written as:

B _ LVt — (u = f)(f2 4 f2)

38_’1{‘ — NV2U* - (v* — fy)(fz2 + fyz)

where (u*,v*) is the normalized vector on a pixel over the image domain and
(fz, fy) stands for the initial vector on the same pixel. This equation can be
further converted into an iterative numerical version by using simple central
difference scheme (more details can be found in [2]). The overall algorithm is
described as follows:

(7)

Initialize: Calculate f(z,y) using (2) or (3). Let u(® = f,, v = f,.
Repeat: (for each iteration)
(a) Normalize all the non-zero vectors to unit vectors.
(b) Calculate the new value for u using the first equation in (7).
(c) Calculate the new value for v using the second equation in (7).

Remember that the number of iterations can be set manually or automati-
cally. The latter one is achieved by checking the maximal change of the vectors



between two adjacent iterations. If the maximal change is smaller than a fixed
threshold, then the diffusion terminates.

Anisotropic Diffusion The normalized gradient vector diffusion can also be
simulated with anisotropic diffusion (see [13] for its definition). The heat equa-
tions can be written in anisotropic forms as follows:

80 = iV (hes V) — (u — f2)(f2 + £2)
®)
5 =1V Em Vo) — 0= L)+ 1)

where (u,v) is the vector being diffused at a pixel over the image domain and
(fz, fy) is the initial vector at the same pixel.

Using a similar scheme seen in [13], we can rewrite the above equation as
follows:

JAN QG o m,n
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()
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where (7, 7) is the pixel being considered and (m,n) stands for the neighbors
of (i,7) (either 4-neighbor or 8-neighbor scheme can be used here). Note that
equation (9) is not exactly equivalent to equation (8) from the perspective of
anisotropic diffusion defined in [13]. But the experiments showed that the slightly
modified scheme in (9) gives more desirable results. The overall algorithm for
the anisotropic diffusion version can be described as follows:

Initialize: Calculate f(z,y) using (2) or (3). Let u(® = f, v(©) = f,.
Repeat: (for each iteration)
(a) Calculate the new value for u using the first equation in (9).
(b) Calculate the new value for v using the second equation in (9).

3.3 Comparison Between Different Diffusion Schemes

In the following we will compare our approach with the traditional GVF/GGVF
methods [2-4,12] on their abilities of dealing with boundary concavities and
boundary gap. Fig.3 shows the testing image which we will work on. This image
contains one boundary concavity and one boundary gap. The regions indicated
by the two dashed rectangles will be enlarged in fig.4 and fig.5 such that the
vector field can be more clearly displayed.

Fig.4(a) shows the enlarged vector field generated by the traditional gradient
vector diffusion around the boundary concavity. We can see that the vectors in
the concavity (especially those near the center) still point up or down as they



Fig. 3. The testing image used for the comparison: the boundary concavity and gap
are indicated by dashed rectangles

did before the diffusion. Therefore, a snake will stop near the entrance of the
concavity and cannot reach the bottom. However, by our normalized vector
diffusion, the vectors in the concavity obviously changed their magnitudes and
orientations and thus the snake can easily move into the bottom of the concavity
(see fig.-4(b) and (c)). The results by our normalized method are almost the same
both for isotropic diffusion and for anisotropic diffusion.
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Fig. 4. The comparison between the traditional gradient vector diffusion and our nor-
malized gradient vector diffusion for their behaviors on the boundary concavities

Fig.5 shows the results by our approach and traditional GVF near the bound-
ary gap. As we can see from fig.5(a) traditional GVF has difficulty preventing
the vectors on the boundary from being significantly influenced by the nearby
boundaries and thus causes a problem such that the snake may move out of the
boundary gap. However, our approach can avoid this problem. From fig.5(b) and
(c) we can see that the vectors around the boundary gap point to the boundary
from both sides.

The price we pay for the improvement of the performance in the above cases is
that extra time is required to normalize the gradient vectors before or during each
diffusion iteration. Furthermore, the traditional GVF method usually behaves
better in noisy images than our NGVD. Based on these two considerations, a
combined version of gradient vector diffusion can be used in the implementations
to reduce time consumption as well as sensitivity to noises. The strategy is to
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Fig. 5. The comparison between the traditional gradient vector diffusion and our nor-
malized gradient vector diffusion for their behaviors on the boundary gap, which is
located around the point (141, 100) in the left part of each figure

utilize the traditional GVF method in the first half (or more) of the entire
diffusion process, while the normalized GVD method is used only in the second
half (or less) of the diffusion process.

4 Image Segmentation

In this section we will briefly describe how to apply the gradient vector field
to the image segmentation. As we have said before, the gradient vector field
provides the active snakes an external force. However, in active snake model, we
must answer the following questions: how to initialize the snakes? and what is
the stopping criterion?

4.1 Seed Points

There are several ways to choose the initial snakes (or seed points): by hand, by
“balloons”, or by the locus of the zero-crossing of the Laplacian of the smoothed
images (see [18] for a summary). In our case, we use source points (defined below)
as our seeds. The source points can be automatically generated from the gradi-
ent vector field obtained from the diffusion process described in previous section.

Definition: A point is called source if none of its neighbors points to it. In
other words, a point A is a source if and only if, for any neighbor B of A:

B BA S 0,
where vp is the gradient vector at B and B A is the vector from B to A.

A source point looks very like the origin of a spring where the water comes
out. In fig.6 we show an example of how a source looks like in our case of
gradient vector flows. Some source points clearly appear in five different sites in
the vector field shown in fig.6(a). Usually there are more than one source even



in a homogeneous region, and the number of sources depends on two factors:
(1) the geometric shape of the region’s boundaries; (2) the number of iterations
executed in the generation of the vector field. fig.6(b) illustrates the locus (the
white small circles) of the source points distributed in a figure (only consider the
central region).
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(a) Example of source points (b) Seed points

Fig. 6. Take source points as our initial snakes (or seeds): the five source points shown
on the left part of (b) correspond to the five sources of the vector field shown in (a)

4.2 Initial Segmentation

After we identify all seed points, initial snakes are generated by the following
way: each isolated seed point is taken as an initial snake, and all connected seed
points correspond to only one snake. Then we can let the initial snakes start to
move. Their movements are directed by an external force that is determined by
the previously generated vector field. The snakes stop moving by a very natural
way, that is, if all the vectors on a snake are pointing to the opposite direction
of the movement, then the snake stops. Finally when all the snakes stop, we
obtain a partition of the original image such that each region corresponds to a
snake. This is what we call initial segmentation, and next section will show some
examples of initial segmentation on several different types of images. However,
the initial segmentation does not give a satisfying result because there are too
many small regions left. So we need to further refine the segmentation by merging
the regions.

4.3 Region Merging

There have already been various approaches on region merging [19-21], most
of which were based on the initial segmentation produced by the well-known
Watershed method. Although our approach to generate the initial segmentation
is different from Watershed method (the difference will be given in the following
subsection), the basic idea for the region merging is the same: first, generate a
Region Adjacency Graph (RAG) from the initial segmentation, and then merge



the most similar regions step by step until some criterion is satisfied. Differ-
ent merging methods may have different ways to define the similarity. In our
approach we will consider two factors to determine the similarity: one is the
intensity difference between two adjacent regions, and the other is the average
image gradient on the common boundaries between two adjacent regions. Two
regions are said to be more similar if their intensity difference is smaller and/or
the average image gradient on their common boundaries is higher. For these
purposes we organize our data structures as follows:

struct Region:
int number; /* number of points in this region */
double intensity; /* average intensity of this region */
BOUND *boundary; /* list of boundary points of this region */
RGN *neighbor; /* list of neighboring regions */

where the structure BOUND is defined by the z-coordinate and y-coordinate
of the boundary point and a pointer to the next boundary point. The structure
RGN contains the ID number of the neighboring region, the number of points on
the common boundaries between the neighboring region and the region under
consideration, the average image gradient on the common boundaries, the overall
similarity between the neighboring region and the region under consideration,
and finally a pointer to the next neighboring region.

4.4 Relationship with Watershed Method

As mentioned above, Watershed is one of the well-known approaches to generate
an initial segmentation (see [22]). This method usually begins with the image
gradient map and takes the minimum of this map as the seeds. From this point
Watershed method is very similar to our approach: both methods start from the
image gradient map and the minimums in Watershed method look very like the
source points of our approach. Furthermore, the geodesic distance transformation
used in Watershed method can be thought of as a propagating process, which
is analogous to the propagating process of gradient vectors in our approach.
However, the geodesic distance transformation, like the distance potential force
[5] we mentioned in the first section, makes the traditional Watershed method
limited when dealing with the boundary concavities. Another advantage of our
approach is its simplicity of generating the initial segmentation given a vector
field over the image domain, because the vectors provide snakes the information
of where to start or stop and how to move. However, it is not so straightforward
in Watershed method to obtain the initial segmentation from a set of seeds.

5 Results

In the following we will give some examples of image segmentation by our region
merging approach based on the normalized gradient vector diffusion (NGVD).
Fig.7 shows an example of microscopy images, where the original image is shown



in (a). After the initial segmentation there are totally 105 regions left (as seen
in (b)). Finally 14 regions, including the background region, are remained after
region merging. Although the original image is quite blurred, the cells are still
correctly segmented. Fig.8 shows an NMR image of brains. The initial segmen-
tation generates 335 regions and after the region merging 25 regions are left.

In fig.9 we show the results of segmentation on the same image using tra-
ditional GVF and our normalized gradient vector diffusion. It is very clear to
see the different performance of these two methods on the boundary concavities
shown in the left-top part of the images.

(a) The original image

Fig. 7. Illustration of image segmentation by our NGVD-based region merging: there
are 105 regions left after initial segmentation, and 14 regions left after merging

(a) The original image (b) Initial segmentation  (c) After region merging

Fig. 8. Illustration of image segmentation by our NGVD-based region merging: there
are 335 regions left after initial segmentation, and 25 regions left after merging



(a) By traditional GVF (b) By our NGVD

Fig.9. The comparison between the traditional gradient vector diffusion and our nor-
malized gradient vector diffusion for their behaviors on the image segmentation. Look
closely at the difference between (a) and (b) in the left-top part of the images.

6 Conclusion

In this paper we present a new type of diffusion equations to generate Gradient
Vector Fields. We normalize the vectors over the image domain before or during
each diffusion iteration. The experiments show that our new approach not only
can rectify the problems encountered in traditional snake models, but also can
efficiently handle the cases of long-thin boundary concavities and boundary gaps
as seen in traditional GVF method. Our approach can be applied to image
segmentation with the help of region merging technique. The discussion also
reveals an interesting relationship between our approach and the well-known
Watershed method. Finally, it is quite straightforward to extend our method to
3D gradient vector diffusion and image segmentation.
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