
���������
	�����
����������������������������
	�����
������ �"!$#%�%&�
'�)(*
'�,+�	�&�
'-.	��/
'�0�1��23� ��!4
657	�+8���0!4	��/
'�
9;: ���<�
��! �=�
���8
>�"?

Chandrajit Bajaj, Shashank Khandelwal, J Moore, Vinay Siddavanahalli @
Center for Computational Visualization,

Department of Computer Sciences and Institute for Computational Engineering & Sciences,
University of Texas, Austin Texas 78712

ACBEDGFIHKJEL�F

We present an interactive visualization environment for semi-
automatic theorem provers in an attempt to help users better steer
their theorem proving process. The augmented theorem proving
environment provides synchronized multi-resolution textual and
graphical views and direct navigation of large expressions or proof
trees from either of the twin interfaces. We identify three levels
of the proof process at which synchronized multi-resolution textual
and graphical visualizations enhance user understanding.

M NPO FIHRQTSVU,L�F
WXQ O

User interaction with theorem provers remains mostly text based.
When a proof attempt fails, the user needs to diagnose the problem
and then come up with new theorems, lemmas or hints to continue.
This requires a thorough understanding of each proof attempt. The-
orem provers typically generate large amounts (megabytes) of text
during proof attempts; making intermediate expression navigation
in the proof process a significant challenge. A command line text
interface is used with most theorem provers. Pretty printing and text
based primitives like searching are the main tools available to help
reduce or manage visual complexity. The challenge is to integrate
text-based interfaces with synchronized graphical visualization to
speed comprehension and interaction. We identify three levels at
which the command line interface could be augmented with syn-
chronized graphical visualization for enhanced user understanding:

1. The overall proof attempt can be visualized by a graph of the
theorems used during a particular proof attempt.

2. The structure of the proof can be visualized, by displaying the
subgoals created at each step and indicating which subgoals
could be proved or not.

3. Examining failed subgoals is critical towards understanding
why a proof attempt failed. Following the progress of similar
subgoals through the proof attempt is useful. Graphical vi-
sualization would help quickly identify similar subgoals and
their locations within the overall proof.

We choose ACL2 [Kaufmann and Moore 1997], an industrial
strength theorem prover for our case study.

Y Z�[E\ J/F [S^]_Q`Hba

We provide a couple of relevant references here to previous work
done in the visualization of output from theorem provers. The re-
maining are cited in the full version of the paper [Bajaj et al. 2003].
Paper [Thiry et al. 1992] discusses the need and requirements for a
ced

bajaj, shrew, moore, skvinay f @cs.utexas.edu

user friendly interface to theorem provers, but do not visualize the
information inherent in the proof process as a way to understand the
proof attempt. In [Goguen 1999], we see an attempt to use visual-
ization to understand the structure of proofs, and a complete system
for developing a user interface. Their system is designed for readers
of proofs (as opposed to specifiers or provers). Web pages explain
each proof with links to background material and tutorials. Their
system is designed with distributed collaboration in mind. Our sys-
tem is designed to be used by theorem provers, working alone.

Figure 1: Proof tree visualization. This is a proof related to a Java
Virtual Machine.

g hTi,j BkQ \ WlLnm�WXDoUEJ \ WXp7JqF
WXQ O

We provide details and justifications for the visualizations at each
level of the hierarchy.

rks tRuGvGw s x�vzy{s |~}`|��7�k�G��|G�6����t,�Et{���
A theorem is proved by using

previously verified theorems and lemmas. These verified theorems
and lemmas are used as a knowledge base for the theorem prover.
By looking at the theorems and lemmas used in the proof of a pre-
viously verified theorem, a user may gain insight on how to steer
a current proof attempt. The theorems and lemmas used during
a proof attempt, when arranged to show inter-dependency, form a
directed acyclic graph. This can be visualized using a simple node-
link diagram.

����|�|������6�z�.rks tKu�vGw s x�vzy{s |~}
Most proof attempts have a tree struc-

tured approach; with the main theorem being proved as the root of
the tree. A theorem prover either proves/disproves the theorem, or
divides the theorem into subgoals. Each of these subgoals is then
tackled in an order determined by the particular theorem proving
system. ACL2 tends to use depth first search. See figure 1.

We provide a synchronized multi-view representation of the
proof tree to the user. Since proof attempts tend to be large, tak-
ing possibly hours to finish, users prefer being given synchronized

Figure 2: Multi-view text and graphical visualization of a proof
attempt. The text windows on the left contain the contents of some
nodes from the proof tree on the right. The screen shot is from the
proof of the proposition that the reverse of the reverse of a list is the
list itself (given certain conditions and definitions).

feedback in both textual and graphical views of the current state of
the proof. We use a variant of the cone tree algorithm [Carriere and
Kazman 1995] to render, annotate and provide interactive naviga-
tion for our trees. ACL2 has a model in which the subgoals can be
reduced using generalization, induction, simplification, etc. These
actions are limited and distinct and can be visualized by the current
node’s color, as shown in figure 2.

�������6��t>t>s |~}�rks tKu�vGw s x�vzy{s |~}
The main hurdle in finding out why

the theorem prover could not prove a theorem is understanding the
critical node at which the theorem prover failed or deviated from the
expected path. The expression trees of formulas at a subnode can be
visualized as a 2D tree. In theorem proving, larger proof attempts
are cumbersome to follow. From one goal to another, the theorem
prover performs some actions, modifying the expressions at each
stage. In order to follow changes, pattern matching can be applied
to the expressions (after suitably representing them as trees).

The tree matching algorithm we use is similar to the recursive al-
gorithm presented by [Hoffmann and O’Donnell 1982]. Our heuris-
tics for matching are domain specific. A Lisp expression E can be
represented as a function symbol F operating on a set of parame-
ters p1 � P2 �����	�	� Pn. In a binary tree representation, the left child of the
root node contains the function symbol F . The parameters are then
the left children of all the nodes of the right side path from the root
to a leaf. Two trees which have different function symbols result in
a low match. The match is also proportional to the distance from
the root of the differences between the trees. A permutation in the
parameters of a function symbol results in a high match.

The visualization of the results from the pattern matching has
been implemented in both text and graphics. In figure 3 we see two
sets of texts. A sub expression from column 2 is matched with the
entire expression on the right. The font color indicates how similar
an expression is to the search expression. Unselected text is light
gray, while selected text is black. The results from pattern matching
are shown by varying the font color from bright red (high match)
to dark red (low match). The graphical expression visualization
interface also shows the same results (the first column in figure 3).
The unselected sections are gray, while selections are cyan. Again,
bright to dark red is used to show high to low matches between the
patterns. The third tree in the left column is a zoomed-in view of
the outlined box in the second tree.

Figure 3: A synchronized view of text and graphics visualizations
from level 3. Pattern matching of expressions from a proof: A com-
position of screen shots from our implementation.

 ��Q O L \ UED~WXQ O

We have presented some details of our interactive visualization en-
vironment for semi-automatic theorem provers. Further details are
available from the full version of the paper [Bajaj et al. 2003], (with
system animations), from our Symbolic Visualization web page
(http://www.ices.utexas.edu/CCV/projects/VisualEyes/SymbVis/).

� A Lqa O Q�
 \ [S�� j [O FGD

We are grateful to Robert Krug for writing the socket code that
helps us communicate with ACL2. Research supported in part by
grants from NSF CCR-9988357and ACI 9982297.

Z�[��K[H [`O L [D

BAJAJ, C., KHANDELWAL, S., MOORE, J., AND SIDDAVANA-
HALLI, V. 2003. Interactive symbolic visualization of semi-
automatic theorem proving. In CS and ICES Technical Report.

CARRIERE, J., AND KAZMAN, R. 1995. Interacting with huge
hierarchies: Beyond cone trees. In proceedings of IEEE Infor-
mation Visualization, 74–78.

GOGUEN, J. A. 1999. Social and semiotic analyses for theorem
prover user interface design. Formal Aspects of Computing 11,
3, 272–301.

HOFFMANN, C. M., AND O’DONNELL, M. J. 1982. Pattern
matching in trees. Journal of the ACM (JACM) 29, 1, 68–95.

KAUFMANN, M., AND MOORE, J. S. 1997. An industrial strength
theorem prover for a logic based on common Lisp. Transactions
on Software Engineering 23, 4, 203–213.

THIRY, L., BERTOT, Y., AND KAHN, G. 1992. Real theorem
provers deserve real user-interfaces. In proceedings of the fifth
ACM SIGSOFT symposium on Software Development Environ-
ments, ACM Press, 120–129.

