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ABSTRACT

Given A-spline curves and A-patch surfaces that are implicitly defined on triangles
and tetrahedra, we determine their NURBS representations. We provide a trimmed
NURBS form for A-spline curves and a parametric tensor-product NURBS form for A-
patch surfaces. We concentrate on cubic A-patches, providing a C'-continuous surface
that interpolates a given triangulation together with surface normals at the vertices. In
many cases we can generate cubic trimming curves that are rationally parametrizable
on the triangular faces of the tetrahedra; for the remaining faces we resort to using
quadratic curves, which are always rationally parametrizable, to approximate the cubic
trimming curves.

1. Introduction

Low degree polynomial or algebraic surfaces can often have dual parametric and
implicit representations. Each form has its distinct advantages. The parametric
polynomial spline in B-spline Basis (B) and Bernstein-Bézier (BB) bases are cur-
rently overwhelmingly popular in commercial and industrial CAGD systems. In
this paper we show how to generate trimmed, parametric B-spline and BB-spline
representations for a collection of implicitly defined algebraic surface patches intro-
duced in Refs. 1-3. Each implicit algebraic surface patch (A-patch) is a smooth,
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bounded, zero-contour of a trivariate polynomial, defined within a tetrahedron for
the barycentric B/BB basis and within a box for the tensor product B/BB basis
(see Ref. 4, Chap. 4 for details). We also show how to convert the trimming curves
of the input A-patch collection into rational parametric form in the same basis as
the surface conversion, yielding standard trimmed NURBS representations '. As
NURBS representations are efficient to compute and are a very common standard
form for splines, being able to represent A-patches as NURBS is highly desirable.
Many low degree implicit curves or surfaces are rational, i. e., convertible into
rational parametric form. All degree two curves (conics) are rational, but only the
subset of singular degree three (cubics) are rational, i. e. elliptic cubics are non-
singular and not rationally parametrizable 2. In general, a necessary and sufficient
condition for the global rationality of an algebraic curve of arbitrary degree is given
by the Cayley-Reimann criterion: a curve is rational if and only if g = 0, where g,
the genus of the curve, is a measure of the deficiency of the curves’ singularities from
its maximum allowable limit. For surfaces, all implicit quadratic and cubic surfaces
can be rationally parametrizable (except the elliptic cubic cylinders or cones). A
method for rationally parametrizing general quadratic curves and surfaces is given
in Refs. 7 and 8. These are all we need to rationally parametrize C° quadratic A-
patches. Similarly, techniques for parametrizing rational cubic curves and surfaces
have previously been given in Refs. 9-12. A proper subset of higher degree surface
can be rationally parametrized, with a necessary and sufficient criterion given due
to Castelnuovo *
rational parametric form, we appeal to approximate conversions when necessary.

. Since it is not always possible to perform exact conversions to

However, we preserve the continuity of the spline surface to be converted, that is,
we construct trimmed NURBS representations of C' cubic A-splines and C' cubic
A-patches.

The rest of the paper is organized as follows. Section 2 discusses the conversion of
A-splines curves, which are also the boundary (trimming) curves of A-patches, given
in implicit form to NURBS representation. In Section 3.2 we first classify the cases of
exact convertibility of C! cubic A-patch splines into trimmed NURBS form. When
exact convertibility is not possible, we show how to generate “fair” approximate
trimmed NURBS. Section 4 concludes the paper. Details of the derivations and
examples are presented in the Appendices.

2. NURBS Representation of A-splines

An A-spline of degree n over the triangle [p1p2ps] is defined by

Gn(z,y) = Fp(a) = Fp(ar,az,a3) =0, (1)
where
Fp(ar,a0,08) = > bieBl(on,a0,03),  Bfj(an,a,03) = 'l'—lk!alo‘% 5,
i+j+k=n bR



and (z,y)" and (ay,as,as3)? are related by

x aq

y — P1 P2 P3 Qs ] (2)
1 1 1

1 a3

Here the objective is to get an A-spline parametrization of the following form:
n n
X(t) =Y wiB(t)b; [ S wiBl(t),  te[o,1], 3)
i=0 i=0

where b; € R?, w; € IR, and B2 (t) = {n!/[i!(n —i)!]}t!(1 — t)*~*. Without loss
of generality, we may assume that wp = 1 (otherwise we could divide through by ¢
and have a parametrization of one lower degree). Next, under the transformation
t' t!
;= +a

=TT at’ a>-1, t'€[0,1], (4)

the curve (3) will preserve its form, that is

n

X() =) (1+ a)iwiB?(t’)bi/ zn:(l +a)'w; B (t"),  t' €]0,1].

i=0

Therefore, we may assume further that w, = 1 by setting a = wy, Un _ 1, which
makes (1 + a)™w, = 1, in the transformation (4).

We consider first convex C' continuous A-splines (see Fig. 1(a)). An A-spline
being Cl implies that bnOO = bOnO = bn_1701 = b07n_171 =0 4. The CO continuous
A-splines on the triangle [p; p2p3] can be made into C! continuous A-splines on the
triangle [p1p2p}] (see Fig. 1(c)) through the use of the subdivision formula ®. In
our applications in the parametrization of cubic (n = 3) A-patches, the coefficients
a, b, c are fixed and d, e, f are parameters to be determined, where

a =b210, b=0bi20, c="0b111, d=0bio2, e="boi2, f = boos.

The non-convex case (see Fig. 1(b)) can be converted to the convex case by first
computing the intersection point ph, which leads to a linear equation for n = 3,
and then computing the tangent of the curve at p). Note that this tangent does
not depend upon the coefficients d, e, f.

2.1. Quadratic A-splines

It is not difficult to see that the parametric form of a C'-continuous quadratic
A-spline should have the following form (see Fig. 1(d)) since it interpolates the
points p; and p2 and is tangent to the lines [p1ps] and [p2ps] at the points p; and
P2, respectively.

_ p1B3(t) + wips Bi(t) + p2B3(1)

XO="moropnrny <O 5)




Ps

R P, P2 p,
(c)

Fig. 1: (a): Convex case; (b) Non-convex case; (c) C° A-spline; (d) Quadratic

A-spline.

where w; is a parameter to be determined. This is called a (2/2) rational parametri-
Ib zation because the of the numerator and denominator are each of degree 2 in t.

We show in Appendix 1 that
[ biio
=4/ — > 0. 6
L 2boo2 ©)

2.2. Cubic A-splines

We first show that an irreducible C!-continuous cubic A-spline never has a (2/2)
rational parametrization. If we substitute the a’s defined by (A.1) into F3(a) = 0,
we have 320 ¢;BS(t) = 0, where

1 4 3

2
_ _ _ 2 _ 3
co =bsgo, €1 =by1wi, c2= gbmo + gb102w17 c3 = 35111101 + 3b003w1,

4
2
ce = boso, 5 =bo21wi, ca= gbuo + gbomwl-

Since B¢(t), i =0, ..., 6, are linearly independent, we have ¢; =0, i =0, ..., 6.
It then follows that

a+4dw? =0, 3cw; +2fw} =0, b+ 4dew? =0
and hence w; = \/—a/4d. The coeflicients of the A-spline must satisfy
d f e

a 6c b (M
where a = b210, b = b120, Cc = b111, d = b102, e = b012, f = b003. HOWGVGI“,
the substitutions (7) turn the A-spline F3(a) = 3aa?as + 3baja3 + 6eajasas +
3darad + 3easa? + fai =0 into F3(a) = (s + d/aa?)(acy + bas + 2caz) = 0,
which is the product of a line and an ellipse. The parametrization covers the ellipse,
and is essentially the same as the (2/2) parametrization of a quadratic A-spline.

The (3/3) rational parametric form of a C'-continuous cubic A-spline should
have the following form in order to interpolate the points p; and ps and be tangent
to the lines [p1ps] and [p2ps] at p1 and ps, respectively:

X(t) = (8)

P1B3(t) + wip1 + a(ps — p1)|B} (1) + walps + B(Ps — P2)]B3(t) + p2 B3 (1)
B(t) + w1 B} (t) + w2 B3(t) + B3 (t) ’




where a, 3, w1, ws are parameters to be determined.
We will show that the equation

Glpipsps] (@, D, ¢, d, e, f) = 48a%e3 f2 — 9a’b* f* + 72a°bee f3 — T2a>bde’ f?
— 96a2c2e? f2 — 288a2cde® f + 432a%d*e* + T2ab%cdf® — T2ab*d?e f?
— 8abc® f? — 552abc’de f? + 1152abed’e® f — 864abd’e® + 48ac’e f>
+ 576ac®de’ f — 864ac’d?e® + 48b3d® f2 — 96b%c?d? f? — 288b%cd’ef
+ 432b%d*e? + 48bc*df? + 576bcd’ef — 864bc>d>e?
— 288¢c°def + 432c*d’e® = 0 (9)

gives a condition on the A-spline coefficients that guarantee the A-spline has a
rational parametrization. The proof of this is rather technical and is given in Ap-
pendix B.

We will wish to construct rationally parametrizable cubic A-splines defined on a
triangle [p; p2ps] and passing through p; and p», that are not necessarily tangent to
the edges [p1ps] and [p2ps] at p; and p,. This situation is illustrated in Fig. 1(c),
where the tangent lines at p; and p» intersect at some other point p4. These
cubic A-splines will have one degree of freedom, the weight bgo3, which we will use
to satisfy (9). In order to accomplish this we define a coordinate system o} abal
(where of + ab + af = 1) that has its origin (0,0,1) at p} instead of pz, while
keeping the points (1,0,0) and (0,1,0) fixed.

The general cubic curve passing through p; and p» is

2 2 2
3b210a1a2 + 3b201a1a3 + 3b1200¢10¢2 + 6b1110&10£20(3

+ 3bioz i + 3boziasas + 3boraasal + boozas =0 . (10)
The tangent lines to this curve at p; and p» are
b1z + bao1xz = 0, bizoa1 + bo21az =0
and these intersect at the point

(b210b021 ) b201b120; _b210b120)

ap,0n,03) =
( bR 3) b210bo21 + b201b120 — b210b120

The linear transformation that maps (ai,as,a3) = (1,0,0),(0,1,0), (b210bo21,
52011)120,—52101)120)/(52101)021 + b201b120 — 52101)120) into (all,alz,alg) = (1,070),
(0,1,0),(0,0,1), respectively is

a = o + b210bo21 o
1 =
! b210b021 + b201b120 - b210b120
b201b120

! '
Qs = Qy+ a

2 b210b021 + b201b120 - b210b120

ba10b

as = 2107120 ag (11)

_b210b021 + b201b120 - b210b120



with the inverse

boa1 . b2o1
ag, Oy = 0y — as,
b120

_ b210b021 + b201b120 - b210b120

!
) = o] —

ay = as . (12)

ba10b120
Thus the transformation (11) maps (10) into an equation of the form

2 2 2 2 3
a'a"ah 4+ 30 ajay” + 6c bl + 3d ajay” + 3e'asay” + flag” =0 .

An example of this being used to construct a rational trimming curve is given in
Example 1 in Appendix D, for the face [p}p2ps].

3. NURBS Representation of A-patches

An A-patch of degree n over the tetrahedron [p;p2psp4] is defined by

Gn(z,y,2) = Fpla) = Fp(ar,as,as,aq) =0, (1)
where
F,(aq,as,a3,a4) = Z aijri Bijp (a1, a2, a3, a4), (2)
i+ j+k+l=n
n! i 3ok 1
B, az,03,04) = Waﬁa%c%c%

and (z,y,2)T and (ay, a9, az,a4)? are related by

T (675]

Yy | _| Pt P2 P3 P4 Q2 (3)
z 1 1 1 1 asz |-

1 Qy

3.1. Quadratic A-patches

The construction details of quadratic A-patches can be found in Ref. 4. The
derivation of the parametrization of quadratic curves and surfaces is given in Ref. 7
and the BB form is given in Ref. 8. Details of the parametrization for the trimming
curves, which are all quadratic, have been presented in Section 2.1. For brevity we
will not repeat all of these conversion formulas here.

3.2. Cubic A-patches

The construction details of cubic A-patches can be found in Refs. 3 and 4.
Appendix C summarizes all the required computation formulas for BB-form coef-
ficients of the A-patches for four adjacent face tetrahedra (see Fig. C.1) and six
edge tetrahedra (see Fig. C.2). With all these computational formulas, there are
still several degrees of freedom. Specifically, the weights ai},g, ait02, 0102, G0012s
aghos, and bih,; may be chosen freely. We wish to use these degrees of freedom to



Fig. 2: Four free weights of a cubic A- Fig. 3: One free weight of a cubic A-
patch for a face tetrahedron patch for an edge tetrahedron

make the cubic A-patch single-sheeted and have boundary curves that are rational
parametric.

3.2.1. Rational parametric boundary curves

For the face A-patch, we have four weights free 5 (see Fig. 2). These weights will
be used to make the three boundary curves rationally parametrizable. Since forcing
a C'-continuous cubic A-spline to be rationally parametrizable requires the impo-
sition of a single constraint (9), the splines on the three faces [p1p2p4], [P2P3P4],
and [psp1p4] lead to three equations:

G[p1p2p4] (02100; 41200, 1101, #1002, @0102; 00003)
G[p1p3p4] (a1020, 2010, 1011, 00125 @1002 00003)

G[p2p3p4](ao210700120;00111,00102700012700003) = 0, (4)

where Gp,pipi](5 57+ 5 ) is defined by (9), and four unknowns (a1002, @102, @0012,
0003 ) -

For the edge patch, we have one weight free on the interface [p2psp/] (see Fig. 3).
If we let bjjr; denote the weights for tetrahedron [p{p2psp4] (as in Appendix C),
then the free Welght is bggog. Solving the equation G[p2p3pf1f (boglg, bglgo, blllO; bglgo,
b2010, bsooo) = 0, provides the required coefficient.

If we are given two rationally parametrized curves on a cubic surface, we can
obtain a rational parametrization for the surface in a manner similar to that in
Ref. 12. The idea is that a line that passes through two nonsingular real points on
a cubic surface must intersect the surface in a third real point. Let the two curves
on the surface f(z,y,z) =0 be

ci(u) = [z1(u) yi(u) 21(w)]" and ex(u) = [22(u) y2(u) 22(w)]" .

Then the cubic parametrization formula for a point p(u,v) on the surface is
{ z(u,v) -| acy +bey  a(u,v)er(u) + b(u,v)ca(v)

Pt = ) | = T )+ @




where
a = a(u,v) = Vf(ca(v))-[e1(u) - c2(v)]
b = blu,v) = Vf(ei(u))-[er(u) —c2(v)] -

A simpler, lower degree parametrization can be obtained if we know and can use
two skew lines on the cubic surface rather than cubic curves. This was the approach
in Ref. 12, and results in a 1-to-1 covering of the cubic surface, while using cubic
curves as ¢; and co can result in a 9-to-1 covering, which means that there are
nine values of the ordered pair (u,v) that map to almost all points on the surface.
Nonsingular cubic surfaces can be put into five categories based on the number of
real lines upon them, and rational parametrizations are possible in four of them.
Examples of these rational parametrizations are given in Appendix D.

3.2.2. Addition of a singular point

In this section we determine the free coefficients (dropping the superscript ')
1002, @0102, @0012, and apoos of tetrahedron [p1 p2p3p4] by fOI‘CiIlg the cubic surface
to have a singular point at a specific location outside the tetrahedron, say at pg :
(a1,a9,a3,04) = (—k,—k,—k,3k + 1) for some k > 0. A singular point on the
surface S(a) = 0 is one where the gradient vanishes, so that V.S(po) = 0. Here
S is considered to be a function of the three independent variables {ay,as,as}.
The conditions that S(—k,—k,—k) = 0 and (0S/0;)a=p, = 0, i = 1,2,3, are
equivalent to

0 = —3k*(azi00 + a2010 + a1200 + 2a1110 + A1020 + o210 + A0120)
+ 3k%(3k + 1) (as001 + 2a1101 + 2a1011 + Go201 + 20111 + A0o21)
— 3k(3k + 1)*(a1002 + ao102 + aoo12) + (3k + 1)3agoo3,

0 = k*(2a2100 + 2a2010 + @1200 + 2a1110 + 1020 — Qo201 — 20111 — Q0021)
— k(Tk + 2)asoo1 — 2k(4k + 1)(a1101 + ar011) + 2k(3k + 1) (ao102 + aoo12)
+ (5k + 1)(3k + 1)a1002 — (3k + 1)%agoos3,

0 = k*(asi00 — a2001 + 2a1200 + 2a1110 — 2a1011 + 2a0210 + Go120 — Go021)
— k(7k + 2)ao201 — 2k(4k + 1)(a1101 — @o111) + 2k(3k + 1)(a1002 + 8apo12)
+ (5k + 1)(3k + 1)agio2 — (3k + 1)%agoo3,

0 = k*(azo10 — a2001 + 2a1110 — 2a1101 + 2a1020 + A0210 — Go201 + 20120)
— k(Tk + 2)ago21 — 2k(4k + 1)(aro11 + ao111) + 2k(3k + 1) (a1002 + 8a0102)
+ (5k + 1)(3k + 1) + ago12 — (3k + 1) aooos,

and this system has the solution

arooz = k[—(2a2100 + 202010 + @1200 + 201110 + A1020)k
+ 2(3k + 1)(a2001 + a1101 + a1011)]/(3k + 1),

ao1o2 = k[—(az100 + 2a1200 + 2a1110 + 200210 + ao120)k
+ 2(3k + 1)(a1101 + ao201 + ao111)]/(3k + 1),

apo12 = k[—(a2010 + 2a1110 + 2a1020 + @o210 + 2a0120)k



+ 2(3k + 1)(0,1011 + ap111 + 00021)]/(3k + 1)2,
aooos = 3k*[—2(a2100 + a2010 + a1200 + 2a1110 + Q1020 + A0210 + A0120)k
+ (3k + 1)(azo01 + 2a1101 + 2a1011 + o201 + 2a0111 + a021)]/(3k + 1)* (6)

ACCOI‘dng to the inequality constraints in Ref. 3, a2100, 42010, @1200, @1110, @1020,
ap210 and ap120 are all negative, while a2001, a4p201, and app21 are all positive. The
conditions that the cubic A-patch is single-sheeted are that aipg2, ao102, @oo12,
and aggo3 must all be positive. This will be the case for & > 0 when aj191 +
@1011 > —a2001, G1101 + Go111 > —@o201, G101l + Qo111 > —Goo21- These three
conditions guarantee that aigo2, o102, and ago12 are positive, while combined they
are equivalent to a1101 +a1011 +@o111 > —(@2001 + @o102 + a0021)/2, which guarantees
that aggos is positive. Even if these conditions is not satisfied, there may be values
of k for which the solution for aggo3 as given by (6) is positive. These conditions
are more easily satisfied the more negative the quantities as190, @2010, @1200, @1110,
1020, o210 and agizg are.

Next, points on the cubic A-patch are parametrized by lines passing through the
singular point and the plane determined by p1, p2, and ps. Lines passing through
a singular point, or double point, intersect the cubic surface in exactly one more
point. These lines have the form

L(t) = t(up1 + vp2 + wps) + (1 — t)po,
where u + v +w = 1. Thus we make the substitutions

ar =tu— (1 —t)k, s =tv—(1-1)k,

az =tw—(1—-t)k, ay=(1-1)(3k+1), (7)
and (6) into the cubic A-patch (2). This produces an equation which is linear in ¢:
(Py + P3)t — P, =0, where

Py = [k(az100 + az010) — (3k + 1)azoo1]u’

2[k(az100 + a1200 + a1110) — (3k + 1)aiio1]uv
[k(a1200 + ao210) — (3k + 1)agao: Jv?
2[k(az010 + a1110 + @1020) — (3k + 1)asor1Juw
[k(a1020 + ao120) — (3k + 1)agoz1]w?
2[k(a1110 + ao210 + ao120) — (3k + 1)ao111]vw

+ + + + +

and

P3 = 0,210011,211 + a2010u2w + 0,120011,1)2 + 20,1110’(11}11) + a1020uw2 + a0210v2w + 0,01201)11)2,

(8)
so that P, and Pj consist of quadratic and cubic terms in {u, v, w}, respectively. The
region in the uv-plane over which the parametrization takes place can be described
by 0 <u<1,0<1—u<w. Then ¢ satisfies

Py Ps

t=—2_  and 1—t=—3_
P, + Ps . P, + Ps

9)



Now considering (7), each of a1, aa, as, and a4 is seen to be a quotient of cubic
polynomials in w, v, and w. Writing w = 1 — v — v, each of the « is seen to be a
function of two independent variables.

Of particular interest is the situation when k = 0, for in that case the cubic
splines which are the intersections of the cubic A-patch with the side faces of the
tetrahedron are immediately parametrizable. Egs. (7) with w =0, v =0, and u =0
will parametrize the faces where ag = 0, as = 0, and a; = 0, respectively. In order
for this to work, ps must be chosen sufficiently far from [p;p2ps]. In this case, we
have

Py = —(az001t® + 2a1101u0 + 2a1011 0w + 2010 + 2a0111vW + agoz1w?).  (10)

A sufficient condition that the A-patch is single-sheeted in this case is for the de-
nominator in (9) to always have the same sign, say negative, and this can be guar-
anteed if the coefficients {a2001, 1101, a1011, @201, @0111, a0021} are all positive while
{02100,G2010,G1200, 1110, @1020, @0210, 00120} are all negative.

3.2.3. Parametrizing the base triangle in the non-convex case

If the triangle [p1 p2ps] is non-convex, or is convex but not all of its neighbors are
convex with the same sign, we are in the non-convex case, and the cubic A-patch in-
tersects [p1p2pPs] in a cubic curve C(ay, ag, ag) = Ei+j+k:3[3!/(i!j!k!)]aijkga’i adak

= 0, where a3000 = @p300 = Q0030 = 0. Let

(d: e, f,g,h,i, j) = (302100, 302010, 30210, 301200, 321020, 3201205 6611110)-

Then each of {d,e, f,g,h,i} is determined, but we still have one degree of freedom
left in the coefficients j. This degree of freedom can sometimes be used to make
C(ay, as, ag) rationally parametrizable.

As triangle [p;p2ps] lies on the plane ay = 0, it can be regarded as a function
of two variables, say = and y, where (a1, as,a3) = (z,y,1 —z — y). An irreducible
plane cubic curve F(z,y) = 0 is singular if it has a double point, that is, a point
(x0,y0) where F(zo,y0) = Fu(®o,y0) = Fy(20,y%0) = 0. By taking resultants of
these polynomials and eliminating zy and yy, we obtain this polynomial whose
vanishing guarantees either the existence of a double point on C(ay, ae, as) or that
C(ay, as,as) is reducible:

H(j) =t j° — oty j° + [t3 + t,(t3 — 12t))]j* + t5(8tst, — 13 + 36t,)5°
+ [8(6t, — t3)t; — 8t3t, — 6(12t, + 5t3)t,]5°
— Aty [At,t] +9(4t, — t3)t, — 24135
+ 8(2t5 — Ot3)ta(ts — 4t1) + 166515 — 64t — 27(t5 — 4t1)?, (11)
where
t1 =defghi, to=dfh+egi, ts=defi+dghi+efgh, ts=di+ef+gh.

If this H(j) = 0 has real solutions, then C(a1,as, ag) is singular and can be ratio-
nally parametrized. If all the solutions of H(j) = 0 are complex, then we use the

10



approximate (within any given approximation error) parametrization method given
in Ref. 16.

If H(j) = 0 is satisfied, then the following is the (3/3) rational parametrization,
which is obtained by intersecting the curve with lines (1 — u)(y — yo) = u(z — x0)
through the double point (zo, yo):

r = {[-2(e—h)zo — tsyo — (e — 2h)](1 — u)?
+ [~ts20 — 2teyo — (2h + 2i — j)|u(l — u)?
+[=3(f = i)yo + (f = 20w (1 — w) + (f —i)xou’}/D
y = A{l[~tewo —2(f —i)yo — (f — 2i)]u’
+ [—2t5m0 — teyo — (2h + 2i — j)]u’(1 — u)
+ [=3(e — R)ao + (e — 20)Ju(l — u)® + (e — Wyo(1 —w?}/D (12)

where
D = (e—h)(1—u)®+tsu(l —u)? +tgu?(1 —u) + (f —i)u?
ts = d—e+2h+i—j
te = —f+g+h+2i—j .

The existence of the condition (11) also provides a method for finding the “best
singular approximation” to a nonsingular cubic curve. Given a set {dp, €9, fo, go, ho,
i0, jo }, one seeks the value of j, say ji, nearest jo for which (11) is satisfied for the
set {do, €0, fo, 90, ho,%0,j1}. All these curves intersect the lines x = 0, y = 0,
and z +y = 1 in the same points, namely (1,0), (0,1), (0,0), (=h/(e — h),0),
(0,—i/(f — 1)), (—g/(d —g),d/(d—g)). As j changes continuously from jo to ji,
the topology of the cubic curve within the triangle can change only at the endpoint
j = j1, a value of j for which the cubic curve is singular. In particular, the same
points of intersection with the sides will be connected by non-crossing arcs for all j
strictly between jo and j;. Examples of the use of H(j) are given in Appendix D.

4. Conclusions

We have demonstrated how to construct rationally parametrizable A-spline
curves and A-patch surfaces on triangles and tetrahedra, respectively. The A-
splines interpolate base points on the triangles and are tangent to the corresponding
sides. We can construct C'-continuous quadratic A-splines that have (2/2) ratio-
nal parametrizations. C'-continuous irreducible cubic A-splines that have (3/3)
rational parametrizations can also be created.

We have also shown how to construct rational parametrizations for C'*-continu-
ous cubic A-patches. These patches interpolate points of a triangulation together
with surface normals at the vertices. In addition to the surface itself, the inter-
sections of the surface with the side faces of the tetrahedron containing the patch
are rationally parametrizable cubic curves. If a triangle in the triangulation of the
surface is non-convex, the intersection of the surface with that triangle (the base
triangle of the tetrahedron) may or may not be rationally parametrizable; if it is, a
parametrization is given, otherwise an existing approximation 7 can be used. These

11



NURBS representations allow one to go back and forth efficiently between implicit
and parametric forms of these curves and surfaces, thereby allowing one to exploit
the advantages of both representations.
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Appendix A:

Proof of condition for rationally parametrizable C' quadratic A-spline

From (5) and (2), we have

B(t
X)) | _ 1 P1 wips P2 %( ) _ | P1 P2 P3 -
T e B S T N B A el IR U I B
w ! B2(t) a3
where w(t) is the denominator of X(¢). From this, we have
= L B0), a»=—B3(t), as=——wB() (A1)
Oél—w(t) 0 , Oég—w(t) 2 5 Oé3—w(t)’w1 1 . .
Substituting these a’s into F»(a) = 0 we obtain Z?:O ¢;B#(t) = 0, where
1 2
co = baoo c1 = bigiwr Co = §b110 + §b002w1 c3 = bor1w ¢4 = byag-
Since B{(t), i =0, ..., 4, are linearly independent, we have ¢; =0, i =0, ..., 4.
It then follows that
bi1o + 2b002wf =0 (AQ)
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and hence (6) holds. Summarizing, a C* continuous quadratic A-spline Fy(a) =
2b11001 g + boo22 = 0 has a (2/2) rational parametrization if and only if (A.2), or
equivalently (6), holds, and then that parametrization is given by

L o

_ _ 2 _ _ 2
] = w(t) O(t)a Qa3 w(t)B2(t)7 Qas w(t) 2b002B1(t)
where
_ 2 b110 2 2
w(t) = By(t) +4/— Bi(t) + B;(t). U
2bgo2

Appendix B:

Proof of condition for rationally parametrizable C' cubic A-spline

In this appendix we prove that if the coefficients of a C' continuous cubic A-
spline satisfy (9), then it has a rational parametrization.
From (8) and (A.1) we have

-

Bj(t)
R { P1 wi[p1 +a(ps —p1)] wa[p2+ B(ps —P2)] P2 Bi(t)
w(t) | 1 wy wo 1 B3(t)
B3 (t)
_ | P P2 Ps3 “
- { 11 1 } -~
ag
From this, we have
1 3 3
o = W[BO (t) +wi (1l —a)By(t)]
1
ay = m[u&(l — B)B3(t) + B3 (1)]
1 3 w 3
o = LrlmaBl) + wasBi0) (B.1)

Substituting these a’s into F3(aq, a2,a3) = 0, we have Z?:o ¢;B(t) = 0. Hence
we get the following conditions: ¢; =0, =0, ..., 9 where

co = bgoo, 1 = 9wi[b300(1 — ) +bao1a], cg = Ywa[bozo(1—B) 4+ bo216], co = boso,
afﬁrming that b300 = b201 = b021 = b030 = 0, and
2 = 3(3du®—av+ay) (B.2)

cz = —93d— f)Hu +27du’s + 18(a — ¢ + d)uv — 18(a — c)uy

13



—18avz + 18azxy + a (B.3)
e = —27(a—2c+2d+e— flu*v+27(a — 2¢ + e)u’y

+ 54(a — ¢ + d)uvr — 54(a — c)uzy — 2Tavz® + 27a v’y

+9(b—2c+d)v? —18(b— c)vy + 9by®> —6(a —c)u +6ax (B.4)
cs = —27(b—2c+d+2e— fluv® + 54(b— c + e)uvy — 27buy?

+27(b — 2¢ + d)v*x — 54(b — ¢)vzy + 27Tbxy?

+9(a — 2c+e)u® — 18(a — c)ux + 9az® — 6(b— c)v + 6by  (B.5)

ce = —93Be— f)v* +27ev’y +18(b— c+ e)uv — 18buy
—18(b—c)vz + 18bxy + b (B.6)
cr = 3(3ev?—bu+bx) (B.7)
where
T=wy, Yy=ws, U=wia, v=wf (B.8)

are unknowns and a, b, ¢,d, e, f are parameters. From (B.2) and (B.7), we have
r=u— (3e/b)v?, y=uv-— (3d/a)u’. (B.9)
The sign constraints
a>0, b>0, d<0, e<0, f<0

must be satisfied #, so it is permissible to divide by a and b here.
Substituting z,y from (B.9) into (B.3) and (B.6) produces

0 = 8lade u*v? + 9(abf — 6bed)u® + 18abd uv + ab (B.10)

and
0 = 81bde u*v* + 9(abf — 6ace)v® + 18abe uv + ab® (B.11)

for the unknowns u, v. Now when the sum of (B.4) and 3aev? times (B.10) is divided
by b, and the substitutions (B.9) are made, we obtain

0 = 27a’ef u®v® + 27bd(bd — ae)u* + 9ab(af — 2cd)u’v + 3a*(bd — ae)v® + 2a*bcu .

(B.12)
Similarly, when the sum of (B.5) and 3bdu?® times (B.11) is divided by a, and the
substitutions (B.9) are made, we obtain

0 = 276%df u*v® + 27ae(ae — bd)v* + 9ab(bf — 2ce)uv? + 3b*(ae — bd)u® + 2ab’cwv .
(B.13)

We will now show that the system (B.10, B.11, B.12, B.13) has a solution (u,v)
when one polynomial constraint is imposed on {a, b, ¢, d, e, f}. This will be accom-
plished by taking resultants of this system by eliminating u and v, and finding that
the end results have a factor in common. See Refs. (17, 18) for good discussions on
resultants. The resultant of two polynomials vanishes at all values of the parame-
ters where the original polynomials have a simultaneous solution. Let Py, P, P53, Py
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denote the right-hand sides of (B.10), (B.11), (B.12), (B.13), respectively, and let
R(P;, P;j;v) denote the resultant of P; and P; obtained by eliminating the variable
v. Then we can say

Ps = R(P1, P2;v)/(9a%b?) Ps = R(Py, P3;v)/(729abe)
P; = R(Py, Py;v)/(81ab®) . (B.14)

Now when the resultant of any two of (Ps, Ps, Pr) obtained by eliminating u is
taken, this factor appears:

Glpipsps] (@, 0,¢,d, e, f) = 48a%e® f2 — 9a%b? f* + 72abee f3 — 72a%bde’ f?
— 96a%c?e? f2 — 288a’cde® f + 432a>d?e* + T2ab’cdf? — T2ab*d*ef* — Sabc® f3
— 552abc’def? + 1152abed®e® f — 864abde® + 48actef? + 576ac’de” f
— 864ac’d®e® + 4803 d® 2 — 96b>Pd2 f2 — 288b%cd’e f + 432b%d e?
+ 48bctdf? + 576b d2ef — 864bc*d®e? — 288c°def + 432¢d%e?.

Consequently, whenever the coefficients (a, b, ¢, d, e, f) satisfy (9), the polynomials
P5, Ps, and Pr have a common root for u, and (B.10 — B.13) have a common solution
(u,v). U

Appendix C:

Control points computation details

In this appendix we explain the computation of the coefficients of A-patches.
The formulas given here are more concrete because all the formulas related to one
triangle are provided.

C.1. Convex case

In the convex case, that is, when two adjacent triangles are both positive convex
or negative convex, we just need to form four face tetrahedra on the same side of
the triangles. This is illustrated in Fig. C.1.

We are given a triangulation of a surface with normal vectors at the vertices,
and wish to construct a smooth single-sheeted surface passing through the vertices
of the triangulation. Typically, an edge in the triangulation is common to two
triangles. Thus for a typical triangle [p;p2ps], we let p}, p5, and p5 denote the
vertices of the triangulation such that [p]p2ps], [P1P5P3], and [p1p2p}] are also part
of the triangulation. Over each of these four triangles we will construct points to
make control or “face” tetrahedra; these will be tetrahedra [p1p2pspa], [P1P2P3P)]s
[P1P5P3PY], and [p1p2pspy’] (see Fig. C.1).

We also need to introduce “edge” tetrahedra as in %8 between the face tetrahe-
dra. Let pY, pj, and p} be the midpoints of the line segments [pap}], [P2py], and
[p4p)'], respectively. Each of these midpoints contributes to the formation of two

edge tetrahedra, and these are illustrated in Fig. C.2.
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D; P,

Fig. C.1: Face tetrahedra for a smooth  Fig. C.2: Edge tetrahedra for a smooth
surface surface

The following notation will be used to represent the coefficients of all of these
tetrahedra:

Face tetrahedron | Weights | Coordinates | Edge tetrahedron | Weights | Coordinates
P1P2P3P4 azijkl a; P P2pP3p4 béjkl ﬂ;
’ ! " !
P1P2P3P. @ijki o P1P2P3P4 béjkl ﬂ3
P1P2P3P1 @it a P1P3P3P4 bkt B
rom 4 4 " " bt 4
P1P2P3P4 Qi a P1P2P3P4 ikt ﬂ5
"

P1P2P3P4 béikl ﬂﬁ

P1P2P3P4’ biiki B

We now seek to determine the coefficients of all the face and edge tetrahedra
described above. The weights alljkl and blljkl, along with their signs for the case of
adjacent convex faces, are depicted in Fig. C.3.

The condition that the cubic A-patch passes through p1, p2, Ps, P}, P3, and p

immediately gives us

aso00 =0, agz00 =0, agpsp =0, m=1,2,3,4. (C.1)
Coefficients around the vertices are given by the normal condition: -5
1 . .
a’(nfl)e]%»ek = a'nej + E(pk - p])TN] , J= 17 27 37 k 75 75 (02)
where the vector
aS(p;) 8S(p;) 9S(p;)]"
N; = VS(p;) = (p;) (p;) (p;)
ox oy 0z
C° conditions are given by the following 8, 6
a(1)A2A3A4 = btluzxgxu a%\10>\3>\4 = b?>)\10>\3>\4, a%\1)\20)\4 = b§1A20A4’

2 — 12 3 I X 4 __ 1,6
a’O}\Q}\3}\4 - bO)\2>\3>\4’ a)\l[))\g)\4 - b)\10>\3>\47 a’>\1)\20>\4 - b}\1>\20)\4’

1 12 3 _ 14 5 _ 1,6
b)\l)\z)\g() - b)\l)\z)\;gO’ b>\1>\2)\30 - b}\1)\2>\30’ b>\1)\2)\30 - b)\l)\z)\g()’ (03)
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positive weight

sign undetermined
zero weight

negative weight

Fig. C.3: Tetrahedra and control points for adjacent convex faces

C' conditions between the polynomials on face tetrahedra and edge tetrahedra (%):

Dirsrars = Bl + ﬁ;atl)(xz+1)>\3>\4 + ﬁ%aéxz(xg+1)x4 + 6ia(1))\2)\3()\4+1)

Dhorane = Bl + ﬁ%atl)(xz+1)>\3>\4 + ﬁ%atluz(xgﬂ)M + 6Za(1))\2)\3()\4+1)

BXiingry = 5?a%>\1+1)0>\3>\4 + B33 1050, ﬁgailo(xgﬂ))% + 62a§\10)\3()\4+1)

Bhiingry = 6%a%)\1+1)0)\3)\4 + 8303, 1050, ﬁgailo(xgﬂ))% + @11@;10)\3()\4“)

Bireing = 5ir’a%>\1+1)>\20>\4 + ﬁga%q()\z+1)0)\4 + 8303, 10, T 6i)ai1)\20()\4+1)

B aeine = 5?a%>\1+1)>\20>\4 + 5gail(>\2+1)0>\4 + 8503, 10, T 62a§\1>\20(>\4+1)
(C.4)

where the BZJ are defined by

p! = Bip1+Bip2 + Bips + Bipa = Bip| + B3p2 + B3ps + Bip)
P, = Bip1+ B5p2 + B5ps + Bipa = Bip1 + Baps + Bips + Bip)

"

P5 = [Bip1+B3p2 + B5ps + Bips = Bip1 + B5p2 + B5ps + B5pY

C' conditions between the polynomials on edge tetrahedra ?, 6:

1 112 171 121 121
bini+1)aors0 = HI0X xoxs1 T H20N (ot 1)as0 T 4303, Ao (ag+1)0 T HabX aorst

3 _ 212 211 211 211
bin+1)aors0 = BI0Nx a1 T 200410050 T 430300, (Ag+1)0 T HabXoA; As1

b?)\1+1)>\2>\30 - uibi:;}\z}\ll + Mgb%\3()\2+1))\10 + lugb%)\;;—‘rl)}\z}\lo + uzb%\3)\2)\11
(C.5)

where these ug are defined by

Pl = P} + php2 + p3Ps + piPs, PY = piP1 + 3Py + p3ps + pipa,

n

Py = pip1 + pip2 + 3Py + pips
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More equations that we will use come from 8

1 _ g1 11 1.1 1.2
agi11 = 0101119 + 03000109 + U5a0150 + 0107110,
2 21 2 9 2 2 2 9
agiin = 0101110 T 0305010 + 03505150 + 0507110,
1 _ 31 31 31 3 3
ajp11 = 0703010 + 0501110 + 0301090 + 0507110,
3 _ 4.3 41 4 3 4 3
ajorn = 0105710 + 0201110 + 0307090 + 0507110,
1 _ 51 5 1 5 1 5 4
a0 = 0703100 T 0501500 + 0301110 + 0107110,
4 _ 6 4 6 4 6 1 6 4
ajior = 0703100 + 0201509 + U5a1110 + 01a7110, (C.6)

where al};, are free and the 6]* are given by

P4 = 9%p1 + 0%1’2 + 9§p3 + Bip’l, P4 = 91P1 + 03 2Pp2 + 93P3 + 94P1>
Pa = 07p1 + 63p2 + 03ps + 0ph, = 01p1 + 63p2 + 03ps + 01ph,
ps = 07p1 + 05p2 + 03p3 + 65p5, pZ’:B p1 + 605p2 + 0Sps + 05ps.

A simple way of arriving at values of a%,, is given by 6

1
m - m m m m m m
Q1119 = Z(amoo + ap10 + 1300 + 1020 + Qo310 + Ag120) - (C.7)

However, there is a more general method for determining these and other coefficients
that are necessary for the parametrization of the surface of the edge tetrahedra.
This involves computing values that are interpolated averages of the normals of the
vertices of the corresponding tetrahedron. For a tetrahedron [p1papspa], define

[2(p: — pi) + (P — Py)I" (Pj — Pi) =1-a(pj,pip1)
Ip; — pill? nEr

a(Pi:Pj:Pl) -

where 4, 7,1 € {1,2,3,4}. Then the interpolation formulas are

afio1 [a3601 + agso1 + @(P1, P2, P1)alse + (P2, P1,P4)asing)/2
ato1y [ago21 + agso1 + @(P3, P1, P4)aspo + a(P1, P3, Pa)aiol/2
agiin = lagsor + aspo1 + (P2, P3, P4)agizg + &(P3, P2, Pa)agsio)/2
aflio [a3010 + ag310 + @(P1, P2, P3)aise + a(P2, P1, P3)asigo]/2
atlio [agi20 + @100 + @(P3, P1,P2)asp1g + @(P1, P3, P2)aT20]/2
aiiio = [af50 + alhap + (P2, P3, P1)agiae + a(Ps, P2, P1)agsi)/2 - (C.8)

This gives us three ways of computing af};, depending on what coefficients are
known. If all six of aj};, are known, where {i,j,k} = {0,1,2} in some order, we
use the average of the three formulas, resulting in

am = X { [at500 (P3 = P1) — @500 (P3 — P2)] - (P2 — P1)
1110 2 ||p2 — p1||2
+ [a5610(P2 — P3) — a{520(P2 — P1)] - (P1 — P3)
||P1 - P3||2
n [a5120(P1 — P2) — agb10(P1 — P3)] - (P3 — P2) } (C.9)
5 )
Ips — P2l
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In Section 3.2.1 it was mentioned that the coefficient b}, is free. We select
a value for this coefficient to make the trimming curve on triangle [pyp2ps], the
boundary of the two edge tetrahedra, rationally parametrizable. This is done by
finding the values for b, that satisfy (9), where (a,b,c, d, e, f) = ({210, ad125 br110s
b3100s D3010> D3000)- This equation always has at least two real solutions when the
inequality constraints for single-sheetedness in * are satisfied. These are a < 0,
b<0,d>0,e >0 (or with all the inequalities symbols reversed). Then the
coefficients of f° and f* in (9) are 432d*e?[(ae — bd)? + c* — 2c*(ae + bd)] and
—9a2b%. As these are of opposite signs, there must be at least one positive and one
negative real value of f satisfying (9). Among these two or four real values, we
choose the possible value of bl,,, to be the one that comes closest to satisfying a
C?-continuity condition from 8. This condition is

s000 = Bi Gso01 + 2818501101 + 2818301011 + 2681 B1ate0z + B3 adz01

. . . . . . 2 . . . . .2 .
+ 285B3a0111 + 2626400102 + B agoa1 + 2838500012 + B3 AppesC-10)
We obtain estimates for blgo, and b3y, using (C.10), and then an estimate for bl
by taking their average (this is the first equation of (C.5) where (ui,ud, ud, pi) =

(1/2,0,0,1/2)). The real root of f = bl,,, out of the two or four real roots of (9)
that is closest to this estimate is the value chosen for bly,.

C.2. Non-convex case

This is the situation when some of the triangles of the triangulation are non-
convex and is illustrated in Fig. C.4.

O positive control point

2000 2001 1002 0003 Q sign undetermined

zero control point

negative control points

0003 3000 0003

Fig. C.4: Tetrahedra and control points for adjacent non-convex faces

Points qu, 4}, q}, and qjf’ are located in positions symmetric to ps, p}, pj, and

P4’ about triangles [p1p2ps], [P1P2P3], [P1P2Ps], and [p] p2p3], respectively. Points

n n

q/, g5 and g4 are the midpoints of [qsq}], [q4q}], and [qsq}’], respectively. We
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use the following notation, which is similar to that of Table C.1, for the tetrahedra
“below” [p1P2ps]:

Face tetrahedron | Weights | Coordinates | Edge tetrahedron | Weights | Coordinates
P1P2P3q4 Cijki v P P2Psqs dijpi o'
! . ! 2 2 " ! d2 62
P1P2P394 Cijkl il P1P2P394 ijkl
’ " 3. 3 " d:_&_ 63
P1P2P3q4 C?kl "/4 P1P2P3q4 ?kl .
P1P2P3d1’ Cijkl v P1P?P3dy diji 55
"

P1P2P3 44 déjkl 4

P1pP2p5 4y’ Ly é°

We then have a set of equations analogous to (C.2 — C.7), with the quantities
(aZ‘Lklﬂbg‘bkl’p47plfl,p;1lvpgl,p,1l:pl2,:pgv z.?’”g’Og) replaced by (Cﬁm,d?}kz,%,qﬁpqga
af',af, a8, a5, 57, iil, 0).

On some occasions, in order to improve the smoothness properties of the A-
patch surface we will partition a non-convex triangle into three smaller triangles

using a Clough-Tocher split ©.

Appendix D:

Examples

Here we provide examples of the rational parametrizations for both adjacent
convex tetrahedra and adjacent non-convex tetrahedra. We also provide rational
parametrizations of the cubic trimming curves in all cases in which it is possible.

D.1. A-patches obtained from surface data

Example 1. This example deals with adjacent convex faces [p1p2p3] and [p] p2ps]-
We obtain the parametrizations of the face tetrahedron [p;p2pspa] and the edge
tetrahedron [p]p2p3py]-

The input data of Example 1

() () ()

(i,7) Vertices p; Normals n; (,7) Top vertices p;
(1,0 1, 0, 0] -2, -3, =3[ (4,00] 0, 0, 0
(2,0) 0, 1, o -2, -1, -2 @1 | -1, 1/3, 2/3
(3,0) 0, 0, 1| -2, -3, —1| (4,2)|3/4, -3/4, 1/4
(1,1) | —8/3, 9, 13/3|-12, —6, —5| (4,3)]2/3, 0, —5/6
2,1) | 9/4, -1, 3/4| -1, -5, -4

(3,1) | 67/42, 5/14, —10/21| —3, —1, -8

Here pi' = (p, +p4)/2 = (-1/2,1/6,1/3), p5 = (P4 +P)/2 = (3/8,-3/8,1/8),
and p5 = (ps +pi')/2 = (1/3,0,-5/12),
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By (C.2) we immediately get

1 1 1 1 1 2 1 1 1 1
2100 = —3» 2010 = T3 2001 T 3> @100 = T35 Qo210 = T3>
1 1 2 1 13
5301 = 3 1oz = 3 g1z = BER Aoz, = 3 3100 = o
10 25 13 1 4
03010 ~— Ty 03001 ~ 9 G%QOO R a%mo Y 0(2)201 9
4 2 4 7 1
afoz0 = T3 g1z = 3 aoa1 = 9’ 3100 = 12 3910 = -3
1 5 1 5 1
a0 = Ty aga10 = Ve afoz0 = 3 3120 = 1 a3100 = 3
5 1 67 5 1
a010 = —7gs Gi200 = —%5 o210 = —755  Glozo = —g» 120 = g
8 3 126 9 9
7 7
b%zoo = 1_8’ b%020 = 1_8
(D.1)
Then by (C.9) we have
1 T, 46 4 3173, 440767

ar110 = 12 1110 = ~ 35 ar110 = 3675 1110 = T 1474725
Next, we find that (61,603,603 61) = (—1,3/4,13/8,-3/8), (6%,03,62,60%) = (-2,
13/12) 55/247 _3/8)) (9?>9§)9§702) = (9/4) _1;3/47 _1)7 (941&942170%702) = (39/167
_3/27 13/16) _3/4)) (0?) 93) 9:;,), 02) = (67/20) 3/47 _]-7 _21/10)7 and (9?) 93) aga 02) =
(183/40,7/8, —2,—49/20). Therefore from (C.6) we have
a[1)111 = —3/50, 0(2)111 = —29/900,
a%on = 2189/4900, ahm = —655973/4213500

We now use the idea of putting a singular point on the cubic surface and set
k =01in (6). This gives

m — m - m — m —_ i
atoo2 = Qo102 = Qoo12 = ooz = 0, m=1,2,3,4.

We now find that (8},45,063,81) = (~1/2,1/6,1/3,1) and (6,43,063,53) =
(—3/32,5/48,23/96,3/4). Here we again use the idea of putting a singular point
on the cubic surface and set k =0 in (6). Now by (C.4) we have

br110 = —83/1800, blior = 2866799/25281000,
bloy, = —10783/88200, blooe = 0, (D.2)
b3110 = —83/1800, b2, = —3/32a2,0, + 1111/28800, :

b%on = _3/32“%011 + 33/320, b%002 =0.

Also, we have (uf, 3, p, py) = (1/2,0,0,1/2), (uf, p3, p3, p3) = (0,1/2,0,1/2),
and (p3, 13,13, 13) = (0,0,1/2,1/2). With these values, and the choice biy,, =
b%001, (C.5) becomes

Bhooo = bhoors b0 = —3/64a2,, + 61472779/808992000,
bioio = —3/64a,,, — 13499/1411200, bii10 = —83/1800. (D.3)
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With these values the parametrization (7) for tetrahedron [p1p2pspa4] is

ar = u(10997235u* — 43168002uv + 8120819002
+ 23413015u — 81208190v + 34410250)/D

as = v(10997235u? — 43168002uv + 81208190v°
+ 23413015u — 81208190v + 34410250)/D
as = (1 —u—v)(10997235u* — 43168002uv + 81208190v?
+ 23413015u — 81208190v + 34410250)/D
ay = 17205125(u’v + 3uv? + 20° — 2u® — 5uv — 60° + 2u + 4v) /D,
where
D = 17205125u%v + 51615375uv? + 344102500° — 23413015u>

— 129193627uv — 2202256007 + 57823265u — 123876900 + 34410250 .

The cubic curves which are the intersections of the cubic A-patch with the faces
of the tetrahedron have simple rational parametrizations. For the face [p1p2p4],
where o =0 and w =1 —u —v =0, we have

w(2762723u? — 2060473u + 702250) /(1205799 — 854674u + 351125) ,

1
o] =
al = (1 — u)(2762723u> — 2060473u + 702250)/(1205799u> — 854674y + 351125) .

For face [p3p1pa], where a = 0 and v = 0, we have

o = u(783u? + 1667u + 2450)/(—1667u? + 4117u + 2450) ,
ay = (1—u)(783u® + 1667u + 2450)/(—1667u* + 4117u + 2450) .

For face [papspa], where al = 0 and u = 0, we have

ay = v(59v% — 590 + 25)/(250% — 160 — v + 25) ,
ay = (1—v)(59% — 590 + 25)/(250% — 16v% — Qv + 25) .

In order to complete the parametrization for the edge tetrahedron [p{p2pspa]
we need specific values for a?,,,, a?y,;, and blyy,. The first two might be computed
in the same way al,,; and a},,; were, but this requires knowledge of the location
of and the surface normals at additional points of the triangulation. Specifically,
the triangles involved are those that border triangle [p}p2ps] on edges [p|p2] and
[P|ps]. Alternatively, if triangle [p|p2ps] is at the boundary of the triangulation,
we can use (C.8), which we do in this example. Here we have a(p}, p2,p}) = 16/11,

a(ps, pi, Py) = =7/10, and
ajio1 =8/9 ajp, =13/15 .
This in turn makes the middle equations of (D.3) become

by 100 = 27764779/808992000 by, = —70829/1411200 .
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The remaining weight b3, is chosen to satisfy (9) in order to make the trimming
curve on the face [p} p2ps] rationally parametrizable. The implicit form of the curve
on this face is

2 _ 8
2 300
2 70829
U720 470400

2 2 7
B8 - 28301 + 1!

27764779
269664000

7 2

Bk + Lot

2 3
B3 + bigpeBi” =0 .

Applying the transform (11), with (a1, a2, a3) = (63, 33, 81), we obtain

2, L o,2 611, 793362101 ,, , 102271
— —9 - _ _
Ba Py — 25213 275[31[32[33 2039334000 ! P2 1185800
N 64 phoo 20651204507 \ .3 0
1331 2990 1413958462000/ "1

12 1
1ﬁ3

Substituting the values of the coefficients into (9), we obtain a fourth degree poly-
nomial in b}y, whose roots are

—19.7172, —1.36483, —0.109180, 0.00625911 .

The estimates for by, and b3y, according to (C.10) are blgy, =
309687311/3716307000 and b3y, = — 109/34560. The estimate for bl,y, is the
average of these, which is 1059435803/26427072000 = 0.040089. The root closest
to this estimate is bly,, = 0.00625911. Now we substitute this into (B.14) to obtain
the common root u = 0.796314 of Ps, Ps, and P;. Then we substitute into (B.10,
B.11, B.12, B.13) to obtain the common root v = 1.53494. Next, by (B.9) we get

x = 0.491515 , y = 0.794866 ,
and by (B.8) we have
wy = 0491515 ,  w, = 0.794866 , a =1.62012, B =1.93106 .

These values give the parametrization for the cubic trimming curve in triangle
[P P2P3]

By = [B(t) — 03048053 ()]/D |
By = [-0.74007Bi(t) + B3 (t)]/D ,
B, = [0.79631B3(t) + 1.53493B3(t)]/D ,
where
D = Bj(t)+0.49152B;(t) + 0.79487B3(t) + B3 (t) .

Returning to the original coordinates by using the transformation (11), we have

2 = [B3(t) — 0.13588B3(t) + 0.32559B5(t)]/D ,
B3 = [1.01349B}(t) — 0.26665B5(t) + B3 (t)]/D ,
I = [0.86871B(t) + 1.67448B3(t)]/D ,
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where
D = B3(t)+0.49152B(t) + 0.79487B3(t) + Bi(t) .

With the above values, including blyoq = b3109 = 0.00625911, the parametriza-
tion (7) for tetrahedron [p}p2psp4] is

B = u(0.584105u> + 1.25797uv + 0.786667v>
—0.911179u — 0.786667v + 0.333333) /D ,

By = v(0.584105u> + 1.25797uv + 0.786667v°
—0.911179u — 0.786667v + 0.333333) /D ,

By = (1 —u—v)(0.584105u + 1.25797uv + 0.786667v>
—0.911179u — 0.786667v + 0.333333) /D ,

By = (—0.439080u® — 0.287844uv — 0.130000uv? + 0.3333330°

+ 0.827968u? — 0.463333uv — 1.00000v2 — 0.388889u + 0.666667v)/D,
where

D = —0.439080u> — 0.287844u>v + 0.130000uv? + 0.3333330°
+1.41207u> + 0.794641uv — 0.21333302 — 1.30007% — 0.1200000 + 0.333333 .

The cubic curves that are the intersections of the cubic A-patch with three of the
faces of [p]p2p3pa] have rational parametrizations. For the face [p}p2pa], where
Bi=0andw=1-u—wv=0, we have

B = u(0.112798u* — 0.439872u + 0.333333)
/(—0.354569u® + 0.856255u” — 0.828761u + 0.333333) ,
By = (1—u)(0.112798u* — 0.439872u + 0.333333)

/(—0.354569u” + 0.856255u* — 0.828761u + 0.333333) .

However, this curve lies outside triangle [p)pspsp4] for all u in (0, 1), so the surface
patch does not intersect this triangle except at the vertices (0,1,0) and (1,0,0).
For face [p3p}p4], where 3 = 0 and v = 0, we have

Bl = u(0.584105u? — 0.911179u + 0.333333)
/(—0.439080u> + 1.41207u? — 1.30007u + 0.333333) ,
By = (1—u)(0.584105u% — 0.911179u + 0.333333)

/(—0.439080u> + 1.41207u? — 1.30007u + 0.333333) ,
0.585831 < u < 0.885691 .

The lower limit for the range of u is where 3} = 33 = 0, and the upper limit is where
B1+ B = 1. For face [pap3pa], where 3} = 0 and u = 0, we have a parametrization
that is equivalent for that of tetrahedron [pip2pspal:

By = v(0.786667v> — 0.786667v + 0.333333)
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/(0.333333v* — 0.213333v* — 0.120000v + 0.333333) ,

By = (1—v)(0.786667v* — 0.786667v + 0.333333)
/(0.333333v% — 0.21333302 — 0.120000v + 0.333333) ,
0<v<1.

Parametrizations for the other edge tetrahedra surrounding [p;1p2pspa] can be
found in a similar manner.

Example 2. In this example, the input data consists of one convex triangle
[P1P2P3] and one non-convex triangle [papsp}]. The non-convex triangle is fur-
ther subdivided into three sub-triangles [cpsp!], [P2cp}] and [p2psc|, where c is
the centroid (p2 + ps + p})/3. The edge [p2ps] between the two triangles is con-
vex. The output data are the parameters of the NURBS representation for the
face and edge A-patches, as well as the NURBS representation of the boundary
curve. Here we only need to give the NURBS representation for the curve on the
face between the two edge tetrahedra, since the other trimming curves are easily
obtained by restricting the domain parameters of their corresponding tetrahedra to
their boundaries.

The input data of Example 2

@ @

i,] Vertices p; Normals n;
(1,0) 0.000000, 3.000000, —0.375000 0.000000, 1.000000, 1.500000
(2,0) | —1.500000, 0.000000, 0.375000 | —1.000000, 0.000000, 1.000000
(3,0) 1.500000, 0.000000, 0.375000 1.000000, 0.000000, 1.000000
(1,1) 0.000000, —3.000000, —0.375000 0.000000, 1.000000, 1.500000
i,] Top vertices pij ) Bottom vertices qij )
(4,0) 0.000000, 5.099788,  16.524153 0.000000, —2.662288, —14.524153
(4,1) 0.000000, —5.099788, 16.524153 0.000000, 3.147359, —16.464437

(0

The notations p; ) and pgl) refer to p; and p}.

The output NURBS parameters of Example 2

Elements |Labels Parameters

[P2psp1p4]| P2 4.883, 6.665, 9.149, 6.665, 4.883, 3.910,
[P2p3P1] Ps |—0.750, —0.625, —0.625, —0.750, —1.000, —1.000, —1.202
[cpsP1P4] P 4.883, 6.346, 7.749, 6.813, 5.617, 5.019,
[cpspi] P |—0.750, 1.375, 0.916, 0.436, —0.490, —0.583, 0.196

cpspiqy] | P |—6.113, —6.024, —5.995, —6.014, —6.171, —6.250,

pacpipy] | Po 5.617, 6.813, 7.749, 6.346, 4.883, 5.019,

[p2cpi] Ps | 0436, 0916, 1.375, —0.750, —0.583, —0.490, 0.196
pacpiqy] | P |—6.171, —6.014, —5.995, —6.024, —6.113, —6.250,

papacpy] | P 4.883, 5.019, 5.617, 5.019, 4.883, 3.829,

P2Psc] Ps |—0.583, —0.490, —0.490, —0.583, —1.000, —1.000, —1.083
popscqy] | P» |—6.113, —6.250, —6.171, —6.250, —6.113, —6.613,

pip2p3pa]| P2 4.883, 3.910, 4.883, —3.251, 1.610, —3.251,

pap3p’] P; |—1.000, —1.000, 4.883, —3.033, 1.610, —3.033, 4.883, 3.870
pip2pspil| P 4.883, 3.829, 4.883, —2.815, 1.610, —2.815,

p2pspi’] | Cor | 0.927, 0.927, 0.822, 0.822 |
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Here p{’ = (0.000,0.000,1.875), p{ = (ps + p4)/2, and Co1 = (w1, ws,a, ),
which define a rational Bézier curve by (5) for a specified triangle. The point p!’
is the point of intersection of the tangent lines to this curve at ps and ps, and
the triangle [popsp?’] is the sub-triangle of [p2psp]] as illustrated in Fig. 1(c).
(The points pi1,p2, ps in Fig. 1(c) correspond to the points ps, ps,p}’ here.) P,
and Ps are given by (10) and (8), respectively. The coefficients of P, are ar-
ranged in the order of ag201,@0111,@0021, 1011, @2001,@1101- LThe order of Pjs for
face tetrahedra is ap210, @0120, @1020, 42010, @21005 #1200, A1110, and for edge tetrahe-
dra is ag210,@0120, @1020, @2010, #3000, @2100, 1200, @1110- Fig. D.1 shows the input
triangles, normals, and the piecewise smooth surface patches as well as isophotes
on the surface. The continuous isophotes demonstrate that the composite surface

is smooth.

Fig. D.1: A convex face patch and a Fig. D.2: Two non-convex face patches
non-convex face patch joined with con- joined with non-convex edge patches
vex edge patches

We can parametrize the non-convex base triangles [cpsp!] and [p2cp]] through
the use of (11) and (12). For triangle [cpsp]], we have (d,e, f, g, h,i,j) = (—1.470,
1.308, —2.250, —1.749,2.748,4.125,1.176). Using these values for (d, e, f, g, h,i), we
find that the value of j nearest 1.176 that satisfies (11) is j; = 0.880. The double
point of the singular cubic is then (zo,yo) = (—0.513,1.063), and the parametriza-
tion (12) is

r = [-0.673(1 —u)® +6.649u(1 — u)? + 9.826u*(1 — u) + 3.269u*]/D
y = [1.530(1 —u)® + 6.403u(1 — u)? + 7.695u(1 — u) + 2.394u3]/D

where
D = 1.440(1 — u)® + 5.963u(1 — u)* + 10.619u*(1 — u) + 6.375u> .

The portion of this curve within triangles [cpsp]] is that for —4.287 < u < —2.362.
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For triangle [pacp!], we have (d,e, f,g, h,i, j) = (—1.749,—2.250, 1.308, —1.470,
4.125,2.748,1.176). Using these values for (d,e, f, g, h,i), we find that the value of
J nearest 1.176 that satisfies (11) is again j; = 0.880. This time the double point
of the singular cubic is (zo,y0) = (1.063, —0.513), and the parametrization (12) is

r = [2.394(1 —u)® + 7.695u(1 — u)? + 6.403u*(1 — u) + 1.530u>]/D
y = [-3.268(1—u)® —9.826u(l — u)? — 6.649u*(1 — u) — 0.673u*]/D
where

D =6.375(1 — u)® + 10.619u(1 — u)? + 5.963u*(1 — u) + 1.440u> .

The portion of this curve within triangles [cpsp]] is that for —4.287 < u < —2.362.
Plots of these two singular curves, along with the actual curves they approximate,
are shown in Figures D.3(a) and (b). In both cases the actual and approximating
singular cubic curves are virtually indistinguishable within the base triangles.

.

(a) (b)

Fig. D.3: Trimming curve (blue) and approximating singular curve (red) for (a)
triangle [cpsp}] and (b) triangle [pocpi]. The z- and y-axes and the line z +y =1
are shown in gray, where £ = a; and y = a» in the respective coordinate systems
of the triangles.

Example 3. In this example, the input data consists of two non-convex triangles
[P1P2ps] and [p2pspi]. Each of the triangles is further subdivided into three sub-
triangles at its center. The edge [p2ps] between the two triangles is non-convex.
The meaning of the output data is the same as that of Example 2. However, since
the edge [p2ps] is non-convex, the boundary curve corresponding to this edge is
broken into two (see Fig. 1(b)).
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The input data of Example 3

(i, 7) Vertices pgj ) Normals ngj )
(1,0) 0.000000, 3.000000, —0.375000 | 0.000000, —1.000000, 1.500000
(2,0) | —1.500000, 0.000000, 0.375000 | 1.000000, 0.000000, 1.000000
(3,0) 1.500000, 0.000000, 0.375000 | 1.000000, 0.000000, 1.000000
(1,1) 0.000000, —3.000000, —0.375000 | 0.000000, 1.000000, 1.500000
(4, 7) Top vertices pgj) Bottom vertices qgj)
(4,0) 0.000000, 5.099788, 16.524153 | 0.000000, —2.662288, —14.524153
(4,1) 0.000000, —5.099788, 16.524153 | 0.000000, 3.147359, —16.464437
The output NURBS parameters of Example 3
Elements |Labels Parameters
[copspipa] | P» | 4.883, 6.346, 7.749, 7.083, 6.253, 5537,
[copsp1] Py |—0.750, 1.375, 0.916, 0.706, —0.156, —0.583, 0.196
cop3pP194] P, |—6.113, —6.024, —5.995, —5.745, —5.658, —5.916,
pacopipa] | P | 6.253, 7.083, 7.749, 7.155, 5883, 6.140,
[P2cop1] Ps 0.706, 0.916, 1.375, 0.250, 0.416, 0.446, 1.005
pacopraa] | P> |—5.658, —5.745, —5.995, —5.215, —5.113, —5.313,
p2pscop4] | P 4.883, 5.537, 6.253, 6.140, 5.883, 5.383,
[P2p3co) Py |—0.583, —0.156, 0.446, 0.416, 1.000, —1.000, —0.083
[P2P3c0q4] P, |—6.113, —5.916, —5.658, —5.313, —5.113, —5.613,
[cipspiPi] | P- 4.883, 6.346, 7.749, 7.083, 6.253, 5.537,
[c1pspl] Py |—0.750, 1.375, 0.916, 0.706, —0.156, —0.583, 0.196
’ !
cipspidi] | P |—6.113, —6.024, —5.995, —5.745, —5.658, —5.916,
pocipipi] | P» | 6.253, 7.083, 7.749, 7.155, 5.883, 6.140,
[p2c1pt] Py | 0706, 0916, 1.375, 0.250, 0.416, 0.446, 1.005
p2c1p1qy] P>, |—5.658, —5.745, —5.995, —5.215, —5.113, —5.313,
p2p3cipy] | P 4.883, 5.537, 6.253, 6.140, 5.883, 5.383,
[P2p3ci] Ps |—0.583, —0.156, 0.446, 0.416, 1.000, —1.000, —0.083
[pP2p3c1qy] P, |—6.113, —5.916, —5.658, —5.313, —5.113, —5.613,
[PiP2p3p4]| P- 5.883, 5.383, 4.883, —1.535, 0.423, —1.986,
[p2pspy] | Ps | 1.000, —1.000, 4.883, —1.535, 0.423, —1.986, 5.883, 5.383
[p/popspi]| P» | 5.883, 5.383, 4.883, —1.535, 0.423, —1.986,
[/ p2psas]| P> |—5.113, —5.613, —6.113, —0.423, —0.015, —0.091,
[P2psd’] Py | 1.000, —1.000, —6.113, —0.423, —0.015, —0.091, —5.113, —5.613
[a/p2psdi]| P> |—5.113, —5.613, —6.113, —0.423, —0.015, —0.091,
[cop3p?’] Co1 0.972, 0.986, 0.534, 1.039
[p2c2q}’] | Cor | 1.010, 0.995, 1.030, 0.517

Here p!” = (1.000,0.000,1.875), ¢ = (—1.000,0.000, —0.125), co = (p1 + p2 +
P3)/3, c1 = (p2 + P3s +P1)/3, c2 = (P2 + P3)/2, P! = (P4 + P4)/2, and qf =
(a4 + d})/2. The point qf’ is analogous to p{’, with the former being a vertex
of the subtriangle of [papsqf] formed by tangent lines at p, and ps. Note that
the curves on [capsp!’] and [pacaq!’] are on the faces [p2pspi] and [p2p3qf],
respectively. Fig. D.2 shows the input triangles, normals, and the piecewise smooth

surface.
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D.2. NURBS representation from rational parametric trimming curves

Example 4: Here we obtain the rational parametrization of a cubic A-patch
given its implicit representation and two of its trimming curves in rational paramet-
ric form. We use the surface and trimming curves on the faces of triangles [psp1p4]
and [pap3p4] from Example 1. These are

flay,az,a3) = —2a8 — 1450777/7022500% a5 — 13917/245003 a3
— 748527/702250002 — 168139023 /344102500 apcr3 — 11467/2450a102 — o
—41/25a3a3 — 66/25a20% — a3 + 202 — 655973/702250a1 vs
+ 6567/2450c1a3 + a3 — 9/25a0a3 + a3 =0

and
o [w(783u? +166Tu+2450) | (1—u)(783u? + 1667u + 2450) T
LT | Z1667u? + 4117w + 2450 —1667u® + 4117u + 2450
. v(5902 — 590 +25) (1 —0)(5%2 — 59v + 25)]"
> 2503 — 1602 —9v + 25 250° — 1602 — 9v + 25

The parametrization formula (5) gives

= u(783u® + 1667u + 2450) (590> — 59v + 25)

[783(—164980287v* + 477749781v® — 492419089v°

+ 2140598450 — 34410250)u®

+ (—6173958674690v* + 1535042794507 — 1641986158653v°

+ 754757892615v — 141666999250)u>

+ 490(685902361v"* — 398728537v° — 490404974v> + 258217325v)u

+ 3372204500(118v* — 186v° + 43v?)]/D
ar = v(783u® + 1667u + 2450)(59v* — 59v + 25)

[10997235(2108v° — 6324v” + 5441v — 2450)u*

+ 2(—188770087307v" + 289020881567v*

— 1724701572100 + 26943225750)u>

+ (—424647388056v° + 944813401296v>

— 6607301829650 + 141666999250)u>

+ 1376410(93119v° + 73581v* — 91925v)u + 3372204500(93v° — 43v?)]/D
a3 = 49(783u® + 1667u + 2450)(59v* — 59v + 25)

[783(2762723v* — 7333109v° + 6677136v> — 2106750v)u*

+ 2(8834249769v* — 215974148340° 4 222388172400°

— 100609775500 4 1720512500)u?

+ (—10792666047v* + 73665099650 + 4160323732v% — 3554403650v)u?

+ 50(—=775501620v* + 187243001v° — 64285354v%)u

+ 1720512500(v* — 20°)]/D
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where

D = 8610835005(52700v° — 191828v° + 218237v* — 386900°
— 167869v% + 158075v — 61250)u’
+ 783(80216676924610° — 472140153472500° 4+ 92929843987272v*
— 98075068184563v° + 5772234905670502
— 17712768936500v 4 1347161287500)u”
+ (67180805425438440v° — 366501266897503700°
+ 100358520286450013v* — 144753135630488742¢°
+ 1143352977814705050° — 46449093712737125v + 6499417482818750)u’
+ (—240008475736572277v5 4+ 7491340081405279500°
— 1049038201045620894v* + 791095191775983271v°
— 326743055580646175v% 4 66528582744601250v — 7026831126875000)u>
+ 490(—125046071634397v5 4+ 7171773714461190° — 1314985300463672v*
+ 11264457564093250° — 4520269336967500% 4 629860246750000)u*
+ 6002500(27681537447v% — 56487253058v° + 378580190801
— 5480976369v° — 2521112225v%)u
+ 8261901025000(92870°% — 20499v° + 163120v* — 44750%).

In order to parametrize the cubic A-patch within tetrahedron [pip2pspa], we
need ranges of v and v where a1, as, as, and a4 are between 0 and 1, or equivalently,
where Day, Das, Dag, and Day all have the same sign. Seven of these regions in
the uv-plane where this is the case are shown in Fig. D.4. The z and y-axes are
parts of the graphs of as; = 0 and a; = 0, respectively.
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Fig. D.4: Parameter space for Example 4. Regions where a;,as,as,ay € [0,1] are
indicated by arrows. The curves are: blue — a3 = 0; green — as = 0; magenta —
as =0;red —ay =0; gray —x =1and y = 1.
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