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Abstract

In this paper we describe a method for skeletonization of
gray-scale images without segmentation. Our method is
based on anisotropic vector diffusion. The skeleton strength
map, calculated from the diffused vector field, provides
us a measure of how possible each pixel could be on the
skeletons. The final skeletons are traced from the skeleton
strength map, which mimics the behavior of edge detection
from the edge strength map of the original image. A couple
of real or synthesized images will be shown to demonstrate
the performance of our algorithm.

1. Introduction

The skeleton is widely recognized as one of the most im-
portant shape descriptors in image processing and pattern
recognition. Since the first study by Blum [1], the skele-
tonization of shapes has attracted attentions from many re-
searchers in various fields. Commonly used computational
methods for skeleton extraction include topological thin-
ning [2], approaches based on distance maps [3, 4, 5], hi-
erarchical methods based on Voronoi diagrams [6], voxel-
coding based methods [7], and some approaches based on
physical simulations [8] or curve evolution [9]. However,
all of these techniques compute the skeletons from the ob-
ject’s boundaries. In other words, it is a prerequisite that
we should first segment the original images into meaning-
ful regions with well-defined boundaries before the above-
mentioned approaches could be applied. Unfortunately, ef-
ficient and effective segmentation of an arbitrary real-world
image still remains an open problem especially with the ex-
istence of much noise. In addition, as also mentioned in
[16], region segmentation (or edge detection, if applicable)
often involves a loss of information, which, as a result, leads
to an inaccurate skeletonization of the original images.

The goal of our work in this paper is to compute the
skeletons directly from a gray-scale image, without the seg-
mentation (or edge detection) as an intermediate step. The
previous efforts on this topic by other authors can be cat-
egorized into three approaches. The first one is based on
isotropic diffusion, governed by a set of linear PDE’s. In
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[10], Tari et al. proposed a method, which extracts the
skeletons from a set of level-set curves of the edge strength
function of the original image. The edge strength function
is calculated by means of a linear diffusion equation. A
later paper, by Chung and Sapiro [11], deals with situations
where the features (objects) are always brighter or darker
than the background. The original image is treated as a 2D
function defined over the image domain, and is diffused ac-
cording to a family of linear erosion/dilation equations. A
post-processing step is employed to extract the crest lines of
the deformed image, which are taken as the final skeletons.

The second approach is based on scale-space theory
[12]. In [13, 14], the authors proposed a method, which
extracts the “cores” from the ridges of a medialness func-
tion in scale-space. Lindeberg [15] treated the skeletoniza-
tion (ridge detection) in a similar way to edge detection
in scale-space, with automatic scale selection. It has been
pointed out that the Gaussian kernels used in scale-space
are closely related to the linear diffusion equations when
they are applied to the images. Both the isotropic diffu-
sion and the scale-space techniques have the following ma-
jor drawbacks. First, linear systems often cause feature-
blurring and even a loss of information. Second, linear
systems may extract the biased skeletons when curvilinear
structures are considered and when the contrasts on both
sides of the structures are different. The second problem
was addressed in details in [17], where special efforts were
made to remove the bias of the extracted skeletons.

The third approach dealing with the skeletonization
of gray-scale images without segmentation was proposed
more recently by Jang and Hong [16]. In their method, a
pseudo-distance map is calculated from the original image
using a nonlinear governing equation. Although a nonlinear
equation was utilized, the results of their method look quite
similar to those of linear systems, e.g., Gaussian smooth-
ing, as pointed out by the authors themselves [16]. In addi-
tion, it is not clear in [16] whether this method can handle
the problem of biased skeletons, as the authors made use
of Steger’s algorithm [17] to extract the skeletons from a
pseudo-distance map. Regardless of these drawbacks, this
approach is most related to our algorithm described below.
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Hence we shall give additional words in Section 4 to com-
pare this method with ours.

In this paper we propose to compute the skeletons based
on gradient vector diffusion [20]. We consider a set of
anisotropic diffusion equations applied to initial vector
fields that are obtained by various ways. A skeleton strength
map, analogous to the edge strength function [10], is calcu-
lated from the diffused vector field, and the final skeletons
are extracted by tracing the ridges of the skeleton strength
map. The skeleton strength map gives a measure of how
possible each pixel could be on the skeletons. As demon-
strated later, the skeleton strength map gives much higher
contrast than most methods described above. In addition,
the problem of biased skeletons is easily avoided in our ap-
proach, due to the anisotropic property of the diffusions.

The rest of this paper is organized as follows. Sections
2 gives a detailed description of our anisotropic vector dif-
fusion. In Section 3, we present the algorithm for skeleton
extraction. Section 4 shows some examples of our skele-
tonization approach. Several interesting issues will also be
addressed there. We conclude this paper in Section 5.

2. Gradient Vector Diffusion

In this paper, we restrict ourselves to gradient vector field of
the original image, although other types of vector fields still
apply in some specific situations. Gradient vector diffusion
is commonly used for two purposes. First, it can smooth the
noise seen in the given vector field. This property is similar
to the various techniques of image smoothing [18, 19]. Sec-
ond, vector diffusion can make the non-zero vectors propa-
gate toward the areas of zero-vectors. This property is ex-
tremely useful for many real-world images, which contain
“flat” regions and hence zero gradients.

In [20], the authors described a diffusion technique to
smooth gradient vector fields. The gradient vectors are rep-
resented by Cartesian coordinates and similar partial differ-
ential equations (PDEs) are separately applied to each com-
ponent of the vectors:

i_’: = ’uvzu - (U_ fz)(fav2 +f?§)
(H
% — ’quv — (U - fy)(fg +f5)

where (u, v, ) is initialized with V f(z,y), and f(z,y) is an
edge strength map of the original image; e.g., f(z,y) =
IVG,(z,y) * I(z,y)||?, where G, (z,y) stands for a Gaus-
sian kernel. These diffusion equations are originally used
for image segmentation [20]. In case of skeletonization, the
initialization of gradient vector fields may vary with differ-
ent situations, as described in next section.

The above equations obviously are linear or isotropic.
It therefore inherits the drawbacks of most linear systems
(e.g., blurred maps and biased skeletons). Another way

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’'04)
1063-6919/04 $20.00 © 2004 1EEE

to diffuse a gradient vector field is based on the polar-
coordinate representation of the vectors [22, 23]. The draw-
back of this method is its computational burden due to the
efforts that have to be made to deal with the periodicity of
orientation. We propose here another type of partial dif-
ferential equations for gradient vector diffusion and attempt
to address the afore-mentioned problems. The new PDEs
are similar to Eq.(1) except that they are now based on
anisotropic diffusion:

% = n-div(g(@) - Vu) = (u— fo)(f7 + f)
@)
% = u-div(g(a) - Vo) = (v = f,)(f7 + £})

where ¢(-) is a decreasing function and « is the angle be-
tween the central vector and the surrounding vectors. For
faster implementation, the calculation of the angle between
two vectors is usually approximated by the inner-product of
two vectors divided by their magnitudes. For instance, we
can define g(«) as follows:

e (T Y if €40 and 3#£0
95,5 = ®

0 if ¢=0or §=0

where & is a positive constant; ¢ and § stand for the cen-
tral vector and one of the surrounding vectors, respec-
tively. In our implementation of 2D images, we consider
4-neighborhood for each pixel.

A study of Eq.(2) would suggest the following: First,
its implementation is similar to that of Eq.(1). Hence,
the computational time is comparable to the conventional
scheme [20]. Secondly, the weighting function g(-) is de-
signed such that the problem of skeleton bias can be easily
avoided. This is because the weighting function g(-) is de-
creasing as the angle between two vectors (the center and
the neighbor) increases from 0 to 7. If g(-) goes to zero as
the angle approaches m, then the vectors from both sides of
curvilinear structures would stop on the central lines of the
structures regardless of how different the contrasts would
be on both sides of the structures. We shall demonstrate
such an example in Section 4. Thirdly, Eq.(2) is very simi-
lar to the anisotropic diffusion equation of image smooth-
ing, proposed by Perona and Malik [18]. Therefore, we
would expect to see something that shows the uniqueness of
the anisotropic property of our system, similar to the edge-
preserving property as we saw in Perona-Malik model. In
fact, the skeleton strength map, as shown later, does demon-
strate this unique property.

Finally, it is worthwhile noting that the second terms on
the right sides of both Eq.(1) and Eq.(2) are not considered
in the rest of this paper, as they were originally used for
better segmentation [20], not for skeletonization.
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(a) Original image

(b) A portion of (a)

(c) Isotropic diffusion

(d) Anisotropic diffusion

Figure 1: The demonstration of isotropic and anisotropic vector diffusion schemes on a synthesized molecular image (shown
in (a)). For better illustration of vectors, (c-d) are restricted to a portion of the original image, as shown in (b), and all vectors

in (c-d) are normalized to the same magnitude.

3. Skeletonization

We describe our skeletonization algorithm step-by-step in
the following.

Generation of initial vector field. We first consider images
where the objects are brighter than the background. The ini-
tial gradient vector field is generated in the following way:

= -
- rl— 7

vf(7) = (I(7)—I(r —_—
o) = (1) = 1)) x o

where I(7) is the intensity value at 7. 7 is one of the (eight)
immediate neighbors of 7, with the lowest intensity among
the neighbors. Note that this definition of gradient vector is
different from other conventional definitions (e.g., the one
defined by central difference). We shall see later how Eq.(4)
performs better than the conventional definitions.

In case that the objects have lower intensities than the
background, the gradient vectors are defined by:

“)

—

gf(H =)~ 1A x =—— O
[ — 7|
where 1 is one of the (eight) immediate neighbors of 7, with
the highest intensity among the neighbors.

Eq.(4) and (5) deal with the situations where the objects
are always either brighter or darker than the background.
This is the cases discussed in [11]. In general cases [10, 16],
one may have to first compute the edge strength map (e.g.,
IVG,(z,y) * I(z,y)]]), and then Eq.(5) is applied to the
edge strength map to generate the initial vector field.

=

3

Gradient vector diffusion. The initial vector field
computed above is then diffused using either the isotropic
scheme (Eq. (1)) or anisotropic scheme (Eq. (2)). The
PDE’s are iteratively solved by finite difference technique.
In Fig.1(a), we show an example of a synthesized molecular
image. In this example, we use Eq.(4) to generate the initial
vector field, as the molecular structure is brighter than the
background. The diffused vector fields by both isotropic

and anisotropic schemes are shown in Fig.1(c) and Fig.1(d),
respectively. For better illustration of vectors, Fig.1(c-d)
correspond to only a portion of the original image, as
seen in Fig.1(b). We can see that the major difference
between these two schemes is that the anisotropic diffusion
preserves the “sharp” features (the blank” regions), where
most of the surrounding vectors point away from the central
point. A direct observation shows that those features cor-
respond to the skeletons of the original gray-scale image.
The superiority of anisotropic diffusion to the isotropic
diffusion will be further demonstrated in the following.

Computation of skeleton strength map. To locate
the ”blank” regions of the diffused gradient vector field, we
compute what we call skeleton strength map (SSM) by:

-

gof(r) - (r' = 7)
&

SSM(7) = maz(0, =

r'€N(7T)

) (©)

where N (7) is the set of the eight immediate neighbors of
7. The skeleton strength map, similar to the edge strength
map, is a scalar map defined on every pixel and indicates
the likelihood of each pixel being on the skeletons. With
the original image seen in Fig.1(a), we show in Fig.2(a)
the skeleton strength map, generated by anisotropic vec-
tor diffusion but initialized by the classical central differ-
ence scheme. We can see that this map does not give much
clear information on the skeletons of the molecular struc-
tures. Fig.2(b) shows the SSM, generated by the isotropic
vector diffusion but initialized by Eq.(4). In contrast to the
isotropic diffusion technique, Fig.2(c) shows the SSM, gen-
erated by anisotropic diffusion and initialized by Eq.(4).
A direct comparison between Fig.2(b) and Fig.2(c) would
suggest that the isotropic vector diffusion normally tends to
blur the skeletons while the anisotropic vector diffusion can
preserve the “sharp” skeletons very well. This is analogous
to the isotropic/anisotropic diffusion commonly seen in im-
age smoothing [18, 19].
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(b)

(d)

Figure 2: The demonstration of skeleton strength maps skeleton-tracing results. The original image is shown in Fig.1(a).
(a) SSM by anisotropic vector diffusion, initialized by the classical central difference scheme. (b) SSM by isotropic vector
diffusion, initialized by Eq.(4). (¢) SSM by anisotropic vector diffusion, initialized by Eq. (4). (d) Skeletons traced from (c).

Skeleton-tracing. To compute the final skeletons, we need
to find a way to trace the skeletons from the skeleton
strength map. A good technique for this purpose is by
Canny’s method [21], which was originally designed for
image edge detection. The most promising strategies used
in this method are non-maximal suppression and double-
threshold. The non-maximal suppression is first applied to
the gradient magnitude map in order to obtain “thin” edges
and extract candidate edges. Two thresholds are assumed
such that candidate edges above the higher threshold are al-
ways recognized as true edges and candidate edges that are
connected to the true edges by a path of pixels with gradient
magnitudes higher than the lower threshold are also recog-
nized as true edges. This idea can be readily applied to our
skeleton extraction by simply treating the skeletons as the
edges. Fig.2(d) shows the skeletons traced by this method
from the skeleton strength maps.

4. Results and Discussions

In this section we show several examples and their skele-
tonization results extracted by our algorithm. Fig.3(a)
shows a brain image. Its edge strength map (or gradient
magnitude map) is first computed using the derivative of
Gaussian kernel function (Fig.3(b)). Eq.(5) is applied to
this map to generate an initial vector field, which is then
diffused using our anisotropic vector diffusion (Eq.(2)). Ten
iterations are applied to solve the PDE (Eq.(2)) using the fi-
nite difference scheme. The skeleton strength map, shown
in Fig.3(c), is calculated from the diffused vector field using
Eq.(6). Finally, the skeletons are traced from the skeleton
strength map using a modified version of Canny’s method.
Fig.4(a) shows another brain image. By the fact that the
brain structures have higher intensities than the background,
we skip the calculation of the edge strength map, and di-
rectly apply Eq.(4) to the original image in order to gener-
ate the initial vector field. Our anisotropic vector diffusion
scheme (Eq.(2)) is then applied with twenty iterations re-
peated to solve the PDE. The skeleton strength map, shown
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in Fig.4(b), is calculated from the diffused vector field using
Equation (6), and the final skeletons are shown in Fig.4(c).
The third example that we show here is a binary image
consisting of several characters. Although our algorithm is
designed for gray-scale images, it can certainly be applied
to binary images. Fig.5(a) shows an image of characters.
The skeleton strength map and the final skeletons are shown
in Fig.5(b) and (c), respectively. Note that, since the objects
(characters) are darker than the background, we use Eq. (5)
to generate the initial vector field and the calculation of edge
strength map is skipped. Twenty iterations are applied to
solve the PDE (Eq.(2)) using the finite difference scheme.
We mentioned before that the pseudo-distance map
(PDM) [16] was most related to our algorithm. In order
to see the difference between the PDM and our skeleton
strength map (SSM), we consider a simple 1D function, as
colored by blue in Fig.6(a). This is a box function with same
contrast on both sides. The pseudo-distance map of this
function is given by light blue color in Fig.6(a). The skele-
ton strength maps, generated by isotropic vector diffusion
(Eq.(1)) and anisotropic vector diffusion (Eq.(2)), are given
by green and red curves, respectively, in Fig.6(a). We can
see from this example that our skeleton strength maps give
“sharper” ridges. We can also observe that the anisotropic
diffusion performs better than the isotropic diffusion.
Finally let us address the bias problem, as we mentioned
earlier. For this purpose, we consider a (1D) box func-
tion with different contrasts on both sides, as colored by
blue in Fig.6(b). The green curve shows the results of our
skeleton strength map (anisotropic), from which we can cor-
rectly locate the skeleton at the center of the box, as indi-
cated by green arrow in the figure. In contrast, we consider
two classical linear methods. One is the direct convolu-
tion of a Gaussian kernel with the original data (e.g., see
[12, 13, 17]). The result of the convolution is shown by red
curve in Fig.6(b). The other linear system, as used in [10], is
more general, where the edge strength map is first generated
and diffused. The skeletons are then extracted from certain
critical points of the diffused edge strength map (e.g., see
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[10]). The result of the diffused edge strength map is shown
by light blue color in Fig.6(b). From this figure, we can
conclude that both linear methods yield biased skeletons,
as indicated by red and light blue arrows. The skeletons
“shift” to the side with lower contrast. The bias problem
was discussed in details in [17], where a lot of efforts have
to be made to remove the bias from the extracted skeletons.
From the above description, we can see that this problem
can be easily solved using our anisotropic vector diffusion.

S. Summary and Conclusion

In this paper we described a skeletonization approach for
gray-scale images without any intermediate segmentation
step. Our method was based on an anisotropic vector
diffusion scheme. We introduced a concept, called skeleton
strength map, which is analogous to the edge strength
map as seen in [10]. Our skeleton strength map gives
much “sharper” ridges of the original images than the
pseudo-distance map[16]. We also addressed the removal
of bias as commonly seen in many linear skeletonization
approaches. Our approach for skeleton extraction is treated
in a similar way to the edge detection with slight changes.
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(a) Original image (b) Edge strength map (c) Skeleton strength map (d) Skeletons

Figure 3: The demonstration of skeletonization results (in red color) on a brain MRI data.

(a) Original image (b) Skeleton strength map (c) Skeletons

Figure 4: The demonstration of skeletonization results (in red color) on a brain MRI image.
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(a) Original image (b) Skeleton strength map (c) Skeletons

Figure 5: The demonstration of skeletonization results on an image of several English characters.
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(a) Comparison between PDM and SSM (b) Removal of bias problem by our method

Figure 6: Two tests
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