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ABSTRACT As described previously, continuum models, such as the Smoluchowski equation, offer a scalable framework for
studying diffusion in biomolecular systems. This work presents new developments in the efficient solution of the continuum
diffusion equation. Specifically, we present methods for adaptively refining finite element solutions of the Smoluchowski
equation based on a posteriori error estimates. We also describe new, molecular-surface-based models, for diffusional reaction
boundary criteria and compare results obtained from these models with the traditional spherical criteria. The new methods are
validated by comparison of the calculated reaction rates with experimental values for wild-type and mutant forms of mouse
acetylcholinesterase. The results show good agreement with experiment and help to define optimal reactive boundary
conditions.

INTRODUCTION

Because of the important role that diffusion plays in a variety

of biomolecular processes, computational models of diffu-

sion have been widely studied using both discrete (Ermak

and McCammon, 1978; Northrup et al., 1984; Agmon and

Edelstein, 1997; Gabdoulline and Wade, 1998; Stiles and

Bartol, 2000) and continuous methods (Smart and McCam-

mon, 1998; Kurnikova et al., 1999; Schuss et al., 2001; Song

et al., 2003; Tai et al., 2003). In a previous work (Song et al.,

2003), we presented finite element methods for solving the

Smoluchowski equation (SE) and thereby determined the

steady-state behavior of diffusion-limited ligand binding

events. These methods were shown to be significantly more

efficient than traditional Brownian dynamics (BD) ap-

proaches for evaluating steady-state rate constants for

diffusion-limited binding of simple ligands. However, the

SE solution methods presented in the earlier work used only

a fixed mesh and thereby neglected the powerful adaptive

refinement features provided by finite element theory.

Additionally, the previous work demonstrated the applica-

bility of the finite element solvers using traditional spherical

reactive surfaces used for calculation of reaction rate

constants (Northrup et al., 1984; Antosiewicz et al., 1995,

1996; Elcock et al., 1996; Gabdoulline and Wade, 1998;

Tara et al., 1998). However, finite element methods can

easily represent much more complicated reaction criteria and

therefore enable the assessment of alternative reactive

boundaries.

In this work, we apply adaptive finite element methods

using a posteriori error estimation to describe binding of

substrate to wild-type and mutant mouse acetylcholines-

terases (mAChEs). The AChE system has been a popular

research target for both computational model and experimen-

tal studies because its hydrolysis of acetylcholine is diffusion-

controlled and strongly influenced by electrostatics (Anglister

et al., 1995; Radic et al., 1997). Previous computational

studies of AChE ligand binding used the traditional spherical

reactive surface (Radic et al., 1997; Song et al., 2003; Tara

et al., 1998). In this work, we introduce a reactive boundary

based on the molecular surface, thereby permitting the

mapping of ‘‘active site’’ residues directly to the reactive

boundary conditions.

Adaptive finite element solution of SE

Original and discretized steady-state SE

A detailed description of the steady-state SE, its application

to bimolecular rate constant calculations, and its solution by

finite element discretization of the SE were provided in the

previous work (Song et al., 2003). Here, we present a brief

review of the SE and the calculation of rate constants from its

solutions.

For a stationary diffusion process, the SE has the

following (steady-state) form:

LpðxÞ ¼ = � Jðp; xÞ
¼ = � DðxÞ½=pðxÞ1bpðxÞ=WðxÞ� ¼ 0; (1)

where L is the Smoluchowksi operator, p(x) is the probability
(concentration) of ligand at position x 2 R3; Jðp; xÞ is the

probability flux, D(x) is the scalar diffusion coefficient,
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b ¼ ðkBTÞ�1
is the inverse thermal energy, and W(x) is the

potential of mean force (PMF). Calculation of the reaction

rate involves the solution of the above equation in a three-

dimensional domain V with the following boundary con-

ditions. First, we specify the bulk concentration pbulk via a

Dirichlet condition on the outer boundary Gb � @V:

pðxÞ ¼ pbulk for x 2 Gb: (2)

Additionally, we specify the reaction condition on the active

site boundary Ga � @V for either a finite reactivity a(x) via
the Robin condition,

nðxÞ � Jðp; xÞ ¼ aðxÞpðxÞ for x 2 Ga; (3)

or an infinite reactivity via the Dirichlet condition,

pðxÞ ¼ 0 for x 2 Ga: (4)

Finally, we define the nonreactive boundary at Gr � @V via

the Neumann condition

nðxÞ � Jðp; xÞ ¼ 0 for x 2 Gr: (5)

As can be seen from the above equations, the biomolecular

surface is the union of the reactive and nonreactive

boundaries: Gr [ Ga: Our observable is the diffusion-influ-

enced biomolecular reaction rate constant k, which can be

calculated by integration of the flux over the active site

boundary:

k ¼ p
�1

bulk

Z
Ga

nðxÞ � Jðp; xÞdx: (6)

To numerically solve the SE, it is necessary to discretize the

differential equation. Galerkin finite element methods

(Axelsson and Barker, 1984) accomplish this discretization

through integration by basis functions to give the bilinear

form ÆFðpÞ; væ:

ÆFðpÞ; væ ¼
Z
V

=v � Jðp; xÞdx

�
Z
Ga[Gb

vðsÞJðp; sÞ � nðsÞds; (7)

defined in terms of a test function v, which is a member of the

basis function set. The original SE (Eq. 1) can then be

expressed in its so-called ‘‘weak form’’:

Find ph � �pph 2 Vh such that ÆFðphÞ; viæ ¼ 0

for all vi 2 Vh; (8)

where ph (x) is the approximate solution found by the

numerical method, �pphðxÞ is a trace function satisfying the

Dirichlet boundary conditions, and Vh is the function space

spanned by the discrete basis set.

Error estimation and mesh refinement

As demonstrated in the previous work (Song et al., 2003),

Eq. 8 can be used to solve the SE on a given finite element

mesh. However, the quality of the resulting approximate

solution depends strongly on the underlying finite element

discretization of the problem. As their name implies, error

estimation methods assess the accuracy of finite element

solutions by providing estimates of the difference between

the approximate and ‘‘true’’ solutions (Axelsson and Barker,

1984; Braess, 1997). These methods are often used in finite

element solutions to guide selective refinement of the finite

element mesh (Baker et al., 2000, 2001a; Holst et al., 2000;

Holst, 2001; M. Holst and D. Bernstein, unpublished) and

thereby adaptively improve the quality of the numerical

solution.

In this article, adaptive mesh refinement methods are used

in a ‘‘solve-estimate-refine’’ algorithm as described by Holst

and co-workers (Baker et al., 2000, 2001a; Holst et al., 2000;

Holst, 2001; M. Holst and D. Bernstein, unpublished) and

implemented in the FEtk software (http://www.fetk.org/).

The first step of this procedure (solve) is the calculation of an

approximate solution to the SE ph (x) on the current finite

element mesh (Song et al., 2003). In the second step

(estimate), this solution is used to provide a per-simplex

residual-based a posteriori error estimate hs of the form

(Holst, 2001):

h
2

s ¼ h
2

s jj= � Jhjj2L2ðsÞ 1
1

2
+
f2s

h
2

f jjºnf � Jhßf jj2L2ðfÞ; (9)

for a simplex s, where hs is the size of the element, Jhðp; xÞ is
the current numerical estimate of the flux, f 2 s denotes a face
of simplex, hf is the size of the face f, ºvßf denotes the jump

across the face of some function v, nfðsÞ3JhðsÞ is the

component of the flux normal to element face f, and the

Lesbegue norms are defined as

jjvjj2L2ðs or fÞ ¼
Z
s or f

jvðxÞj2dx: (10)

Finally, in the third step (refine), this per-simplex error

estimate hs is used to identify simplices of the finite element

mesh where the error is above a particular tolerance.

Simplices with a high error estimate value are refined by

longest-edge bisection. This entire ‘‘solve-estimate-refine’’

cycle is repeated until the global error
ffiffiffiffiffiffiffiffiffiffiffiffi
+

s
h2
s

q
is reduced to

an acceptable user-defined level.

As described previously, methods for solving the SE have

been implemented in a software package called ‘‘SMOL.’’

This software uses the Holst group FEtk toolkit (http://

www.fetk.org/) for finite element geometric routines,
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multilevel solvers, and the residual-based error estimation

protocol outlined above (Holst, 2001).

Validation of the adaptive SMOL finite element
solver with a spherical system

To validate the new adaptive finite element features of the

SMOL software, we examined a classic spherical test case

(Krissinel and Agmon, 1996) and compared calculated rate

constants with the analytical results. For this test case, we

chose a fixed sphere with an 8 Å radius and a diffusing

sphere with a 2 Å radius; both spheres had variable charge.

The smaller sphere’s diffusion constant D(x) was chosen as

a constant 7.8 3 104 Å2 ms, a value obtained from the

Stokes-Einstein relationship for a 2–3 Å substrate (tetra-

methyl ammonium) in water (Tara et al., 1998). The PMF

(W(x) in Eq. 1) for these calculations was obtained from

Coulomb’s law for a homogeneous dielectric of 78.54.

The outer boundary of the diffusion domain was chosen to

be 40 times the combined size of the fixed and diffusing

spheres (i.e., a 400 Å radius) and the inner boundary (at 10 Å)

was uniformly reactive with the perfectly-absorbing bound-

ary condition described by Eq. 4. The entire domain was

initially discretized into 445,488 tetrahedral elements using

the contouring methods of Zhang and co-workers (Song

et al., 2003; Zhang et al., 2003). Note that this is a much

coarser mesh than used in the previous work (Song et al.,

2003). However, the surface area of the spherical inner

boundary of this coarser mesh (1257.98 Å2) differed by only

0.11% from the actual area of a 10 Å sphere (1256.64 Å2),

indicating that the finite element mesh realistically represents

the boundary geometry.

Fig. 1 presents the binding rate constant calculations as

a function of ligand charge for fixed spheres with 11 e and

110 e charges. Results from11 e fixed-sphere charge show

that the adaptive methods generate results which are in much

better agreement (,1% relative error) with the analytical

solutions than nonadapted results (8% relative error).

Furthermore, for the110 e fixed sphere charge, the adaptive

methods can provide up to ;25% improvement in the rate

constants compared to the nonadapted calculations.

Because of the error estimation and adaptive meshing

during the finite element solution, the adaptive calculations

require more computational effort compared to the non-

adaptive calculations. The following timing results were

obtained using a version of SMOL compiled with Intel

FORTRAN and C (version 8.0, ‘‘�O2’’ optimization) and

running on a 2.4 GHz Intel Xeon machine with 1.5 GB

RAM. The nonadaptive method requires an average of 180 s

per calculation whereas the adaptive technique requires an

average of 6000 s per calculation. This factor of ;30

increase in computation time represents an extreme case of

adaptive refinement—the current case was specifically

chosen to demonstrate the ability of the method to refine

from a very coarse initial mesh to the correct answer. As

described in the Conclusions of this work, the ‘‘real world’’

application of the adaptive method would likely start from

a much finer mesh and therefore require substantially fewer

rounds of adaptive refinement and lower overall computation

time.

Rate constant calculations for mAChE
ligand binding

AChE (E. C. 3.1.1.1.7) is a serine esterase which hydrolyzes

the neurotransmitter acetylcholine at diffusion-limited rates

(Anglister et al., 1995). Previously, we investigated the

ligand-binding kinetics of mAChE by calculating steady-

state rate constants using a nonadaptive version of the SMOL

software and the spherical reactive boundary condition com-

monly used in Brownian dynamics reaction rate calcula-

tions (Song et al., 2003). Here, we use our new adaptive

finite element scheme to investigate the binding kinetics of

mutant and wild-type mAChE using a new reactive bound-

ary based on the biomolecular surface.

mAChE domain geometry

Like the previous calculations (Song et al., 2003), the

starting geometry for these calculations is the ‘‘open’’

mAChE structure used by Tara et al. (1998) to study mAChE

binding kinetics. Using an outer boundary 40 times the size

of the biomolecule (an ellipsoid with dimensions 3130 Å 3

2770 Å 3 3680 Å), this domain was discretized using

the dual contouring methods described previously (Song

et al., 2003; Zhang et al., 2003) into an initial mesh

containing 656,823 tetrahedral elements. Fig. 2 shows a cross

section of the mesh between the mAChE surface and

the outer sphere generated from the LBIE-Mesh software

(http://www.ices.utexas.edu/CCV/software). Note that the

FIGURE 1 Binding reaction rates for a fixed spherical ion of 11 e and

110 e charge. For the 11 e charge, results are plotted for analytical

expression (solid line), nonadaptive calculations (dashed line and :), and

adaptive calculations (dotted line and n). For the 110 e charge, results are

plotted for nonadaptive calculations (dashed line andn) and adaptive results

(dotted line and h).
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mesh near the biomolecule is extremely fine and captures the

details of the biomolecular surface; mesh elements increase

in size with increasing distance from the biomolecule.

The outer boundary of the domain was assigned bulk

Dirichlet boundary conditions (Eq. 2), the nonreactive

portions of the inner boundary were assigned reflective

Neumann conditions (Eq. 5), and the reactive portions were

assigned the ‘‘infinite reactivity’’ Dirichlet condition (Eq. 4).

This reactive condition was chosen to agree with previous

BD (Tara et al., 1998) and SE (Song et al., 2003) simulations

and is justified by the extremely high catalytic efficiency of

mAChE (Anglister et al., 1995). In the previous finite

element SE studies, the reactive boundary was defined as the

spherical reactive surface typical for Brownian dynamics

calculations (Song et al., 2003). In the current study, the

reactive boundary is defined using the biomolecular surface.

Following Tara et al. (1998), the mAChE structure was

reoriented to center the carbonyl carbon of the active site

S203 at the origin and to align the active site gorge with the y
axis. Reactive boundaries were based on 6 spheres placed

along the y axis: sphere 1 centered at (0.0, 16.6, 0.0) with a 12
Å radius, sphere 2 centered at (0.0, 13.6, 0.0) with a 9 Å

radius, sphere 3 centered at (0.0, 10.6, 0.0) with a 6 Å radius,

sphere 4 centered at (0.0, 7.6, 0.0) with a 6 Å radius, sphere 5

centered at (0.0, 4.6, 0.0) with a 6 Å radius, and sphere 6

centered at (0.0, 1.6, 0.0) with a 6 Å radius. For the

biomolecular surface-based reaction criteria, each reactive

surface N was defined as that portion of the mAChE

molecular surface inside the union of spheres N through 6.

For example, surface 1 was the portion of the mAChE

surface inside the union of spheres 1–6 whereas surface 6

was the portion of the mAChE surface inside 6. The six

reactive surfaces defined in this manner are shown in Fig. 3

a. This definition differs considerably from the spherical

reaction criteria used in the previous work (Song et al., 2003)

wherein each reactive surface N was defined by explicitly

including the union of spheres N�6 in the mAChE structure.

For comparison, the first reactive surface of based on the

spherical definition is shown in Fig. 3 b.

Wild-type mAChE reaction rates

mAChE reaction rates were calculated with the initial mesh

and new reactive boundary definitions described. The

diffusing ligand was treated as a sphere with a 11 e charge,

a 2.0 Å exclusion radius, a diffusion constant of 7.8 3 104

Å2/ms; this spherical model and its parameters are similar to

those used in previous BD models of the TFK1 ligand (Tara

et al., 1998). Following standard procedure in BD-based rate

constant calculations, only electrostatic contributions to the

PMF for the SE were included in these calculations,

reflecting the known importance of electrostatics in mAChE

binding kinetics (Radic et al., 1997). Although the true PMF

is certainly more complex than this simple description, such

simple interaction models have successfully been used in

numerous BD calculations of binding rate constants (for

examples, see Allison and McCammon, 1985; Antosiewicz

and McCammon, 1995; Tara et al., 1998). (For an excellent

example of diffusion simulations with more detailed PMFs,

see Im and Roux, 2002). Other considerations in developing

more accurate effective ligand-protein interactions are pre-

sented in the context of protein-protein encounter simula-

tions by Elcock et al. (2001). Finally, Roux and Simonson

(1999) provide a very good general discussion of the caveats

associated with the simple implicit solvent electrostatic

PMF used here.

The electrostatic potential used for our PMF was obtained

from the Poisson-Boltzmann equation using the APBS

software (http://agave.wustl.edu/apbs/) (Baker et al., 2001b).

The CHARMM22 force field was used to assign the partial

changes and radii of the atoms for mAChE, the dielectric

values of 4 and 78 were assigned for the protein and solvent,

a solvent probe radius is 1.4 Å, and an ion exclusion layer is

2.0 Å. Various ionic strengths (between 0 and 0.670 M) were

used in the PMF calculations.

Additionally, the adaptive finite element methods de-

scribed above were used to calculate the reaction rates for

both the molecular-surface-based (Fig. 3 a) and spherical

(Fig. 3 b) reactive boundary No. 1 as a function of ionic

strength. Iterative error-based refinement of the initial

656,823-simplex mesh was performed until the global error

was ,107, a problem-value chosen to provide reaction rates

which did not change appreciably upon further refinement

(see Fig. 4). The reaction rate results from these calculations

are shown in Fig. 5. As this figure illustrates, the spherical

and molecular-surface-based reaction criteria both give

results that are in good overall agreement with each other

and experiment. The comparison (at 150 mM ionic strength)

between the molecular and spherical boundary definitions for

the 6 reactive surfaces is shown in Fig. 6. Again, the two

methods are in good overall agreement but do show some

FIGURE 2 Cross section of the initial finite element mesh used for

mAChE calculations.
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differences at surfaces No. 1 and No. 2 where the differences

between the reactive boundaries—in particular, their surface

areas—are most extreme (see Fig. 3).

Table 1 illustrates the rate constants for various ionic

strengths obtained with and without error-based adaptation

of the mesh. The reaction rates calculated from the adaptive

finite element solution for wild-type mAChE deviate by

;10–100% from the nonadapted calculation for the

molecular reactive surface and by ;1–10% for the spherical

reactive surface. Therefore, although the mesh used in the

previous work (Song et al., 2003) is fine enough for the

qualitative description of ionic strength dependence, there

are cases where substantial improvement is provided by the

FIGURE 3 Reactive boundary defi-

nitions for mAChE: (a) molecular

reactive boundaries Nos. 1–6 (left to

right) and (b) spherical reactive bound-

ary No. 1.

FIGURE 4 Percent change in the calculated wild-type mAChE reaction

rates during adaptive refinement for 0 (d), 50 (n), 100 (¤), 150 (:), 300

(=), 450 (3), and 670 (*) mM ionic strengths.

FIGURE 5 Comparison mAChE wild-type ligand binding rates calculated

with various methods: adaptive calculation with molecular reactive

boundary No. 1 (d), nonadaptive calculation with molecular reactive

boundary No. 1 (s), adaptive calculation with spherical reactive boundary

No. 1 (:), Brownian dynamics calculation with spherical reactive boundary

No. 1 (n), and from Debye-Hückel fit to experimental data (Tara et al., 1998)

(solid line).
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adaptive method. Furthermore, it is important to note that

the simple geometric definitions used to generate the initial

nonadapted mesh for mAChE may not always give even

a qualitative level of predictive power without subsequent

error-based refinement. In particular, molecules with high

charge densities (nucleic acids, actin, etc.) will likely require

error-based adaptive refinement to generate reliable diffusion

profiles and rate constants. Therefore, when applying this

method, it is recommended that users examine the sensitivity

of the results to adaptive refinement before using rates from

any nonadapted calculations.

As with the spherical case, adaptive finite element

calculations are significantly more expensive than their

nonadapted counterparts. As for the sphere test case, the

following timing data was obtained using a version of SMOL

compiled with Intel FORTRAN and C (version 8.0, ‘‘�O2’’

optimization) and running on a 2.4 GHz Intel Xeon machine

with 1.5 GB RAM. For the molecular reactive boundary, the

average nonadapted runtime was 415 seconds and the

average adapted runtime was 8800 seconds; for the spherical

reactive boundaries the average nonadapted and adapted

runtimes were 415 and 6600 seconds, respectively. The im-

pact of this increased computational effort is discussed in the

Conclusions section of this work.

Reaction rate calculation for mutant mAChE with a
molecular-surface reactive boundary

One of the distinct advantages of the biomolecular reactive

surface definition is the ability to directly map molecular

information about the protein onto the reaction criteria. In

this work, we demonstrate the ability of the biomolecular

surface reactive boundary definition to correctly describe the

kinetics of mAChE active site and gorge mutants. Specif-

ically, we examined the effects of E202Q, D74N, and D74N/

E202Q mutations on the mAChE ligand binding rate. The

location of D74 and E202 are indicated in Fig. 3 a. D74 is

located between reactive surface 3 and 4, whereas E202 is

located within reactive surface 6, close to the active site. The

chosen mutations constitute changes adjacent to the catalytic

triad (E202Q) and in the active site gorge (D74N). These

mutants have been characterized both experimentally (Radic

et al., 1997) and computationally (Tara et al., 1999), using

BD methods. The purpose of this work is to determine the

ability of the molecular reactive surface boundary to quan-

titatively capture the effects of these mutations on the reaction

rate.

The simulation protocol for these mutations is the same as

for the ionic strength calculations described above, with one

important difference. New electrostatic PMFs are recalcu-

lated for each of the three mutants at 150 mM ionic strength.

Due to the isosteric nature of the mutations, all other

parameters (particularly the mesh) remain unchanged.

To compare the continuum diffusion rate constants with

BD results, simulations similar to those of Tara et al. (1998)

were repeated using the UHBD software (Madura et al.,

1995) to calculate the 150 mM ionic strength reaction rates at

each of the 6 reactive surfaces for D74N, E202Q, and D74N/

E202Q mutations. In particular, for each set of conditions,

5 BD runs of 200 trajectories each were simulated. The ligand

was modeled as a sphere with 11 charge and a 2.0 Å radius.

Each trajectory was started at a random location on

a spherical surface of 55 Å (centered on the protein) and

terminated when the ligand either passed the reactive

boundary (see above) or a second spherical surface of radius

300 Å. The BD equation of motion was integrated using the

standard Ermak-McCammon algorithm (Ermak and

McCammon, 1978) and variable time steps: 5 fs at 100 Å

from the mAChE center, 1 ps at 100–175 Å from the mAChE

center, and 5 ps at 175–300 Å from the mAChE center.

Fig. 7 presents the log-ratios of reaction rates for the wild-

type, E202Q, D74N, and D74N/E202Q mAChE calculated

from the adaptive SE calculations and BD simulations at

150 mM ionic strength. This figure also includes experimen-

tal values (Radic et al., 1997) for reference. These results

indicate that the continuum SE calculations generate rates

with similar trends as BD; however, the actual values can

differ by as much as two orders of magnitude between the

FIGURE 6 Comparison of the mAChE wild-type binding rate results (150

mM ionic strength) as a function of reactive boundary location: (d)

molecular reactive boundary and (:) spherical reactive boundary.

TABLE 1 Nonadaptive and adaptive solution results of

reaction rates (in units of 109 M21 min21) for reactive

surface 1 of wild-type mAChE

Ionic Strength Nonadapted results Adapted results

0 758 (971) 853 (1040)

50 249 (324) 293 (354)

100 209 (277) 237 (294)

150 188 (254) 213 (265)

300 152 (223) 165 (227)

450 117 (208) 131 (207)

670 35 (191) 77 (189)

Values not in parentheses are from the molecular reactive surface; results in

parentheses are from the spherical reactive surface.
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two methods. Such discrepancies in predicted rates are not

too surprising and simply reflect differences in methods,

particularly their definitions of reactions and reactive

boundaries.

Fig. 7 also shows that reactive surface No. 5 provides the

best overall results for the binding rate across all versions of

mAChE studied. This surface is shown as the fifth picture of

Fig. 3 a, which is the molecular surface along the reactive

gorge within 10.6 Å from the active site. This surface is

below the location of D74 but above the active site and

residue E202. The agreement with experimental data and

correlation with BD trends demonstrates the ability of this

new adaptive method to calculate reaction rates for ligand

binding both with traditional spherical and with new

molecular-surface-based reactive boundaries.

CONCLUSIONS AND DISCUSSIONS

We have presented an adaptive version of the finite element

solver described in an earlier work (Song et al., 2003) and

demonstrated that error-based refinement of the mesh

improves the calculation of reaction rates. Additionally, we

have described a new molecular-surface reactive boundary

definition for the SE and applied this definition to the

calculation of ligand-binding rates for mAChE. The

molecular-surface reactive boundary condition showed good

agreement with the experimental dependence of binding rate

on ionic strength and mutations. Additionally, the adaptive

molecular-surface calculation results were comparable to the

trends observed in BD simulations, although specific values

varied by as much as two orders of magnitude between the

two methods. Comparisons with experimental mutation

results show that molecular reactive surface within 10.6 Å

from the active site best represents the effect of D74N,

E202Q, and D74N/E202Q mutations on the reaction rate of

mAChE.

The timing information provided for the adaptive method

illustrates that it is definitely more computationally-de-

manding than the nonadaptive calculations and, in some

cases, even more expensive than the traditional BD

simulations. However, judicious use of these expensive

calculations can save substantial time and still provide an

overall gain over BD simulations. As mentioned earlier, the

initial mesh is generated based on the biomolecular geometry

and does not necessarily provide the best possible basis set

for solution of the SE. Therefore, adaptive refinement should

be a standard part of finite element SE calculations to ensure

the most accurate results. In particular, a ‘‘benchmark’’

adaptive refinement calculation is needed for each system

studied to determine the error in rates calculated on the initial

mesh and to obtain the global error tolerance at which the

calculated rates are converged (cf. Fig. 4). However, much of

the refinement performed in the each of the various adaptive

calculations described above is redundant; i.e., the same

regions of the initial mesh are refined for each system.

Therefore, substantial time could be saved by reusing the

refined mesh from the benchmark calculation as a starting

point for subsequent simulations and thereby avoiding some

of the expensive refinement steps.

FIGURE 7 Log-ratio of reaction rates ð�logðkmut=kwtÞÞ for mAChE

mutants (150 mM ionic strength) as a function of the molecular reactive

boundary location. (a) D74N results: experimental (solid line), adaptive

SMOL (d), and BD (n). (b) E202Q results: (solid line), adaptive SMOL

(d), and BD (n). (c) D74N/E202Q results: experimental (solid line),

adaptive SMOL (d), and BD (n).
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Furthermore, as mentioned in the previous work, these

continuum diffusion methods are designed to address

a different scale of simulation from traditional BD methods;

specifically, laying the groundwork for integration of

molecular-scale information into cellular-scale systems

(Smart andMcCammon, 1998; Tai et al., 2003). In particular,

this ability of FE-based continuummethods to integrate scales

is demonstrated by performing the diffusion calculations on

a finite element mesh of 0.31 mm3 0.28 mm3 0.37 mm, or

;5 times the length of the BD domain (600 Å long). The

adaptive methods developed in this work further facilitate our

ultimate goal of multiscale modeling by enabling the efficient

solution of the SE through adaptively allocating the un-

knowns based on error estimates.

Finally, one particularly useful aspect of the molecular

surface boundary definition introduced in this work is the

ability to directly connect the reactive surfaces of the

simulation with the underlying biomolecule. For example,

surface 6 maps directly onto the catalytic triad and are the

most intuitive reactive boundary definitions available for this

system. Additionally, these surfaces performed well in

quantifying the impact of mutation on binding-rate constants.

Such molecular-based reactive definitions suggest future

possibilities of connecting coarse-grained simulations of

diffusion withmore detailed descriptions of enzyme function;

in particular molecular dynamics and quantum mechanics

worked describing the details of biomolecular binding and

catalysis (Luty et al., 1993; Zhang et al., 2002).
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