Volume 232004, Number 4 pp. 1-18

SIMD Optimization of Linear Expressions
for Programmable Graphics Hardware

Chandrajit Bajdj and Insunglhrh and JungkiMid and Jinsang Ch

+ Department of Computer Science, University of Texas at Austin, Texas, U.S.A.
iDepartment of Computer Science, Sogang University, Seoul, Korea

Abstract

The increased programmability of graphics hardware allows efficient GPU implementations of a wide range of
general computations on commodity PCs. An important factor in such implementations is how to fully exploit the
SIMD computing capacities offered by modern graphics processors. Linear expressions in theyfermof b,

whereA is a matrix, andx, y, andb are vectors, constitute one of the most basic operations in many scientific
computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes
to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by
efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations

in linear expressions. We demonstrate that the presented technique can be used effectively for programming both
vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations
and solving a sparse linear system of equations using iterative methods.

Categories and Subject Descriptascording to ACM CCS) |.3.1 [Computer Graphics]: Graphics processors, Par-
allel processing, Programmable shader; G.1.3 [Numerical Analysis]: Numerical Linear Algebra, Sparse systems;
G.1.6 [Numerical Analysis]: Optimization

1. Introduction ing hardware has been exploited extensively for more flex-
ible classification and shading at higher frame rates (re-
fer to ¢ for the various volume rendering techniques us-
ing user-programmable graphics hardware).23A8, real-

In recent years, commodity graphics hardware has evolved
beyond the traditional fixed-function pipeline, to allow flex-

ible and programmable graphical processing units (GPUS). time procedural shading systems were proposed for pro-

User-programmable verte_x and pixel shader technologies grammable GPUs. Two papers demonstrated that ray cast-
have been applied extensively, and have added a large NUM=ing can be performed efficiently with current graphics hard-
ber of interesting new visual effects that were difficult or 9 P y grap

. . . o !) N . ware. Carr et al. described how ray-triangle intersection can
impossible with traditional fixed-function pipelines. Sig- Y g

I . - - be mapped to a pixel shadefTheir experimental results
nificant effort has focused mainly on the efficient utiliza- . o

. : . . showed that a GPU-enhanced implementation is faster on
tion of pixel shader hardware by effectively mapping ad-

vanced rendering algorithms to the available programmable existing hardware than the best CPU implementation. Pur-
cering alg . ; ble prog cell et al. presented a streaming ray tracing model suitable
fragment pipelines. Flexible multi-texturing and texture-

blendi it ided b t hi ds. all for GPU-enhanced implementation on programmable graph-
ending units, as provided by recent grapnics caras, allow .o oy ares, They evaluated the efficiency of their ray
a variety of per-pixel shading and lighting effects, such as

Phona shading. bump manping. and environmental maomin tracing model on two different architectures, one with and
9 9 P mapping, PPING: one without branching. Recently, global illumination algo-

In addition to these traditional per-pixel rendering ef- rithms such as photon mapping, and matrix radiosity and
fects, the list of graphics applications accelerated by pro- subsurface scattering, were implemented on GPUs by Pur-
grammable shader hardware is growing rapidly. Volume ren- cell et al?” and Carr et at, respectively.
dering is an actively studied topic in which pixel shad-

(© The Eurographics Association and Blackwell Publishers 2004. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Bajaj, lhm, Min, and Oh / SIMD Optimization

Programmable graphics hardware has also been used for
more general mathematical computations. Hart showed how
the Perlin noise function can be implemented as a multi-
pass pixel shad&r. In 18 Larsen et al. described the use
of texture mapping and color blending hardware to perform
large matrix multiplications. Thompson et al. also imple-
mented matrix multiplication, and non-graphics problems
such as 3-satisfiability, on GP®&¥s Hardware-accelerated
methods were proposed for computing line integral convo-
lutions and Lagrangian-Eulerian advections by Heidrich et
al.’2 and Weiskopf et at. In 30, Rumpf et al. attempted
to solve the linear heat equation using pixel-level compu-
tations. Harris et al. also implemented a dynamic simula-
tion technique, based on the coupled map lattice, on pro-
grammable graphics hardwéateMoreland et al. computed
the fast Fourier transform on the GPU, and used graphics
hardware to synthesize imadés

As the fragment processing units of the recent graph-
ics accelerators support full single-precision floating-point
arithmetic, it becomes possible to efficiently run various
numerical algorithms on the GPU with high precision.
Two fundamental numerical algorithms for sparse matrices,
a conjugate gradient solver and a multigrid solver, were
mapped to the GPU by Bolz et &l.Goodnight et al. also
implemented a general multigrid solver on the GPU, and ap-
plied it to solving a variety of boundary value probléms
Krlger et al. described a framework for the implementa-
tion of linear algebra operators on a GPUThe GPU was
also used for solving large nonlinear optimization problems
by Hillesland et al3. Harris et al. solved partial differential
equations on the GPU for simulating cloud dynarhics

Many of the numerical simulation techniques mentioned
are strongly reliant on arithmetic operations on vectors and
matrices. Therefore, considerable efforts have been made
to develop efficient representations and operations for vec-
tors and matrices on GPUs. This paper continues those ef-
forts, and is specifically concerned with the problem of com-
puting linear expressions in the form of affine transforms
y = AX+ b, whereA is a matrix, and, y, andb are vectors.
Such linear transforms constitute basic operations in many
scientific computations. Because the makii the expres-
sion is usually large and sparse in practice, many CPU-based
parallel techniques have been proposed in parallel process-
ing fields for their efficient computations. In particular, sev-
eral methods for large sparse matrix-vector multiplication
have been designed for SIMD machi?fe¥: 1529, Although
the proposed techniques work well on specific machines, it
is difficult to apply them directly to the simple SIMD models
supported by current programmable graphics hardware.

This paper presents a SIMD code optimization technique

that enables efficient assembly-level shader codes to be gen-

erated for evaluating linear expressions. The technique trans-
forms a given linear expression into aqguivalentand op-
timized expression that can be evaluated using fewer in-

Operation Usage Description
ADD ADD D, SO, S1 D+~ S0+8S1
MUL MUL D, SO, S1 D+~ S0* S1
MAD MAD D, SO, S1, S2 D+ S0*S1+S2
DP4 DP4 D, SO, S1 D«S0-S1
MOV MOV D, S b-S

Table 1: Supported instructionsS, SO, S1 , andD are
four-wide registerst+, *, and- represent component-wise ad-
dition, component-wise multiplication, and four-component
dot product, respectively.

structions on the SIMD graphics architecture supported by
current GPUs. Arithmetic operations are packed into four-

wide SIMD instructions by reordering the operations in the

linear expression. Our technique is different from other re-
lated GPU programming techniques because it searches for
the most efficient linear expression to make the best use
of the four-wide SIMD processing power of current GPUs.
We demonstrate that the proposed optimization technique
is quite effective for programming both vertex and pixel
shaders in a variety of applications, including the solution
of differential equations, and sparse linear systems using it-
erative methods.

2. Efficient SIMD Computation of Linear Expressions
2.1. Abstract Model of SIMD Machine

We assume an abstract model of the shader for which our op-
timization technique is developed. Vertex and pixel shaders
of different manufactures are slightly different from each
other. Furthermore, they are still evolving rapidly. In this
respect, we make only a few basic assumptions about the
shader model so that the resulting technique is vendor-
independent, and can be easily adapted to future shaders. In
this paper, we view the shaders as general purpose vector
processors with the following capabilities:

1. The shader supports four-wide SIMD parallelism.

2. Its instruction set includes the instructions shown in Ta-
ble 1.

Any component of the source registers may swizzle
and/or replicate into any other component. Furthermore,
destination registers may be masked. These register mod-
ifiers do not harm shader performance.

Every instruction executes in a single clock cycle. Hence,
the number of instructions in a shader program is the ma-
jor factor affecting shader performance.

3.

4.

2.2. Definition of the Problem

As described earlier, this paper describes the generation of
efficient shader code that evaluates a linear expression of the

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

formE : Y= AX+ b, where the matriA =

S (&j)i,j=0,1,--- m—1
and the vectob = (bg by --- by_1)! are constants, and the
tWO VeCtorsK= (Xo X1 -+ Xm—1)" andy = (Yoy1 - Ym—1)"

are variables. Because the vertex and pixel processing of cur-

rently available GPUs is based on four-wide SIMD floating-
point operations, we consider linear expressions with sizes
that are multiples of four, that isn = 4n for a positive in-
tegern. Note that linear expressions of arbitrary size can be
augmentedo such expressions by padding the appropriate
number of zeros at the ends of the matrix and vectors.

LetAij = ()i =01 n—1. pg-01.23 be the(i, j)-th 4 x
4 submatrices that partitioA. Then the linear expression is
described in the following form that is more amenable to
four-wide SIMD processing:

n—1 _
Vi = zOAanj+bi foralli=0,1,--- ,n—1, 1)
=
where Xj = () Xaji1 Xaji2 Xai3), W=
(Yai Yai+1 Yair2 Yaira)', andby = (bgi bgit1 baiyo baiga).
If we defineTj; to be Ajjxj fori,j=0,1,--- ,n—1, the

following partial product becomes the basic component in
our code optimization technique:

a0 Xaj + Ay - Xaj 1+ 8 Xaj+2 + Az Xaj 13
ally-Xaj +ay; - Xaj 1+ 8, Xaji2 a3 Xaj 13
@y Xaj + 831 - Xaj 11+ 83y Xaj 12+ 893 Xaj 43
a3 Xaj +agy - Xaj 1+ 83 Xaj+2 + g3 Xaj+3

Tij = 2

2.3. Our Optimization Technique

Shader performance greatly depends on the number of in-

structions in the shader progrédmOur shader optimization
technigue attempts to minimize the number of instructions
generated by fully exploiting the vector nature of both linear

expressions and shader instructions. In our scheme, a Ilnear(
expression is translated into a shader program through the

following two stages:

1. Transformation Stage: Transform a given linear expres-
sionE into amore efficient equivalemixpressiorE™.
Code Generation Stage:Generate the shader code by

evaluating Eq. (1) foE™.

2.

As will be explained below, the number of shader instruc-
tions necessary for evaluatilig: y = AX+ b depends on the
pattern of non-zero elements #fandb. The goal of the
transformation stage is to search fobetterlinear expres-
sion that is equivalent to the given expression, and can be
evaluated using fewer instructions. Once a more efficient lin-

2.3.1. Code Generation Stage

To compute the four-vectdl; = A;jXj in Eq. (2), 12 addi-
tions and 16 multiplications must be carried out in the worst
case. However, when the matdy; contains zero elements,

it can be evaluated in fewer arithmetic operations. Notice
that the SIMD instructions offered by graphics processors
perform multiple arithmetic operations simultaneously. For
instance, theMADand DP4 instructions in currently avail-
able consumer graphics processors perform four additions
and four multiplications, and three additions and four multi-
plications in a single clock cycle, respectively.

When Tj; is evaluated with the SIMD instructions,
the key is to exploit their parallelism cleverly. If KIAD
instruction, for instance, is used to multiply any null element
of Ajj, the GPU’s parallel computing power is wasted. It is
important to rearrange the arithmetic expressions Eq. (2)
appropriately, with trivial terms deleted, so that each applied
SIMD instruction performs as many non-trivial additions
and multiplications as possible. Note that the computation
of multiplying Ajj andx; relies on the structure oj. A
close analysis of the pattern of zero elementdjpuggests
two evaluation methods, which we call column-major
multiplication and row-major multiplication, respectively.

Column-major multiplication : This method uses th&lAD
andMULinstructions to evaluat&;j. As illustrated in Fig-

ure 1(a),Ajj is peeled off verticallysuch that each skin
covers as many non-zero elements as possible. Let the cost
ce(i, j) (three in this example) be the number of necessary
peels. Then, it is trivial to see thd}j can be evaluated in
one MULand cg(i, j) — 1 subsequenMADinstructions. If
matrix-vector multiplication is to be implemented in this
way, the non-zero elements Afj that are multiplied in each
instruction must be loaded in a register before _t_he shader is
executed. In this example assume t(m#i a10 a21 aso)

ag, al, a31) and(0ay, 0 0)" are stored in registe327,
C28, andC29, respectively. Let the regist&4 also contain
(Xaj Xaj+1 Xaj+2 X4]+3)t. Then the following three shader in-
structions computg; in column-major fashion, and put the
resultT;; into the registeR3:

MUL R3, C27, R4.yxyx
MAD R3, C28, R4.zzzy, R3
MAD R3, C29, R4.wwwz, R3

The source-argument swizzles clearly help in rearranging
and replicating the;j’s elements.

Row-major multiplication : DP4is another instruction that
is useful for exploiting SIMD parallelism. In fact, it is very

ear expression is found, the shader code is generated usinghatural to matrix-vector multiplication. If we define the cost

the supported SIMD instructions as efficiently as possible

re(i, j) to be the number of rows d; that contain at least

in the second stage. Because the transformation stage reliesone non-zero element, it is also trivial to see thatcan be
on a cost function defined in the code generation stage, we evaluated usingg (i, j) DP4 instructions (see Figure 1(b)).

explain the latter first.

(© The Eurographics Association and Blackwell Publishers 2004.

If the registersC27, C28, and C29 hold (0 a3, ag, 0)',

Bajaj, lhm, Min, and Oh / SIMD Optimization

o LML T TMAD T VAD:
I P | . Y . . !
T; = | 40 0 ayy aps || @aj+1 | _|f ajo %4 1 T @2 Taj+2) + aj3- 4543
=~ o . |
0 agl 0 0 L4542 i) agl .1‘4]‘_‘_1: I |
VA T4, N ! ij | !
a3 a3 0 O 443/ \ago-way |+ ag) T |

ij__ ij Cag T Ay DP4
O -agroags =0 | [@ agy Bagy F agp Tappa T 4
7 2 7 . . 1 S
T = iy - O0--afy-afz | | Taj+1 | — | 9] + a7 %442 + i3 T4543)
1) T)
~0--aYr--0---0- | | Taj42 g @4t
0 0 0 0 T4543

(b) Row-major multiplication

Figure 1: Efficient SIMD evaluation of;;. Not all arithmetic operations must be performed because some entries are null.
The proposed optimization technique identifies the non-zero entries and reorganizes them to produce a code with fewer SIMD

instructions.

.(ailjol 0al, giljs)t, and (0 a; 00)", respectively, the follow-
ing instructions computg; in row-major fashion:

DP4 R3.x, C27, R4
DP4 R3.y, C28, R4
DP4 R3.z, C29, R4

WhenTj; is evaluated, the multiplication method with the
smaller cost is selected. Wheg(i, j) andrg(i, j) are even,

that are computed in row-major fashion. If we def@g™i)

to be the cost of the summation process, i.e., the number
of additional ADD instructions required, it becomes then
C2"™(i) = n&(i) if by is not trivial, ornk (i) — 1 otherwise.

2.3.2. Transformation Stage

Now by combining the two cost functions, the evaluation

the column-major method is chosen for the reason that will ¢ostC(E) for E : y= AX+ b can be defined to b&(E) =

be explained in the next paragraph. Then the cost, i.e., the

number of necessary instructions, of multiplyiAg with X;
is defined a€!(i, j) = min(ce (i,), re(i,).

_ Once the term$;j; are obtained for al|, they are added to
b using theADDinstruction. The addition process must be
coded carefully. First, neither ndllj nor null by should be
added (notice thaljj vanishes if all elements @ are null).
Secondly, arADDinstruction is saved if it can combine with
the firstMULinstruction of the column-major multiplication.
That is, by replacingMULin the column-major multiplica-
tion with MAD and accumulating the partial productsTf

to the register corresponding ¥ the addition process can
be implemented more efficiently. This is why column-major
multiplication is preferred to the row-major multiplication

S1Z0CEY (0, 1) + 3 C&*™(i). This metric represents the
number of shader instructions required to comgititand is
determined by the patterns of non-zero elements amdb.

The key to our shader optimization technique is the fact that
exponentially many linear expressions exist equivalent to the
given expressiolk. We consider two linear expressioBs
y=Ax+bandE’:y = A'X + I to beequivalentto each
other ify can be obtained by rearranging the elementg of
Basically, the results of two equivalent expressions are the
same except for the order in which the computed values are
stored in memory.

Figure 2 shows augmented matridég b| of two equiv-
alent linear expressions, found in the example of Subsec-
tion 3.2, which have costs of 20 and 14, respectively. The

when their respective costs are the same. In summary, thehick (curved) line segments in the matrix parts indicate

code generation stage is described as follows:

1. TermsTij with re(i, j) < ce(i, j) are evaluated first, in
row-major fashion. Their results argl are accumulated
to the destination register fgr using theADDinstruction.

2. Then the remaining term§; are evaluated in column-
major fashion, accumulating to the destination register.

Letng(i) be the number of termigj, j =0,1,--- ,n—1,

how the corresponding matrix-vector multiplications are
performed. It is obvious that the expression in Figure 2(b)
can be implemented more efficiently.

As mentioned previously, the goal of our optimization
technique is to produce a shader written using the minimum
number of instructions. The problem is how to effectively
find an equivalent linear expression at the minimum cost.

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

E < Given linear expression Eo;
Hblssdeazdasacksss B BRMISsskssshsssksss while | (stopping enterion is not
12340000000000000000 1 -
5689000a50035503533 & 7586/0000000000000000 2 W_Ie (stopplng criterion Is not sat
56780000000000000000 2 31420000000000000000 1 isfied) {
00000900[0000O0O000/00O0O0 ©0 0000{2000/0010{04003000 1 H . T
0000/1234000000000000 1 0000/0200[0002/4000[0003 1 Wh"/e (not yet in equ:"bm;m;) { h
000000090000[0000[0000 0 0000]/0020/0400[00400300 1 -
0000/567800000000/0000 2 0000/0002100000040030 1 E - Sor.ne rand.omy p|C ed n.elg
0000/00000900[0000[0000 0 0000(0009/0000[0000[0000 0 bonng equwalent expression
0000[00001234/0000[0000 1 0000/0090000000000000 0 £ E /i
0000[0000[0009/0000[0000 0 0000/90000000/0000[0000 0 0 = ine (a)
00000000/56780000/0000 2 0000/0900/0000{0000[0000 O — N i
00000000[0000/0900/0000 0 0000/0600/0005[8000[0007 2 AC - C(E)ACC(E)’ // Ilne (b)
0000[000000001234/0000 1 0000[6000/0050(08007000 2 ; — A . ;
00000000000000080000 8 0000/00600500008007.00 2 p— min(1,e”kT); // line (c)

0000/00065000/0008/0070 2 i
0000[00000000[0000[0900 0 0000[00000000/0900[0000 0 if (ranc,jom(c.)‘ 1) < P)
000000000000[00001234 1 0000/0000/0000/009.0[0000 0 E —E’; /I line (d)
00000000000000000009 0 0000/0000/0000[00090000 O
0000/00000000/0000[5678 2 0000[0000[0000/9000/0000 O }
Update T; // line (e)
(a) Before transformation (b) After transformation Output the best linear expression E;

. . . . Figure 4: Simulated annealing algorithm
Figure 2: Example of two equivalent linear expressions. 9 gaig

When the expression in (a) is evaluated carelessly UdiAD

andMULinstructions, the SIMD processing power is wasted.

The equivalent expression in (b) can be evaluated more effi- near-optimal solutions. This is described in the next subsec-
ciently using fewer SIMD instructions. tion.

2.3.3. Simulated Annealing: an Iterative Improvement
Algorithm

The method of iterative improvement, or local search, is
JAr= T a simple and practical search technique using trial and er-
ror, and has been shown to be effective for solving many
intractable combinatorial optimization problems. The ba-
L L | sic idea is to move around the configuration space trying
y A X b to find the global minimum. Iterative improvement usually
keeps track of only the current state, and does not look
ahead beyond the immediate neighbors of that state. Sim-
ulated annealing defines a class of iterative improvement al-
gorithms, based on the analogy between combinatorial opti-
mization problems and thermodynamics, especially the way
that liquids freeze and crystallize, or metals cool and anneal.
It was first presented i&®, where the idea was borrowed
from the Metropolis algorithm, applied to simulating com-
plex systems in statistical physfésSince its introduction,
this method of simulated annealing has attracted significant
attention as suitable for large-scale optimization problems,
especially ones where a desired global extremum is often
Chidden among many poorer local extrefri# 36,

Figure 3: (i, j)-swapping of a linear expression. Interchang-
ing thei-th and j-th rows and columns does not harm the
equivalence of the expression.

Consider ar{i, j)-swapping operation applied to a linear ex-
pression, as illustrated in Figure 3. This operation, denoted
by =, transforms a linear expression to another equivalent
expression by swapping tiveh andj-th rows ofAandb, and
the corresponding columns Af Because any equivalent ex-
pression can be obtained by repeatedly applying a sequenc
of (i, j)-swapping operations, the shader optimization prob-
lem for evaluating linear expressions can be restated as fol- It was designed to overcome the drawback of hill-
lows: climbing algorithms, another class of iterative improvement
algorithms, which only move in the direction of decreas-
ing cost, and hence easily become stuck in local minima
or plateaux. Figure 4 shows our version of the simulated
In the transformation stage, we search for an expression annealing algorithm that is used to search for a linear ex-
with minimum cost by attempting to solve the minimization ~Pression of minimum cost. Unlike hill-climbing, in which
problem. Notice that the configuration space grows factori- the bestmove is selected in each step, the simulated an-
ally with respect to the sizen of the linear expression. A nealing technique picksrandommove (ine (a)). Ifthe
close investigation suggests that it is unlikely that a poly- move actually lowers the cost, i.&C < 0, it is always ac-
nomial time algorithm will be found for this combinatorial ~ cepted. Otherwise,mi.eAC > 0, the move is accepted only
minimization problem, although we have not proven its NP- with probabilitye™ xT (line (b)-(d)). This allows oc-
hardness yet. In an attempt to reduce search costs, we usecasional ‘uphill moves’ in an attempt to move out of a lo-
an efficient approximation algorithm that produces at least, cal minimum in favor of searching for a better, more global,

MinimizeC(E) subject toEy = E, whereEy is a
given linear expression.

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

one. These uphill moves are controlled probabilistically by
the ‘temperatureT. At higher values off, uphill moves are
more likely to be allowed. However, they become less likely
toward the end of the process, as the valud afecreases.
The temperature is lowered slowly according to an anneal-
ing schedule that dictates how it decreases from high to low
values (ine (e)). Theoretical analysis shows that if the
schedule lowerd slowly enough, the algorithm converges
with probability one to a global minimum. Unfortunately,
the analysis provides little information on how to define a
good schedule.

When the simulated annealing method is applied to com-
binatorial optimization, the schedule usually controls the
temperature with a function of the number of steps that have
already been taken. In our implementation, we have care-
fully selected through repeated trial-and-error experiments

N2Wi j 11k HANPWis g |k — Wi j k1, Wherew | x = Z(%, Y], &)

and A = “A'—Xt (for simplicity of explanation, we assume
Ax = Ay). Then the entire equation set can be represented in
the matrix formy = Ax+ b, wherey, x, andb are comprised

of the (k+ 1)-th, k-th, and(k — 1)-th time-step variables, re-
spectively.

We tested our optimization technique with & 8 grid.
Figure 5(a) shows a portion of i x 64 matrix of the cor-
responding finite-difference equation. It takes 82 SIMD in-
structions to evaluate the linear expression using our code
generation technique. After the linear expression is trans-
formed through the simulated annealing algorithm, the num-
ber of instructions reduces to 63. Observe that non-zero ele-
ments are packed more compactly in the transformed matrix
as shown in Figure 5(b). As a result, it becomes possible to
exploit the four-wide SIMD parallelism of the vertex shader

such control parameters as the number of iterations taken in more effectively for computing the wave equation.
each downward step, the decrease rate between subsequent

downward steps, and the (Boltzmann'’s) consként 0) that
relates the cost and the temperature.

3. Applications to Vertex Shader Programming

We have implemented the shader optimization technique

3.2. Fourth-Order Runge-Kutta Method

Integrating differential equations is an important part of dy-
namic simulation in computer graphics. The fourth-order
Runge-Kutta method offers substantial improvement in ac-
curacy over the lower-order techniques such as the Euler

presented above, and applied it to various problems. When it method. Nevertheless, it has not been popular in develop-
is used in practice, the optimization scheme may have to be ing real-time applications because of its computational com-

modified slightly to meet the specific requirements of each
problem. In this section, we first explain how we applied

our technique to efficiently implement three numerical prob-
lems. Then a pixel shader programming technique is pre-
sented in the next section.

3.1. Two-Dimensional Wave Equation

Waves are natural phenomena we experience in our every-

day lives. Some simple forms of waves can be described
mathematically by the wave equation, which is a prototyp-
ical second-order hyperbolic partial differential equatfon
For example, two-dimensional waves like ripples on the sur-
face of water, resulting from a stone being dropped in water,
are described by the two-dimensional wave equation

Pz o0z P2

otz " tox2 9y’
where the time-dependent wawg, y,t) spreads out at the
speed ofi.

(©)

The wave equation is easily discretized using the finite-
difference method. Consider a nodg,yj) of a coordi-
nate grid at a sequence of discrete tintgswherex; =
i-Ax fori=01---,my=j-Ayfor j=01---,n,
and ty = k- At for k = 0,1,---. Then, applying Eq. (3)
at the grid point(x,yj) at the time instanty,, and ap-
proximating the second partial derivatives with a central
difference, we obtain a finite difference equation of the
formwi j 1 =MW1 k+ AW j_1k+2(1— 202w j i+

plexity. As an application of our optimization technique, we

show that the fourth-order Runge-Kutta method, known to
be expensive for real-time applications, can in fact be imple-
mented efficiently on a SIMD graphics processor.

Consider a system of first-order differential equations
)/i = f| (t7y07y17 e 7yn—1)7 Vi (to) = ylO (I = 07 17 s, N— 1)
where thefis are linearly defined as follows:

n—1
7Yn—1) =

zoaij~yj+[3i (i=01,---,n—1)

J:

fi (t7y07yla T

The formula for theclassicalfourth-order Runge-Kutta
method is

et

where the four classes of coefficierds bj, ¢, andd; are
computed through the following stepg & haj, & = hB):

1
yik+6(a.- +2b+26+d), k=0,1,2,--, (4)

n—1
Zoyli'y%(+6i for i=0,1,2,---,n=1; (%)
=

aj <«
1 .
Wi)}i<+§ai fori=0,1,2,---,n—1; ©6)
n—1 .
bi — ZOVj-Wj+6i for i=0,1,2,---,n—=1 (7)
j=
Wi —)}i<+%bi fori=0,1,2,---,n—1; ®)

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

Figure 6: Application to vehicle suspension design. A ve-

hicle’s suspension suitable for modeling bounce and pitch

motions, is simulated using the fourth-order Runge-Kutta
method on the GPU. This computation can be performed
more effectively in the vertex processing stage than in the

pixel processing stage, because the computed values are im-

mediately used as parameters for modeling the transform of
a vehicle model. No access to the framebuffer is necessary if

the vertex state program, as supported by NVIDIA’'s GeForce

GPUs, is used.

Q0| O 0 DD | 40| 35000.00 | o 2 SO | D D7 | AR | ol e B D
o R L e e T s e S S IR A A e A Sl e e R R R e bee]
colococooloooooooolcooolcoooloooooooolooosloo o oloosn
colcoocolocooooooolcooolocoolocooooooloos oo o ofjes
colcococolococoococoolcocoolocoolocoooooolof coloo o o=
coloccoolpocoolooooloocooloocoolocoooooolfoooememaso o
colcococolcooococoolcocoooco oo oo oooosloo oo o n-one
colcococolococoolcocooloocoolocooloooooofoloocooesimsococoo
colcocoolocoooloooolcocoolooco oo oo oofoolooooew=elcocoo
colcocoolocooooocoolcocoolocoolcooodooolccooeEoolcooo
colcooolcooocooolcococofooco oo oofloooolcommooo ocoom
ocolcooolocooooooolcocoolo oo oo of oo oo o|esemno oo oo oo
colcocoolocooolocooolococooloco oo oooooo|=w=ncoooodoo
oolocooloooooooolwooolocoolf oo oemesleoococodooo
colcooolcooocooolcocoooocofoooooomEeeslccomococoo
colccocolocoooloooolocooo ool oo oesmsococoloodolcocoo
colccooloocoolooooloooolofoolo oo oew=alccooodoolcooo
coloccocolococoooocooloccooldooolooooeroolccocoldocolcocoo
colccoolcocoococoolcocoslocoolcomwocooccoslccocolcocoo
coloccooloooolooooloofol oo oleiamccocolcofooocoolcono
colcocoolococooloooolofooloooolEwmeococoolofooloococolcooo
coloccocolococooloooolfoooeenlerooocococolfoocoococolcooo
ScolcooolcooooooslcocoooommEmescocosflcoocolcococojccoo
colocoooloooooofolocooesisc cooloofoloccocolooocojlcooo
colocooolooooof oolocooew=elccooofoojcooolocooolcooo
coloccoolocoooldooolococooeoolcooodooolcooolocoolcooo
colcococolcooglcocoolcommwocoocooslocoojcoocolcococojccoo
colcoooloofolooooleianocoolcofocooojlcoococooolcooo
colcooolof oooooo=w=aoocoolofoooooojcooolocooocooo
colocoolfoooemenwsoolcocoolfooooocoolccooloocolcoco
colcooslcooooomEeesccoslcooocooojcooolcooolcooo
coloofoloocoolesmslccooloofolcocoooooolccocooocoolcooo
colofooloooolew=alcococoofooloooooooolcooocooolcono
coldcoolpocooleroolooccoldoocoloooooocooloocolcccolcono
oflccocolcosmwocoolcooslccoojcooooocoojcoocolcococojcocoo
Foloooolerwmccoolocofoloocoolccoooooojlccoooocoolcooo
colocooo|ew=sococoolofoolocoolcooooooolcooolcocoojlcooo
colee@enlerocococoolfoocolocoolcooooocoolccooooccolcooo
Solcowl=eesccoslcoocolccoojcooocooojcoocolcococojccoo
cole=w=lccooloofojlcooolococoolcooooooolcooolocoocolcooo
colew=elcocoolofoojlcoocoloooolcooocooojlcoococooolcooo
oole=oolocoooldoooloccoolocoolcoooocoolcooolocooooooo
=mococoolcooslcooolcoooococoocooooooojcooolcococolcooo
wcoooloofooooojlccooloooojlcooooooolcoooloooolcooo

L]

o

L]

n—1

E%%~Wy+&f0fh:&12,~,n—l; ©)

«—

Ci

(a) Before transformation

(10)

7n_1;

W —))i<+Ci fori=0,1,2---
n—1

Zyrm+ﬁfmi:OJ2,~mfl;uD

J

As an example, we consider a representation of a car's

suspension suitable for modeling the bounce and pitch mo-
tions (see Figure 6). While originally used in investigating

the ride-quality effects of road-surface variations in the di-

rection of travel, it turns out to be very useful for increas-
ing realism in real-time animation of moving vehicles. For
the vertical translatiofp of the mass center and the rotation

y» about an axis, the following equations of motion can be

V1 :i%%%%+knw—%%+cﬂw

+ (koLo — ki (L —Lg))y2 + (CoLo — c1(L — Lo))yz +do}

5 = Y
©
(0]
= Il Il
=
3 -= N
@ B2z o o © o|FFRL BRI Yoo RYFE HEmE O © © OBASLFHSBE
e 6 o OO i
OO O R 5 + W SOt etsb et e i AR 4
R BT A1 & O e e e e T a4
OSSP Pl 7 Jmp e e St B G g
seesooessoootaloosoossoogsoossooodoodooo
R e e e e el el e e e A
O e e S e i g (i 5 St e 5
O e S s e e e et AP SR
Secoeseosopoogeooroociood oooYoooodoooeroo
e e e b e e e e R SR
O et e s e b bbb it e
Oy O e g g e et I e
cocoosloosoesodoosgioosgloocgooosssooesoonsoe
e eV e e el i | W s
O RO S A e e i 4B e AR
O e e = 7 A e e e 4 P D v M
cococoposoclodoosgioossloocadoogococediossoo
R e S R e ey el e e S
e e S g el e 4 b I S S
O e e S g g s et I s (e
SocoeseosopoogeoogeooaldoocoooooosooooReos
g e e e e el el el e e
O T e S g e i B S e
O g B SO bl oo g s g e
cocoosloosoeoogmmmmlanmsio oo sooogocoocooo0c00
S s S R | P S S e R o 513
et R e T e e e I oY 5. S
O e PO O | P g s >
Soosooecsoposadooniooolocooaooosooooofooo
RN S RS A SRR g
I R T (S R SR S S A
e v e e i b e e) 45
Socsooeooodoogoosgooosiocogooctosoosoooeton
R e e e e e el el el R e b
et e R S e g e e e e
O e S s e s st et I e e
Soggsoieseoeeogoessoossooogooogeooosoooeooo
R A A A S R S R N S
O o e sl b bbbt et e et
SO e P O e s e S P e S
codoooeosoesogoossioossioooaooogsooossoonsse
7 A e S e b bbb e i b
[]
[]
L[]

vh =

(b) After transformation

T (Loko — (L~ LoJku)yo + (Logo — (L~ Lo)er)ya
— (Lko+ (L —Lo)*ka)y2 — (Lico+ (L — Lo)?ca)ys + i}

Here,dp andd; are values that are functions of the displace-
mentszy andz; of tires from the reference height, and their

Figure 5: Transformation of the 2D wave equation. We find

transformation process. As a result, the number of necessary

that the non-zero entries are packed very efficiently after the
SIMD instructions drops from 82 to 63. Note that each non-

zero real derivativesz, andz;. They must be computed at each time

zero integer number in the matrix denotes a non-

number.

step using the vehicle’s speed and the road surface profile.

In this example, we consider five cars moving indepen-
dently on the road, and obtain a system of 20 linear differ-

ential equations. To integrate the equations for each car, the
expressions in Eq. (4) to (11) must be evaluated four times.

This implies that they must be evaluated 20 times at each

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

time step. Although the amount of necessary computation
appears too much for real-time simulation, it can be coded
very compactly on SIMD graphics processors.

The expressions in Egs. (4)—-(11) can be partitioned into
three classes: {Eq. (4)}, {Egs. (5), (7), (9), (11)}, and
{Egs. (6), (8), (10)}. The equations in the second class com-
prise the most time-consuming part, so we focus on their
optimization. Note that there are four sets of equations cor-
responding to the coefficiengs, by, ¢;, andd;. While these

sets must be evaluated in alphabetical order, the 20 equations

of each set can be computed in arbitrary order. Furthermore,

because the four sets share the same equations except for the

run-time values ofw;, optimized codes for one set can be

used for the others. Figure 2(a) is, in fact, a linear expres-
sion derived from the 20 equations corresponding to a coef-
ficient of this example. The cost, that is, the number of nec-
essary four-wide SIMD instructions when no transformation

is applied, is 20. After the linear expression is transformed
through the simulated annealing algorithm, we found that it

can be coded in 14 instructions. Because there are four sets

of identical equations, this results in a saving of 24§- 4)
SIMD instructions. Figure 2(b) shows the transformed linear
expression. It is obvious that the parallel computing power
of SIMD graphics processor is utilized very well.

3.3. Gauss-Seidel Method

The Gauss-Seidel method is one of the most commonly used

iterative methods for solving linear systedvs= b. It starts

with an initial approximation®, and generates a sequence
of vectorsx(!), hoping to converge to the solutionlt is ex-
tensively used in solving large and/or sparse systems found
in various problems (some examples include the radiosity
equatiof and several finite-difference equations from com-
putational fluid dynamics).

The iteration in the Gauss-Seidel method is expressed as
px) = —LxV —ux'Y +b,

where D is the diagonal part oA, andL andU are the
lower and upper triangles @& with zeros on the diagonal,

In matrix form, it is

Xq 0 X
() 221 0 (1)
x> a2)
0] a1 a2 0 0]
X3 = — | a3 as3 X3 —
0) 41 %2 43 0
Xn ann ann ann 0 Xn
ap &3 ain (1-1) by
0 a1 ay a1y X a1y
0 a3 an x1=1 by
a2 a2 2 az2
.) (1-1) b3
. . X3 + ag3
0 ah—1n :
an—1n—1 : :
0 x=v bn

ann

The Gauss-Seidel iteration is different from the linear ex-
pressions in the previous examples in that it is composed
of two linear expressions of the forf, : y = Ap?f') and
Ey:y= Az)?f'_l> + b_z. To optimize the iteration computa-
tion, the cost function is modified as follows

n—1

CELE) = 5 {CEMi)+CE"(.1)}
i,]=0

n—1
+ _ZD{CE‘:”“(D +Cg,Mi)}

In computing the first matrix-vector multiplicatiohlif'), it

is important that the elements o) be computed in sequen-
tial order. This requirement can be satisfied by selecting the
row-major multiplication method for all diagonal submatri-
cesA; of A. For this reasorC{E“l“'(i, j) in the cost function is

slightly changed to
vl j)={ min(cg, (i, j).re, (i, 1)),
1)

re (i.),

As a test, we applied our optimization technique to solv-
ing a Poisson equation that is generated in the process of
enforcing the incompressibility conditiow - u = 0 of the
Navier-Stokes equations for fluid animatiorfFigure 7(a)
shows a portion of the Gauss-Seidel iteration fob4ax
64 linear system of equations, generated from the fluid-
containing cells in 40x 10x 10grid. For convenience, we
put the three matrice&; (lower triangular) Ao (upper trian-
gular), andD (diagonal) in one matrix. Figure 7(b) shows an
equivalent iteration obtained after the transformation stage.

ifij,

otherwise

In this example, the cost decreased from 112 SIMD in-
structions to 72 SIMD instructions. This high optimization
effect is understood by observing the row-major multipli-

respectively. Note that each unknown is updated as soon as acations that must be performed in an iteration Computation

newer estimate of that unknown is computed, which speeds
up convergence. If we lét; = —D~ 1L, Ay = —D~!U, and
by = D_lb, the equation becomes

) = A+ Aok Y b,

before the transform (see the horizontal thick line segments
in the diagonal submatrices of Figure 7(a)). Only one non-
zero number appears in each segment, implying that only
one meaningful multiplication is performed @@P4instruc-
tion. The inefficiency is evident, becaus®®&4 instruction

can carry out up to four multiplications and three additions

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

Interestingly, each curved segment, correspondingNtA®
instruction, contains four non-zero coefficients. This entails

the full exploitation of the SIMD parallelism of shader hard-

pears after the transformation process, as seen in Figure 7(b).
ware.

simultaneously. On the other hand, this inefficiency disap-

3.4. Statistics for Vertex Shader Implementations

Table 2 summarizes the statistics for implementing vertex

shaders for the described examples. Column (a) indicates the
number of additions and multiplications that must be com-

puted to evaluate the original linear expression. This column

can be viewed as the cost when no SIMD parallelism is ex-

ploited at all. The next two columns (b) and (c) compare the
numbers of SIMD instructions necessary for evaluating the

initial and transformed linear expressions. We find that the
transformation effort reduces the cost by 23 to 36 per cent.

Column (d) indicates the ratio of the total arithmetic
operations (column (a)) to the vertex shader length (col-

2] D Q| B DS B S G BB R $0 O R B R S [B e S o
FEFEENIABHHBISBEBFITIYICILRIBHPBIBBHEB 3068
colocooloooobooopooooooolooosloooooooolooosloos
coloocoolooooloooopooooooooofoooooloooolood oo bs
colooooloooolbooooosolosssoofoooosoloosolofoodsas
colococoloocolooopocobocoldooooocooocoldocabeas
Soloooolooooo oo ojoco0oo0s 000000 oloooscosboo0 0
coloocoolooool oo oooooloofoloo oo o oloofoloshtoofo
coloocoolooooloooooooolofoooooooooolofoolddasofoo
colocoolocoolcooooocoldoooccoooocodooooeasfoco
Solcooolooooo oo ojocoslcoooo0 oo osoosdooosoooo
coloocooloooolooooofoloooooooooofoosbzloofoooco
coloocooloooolo oo oo foolooooooooosooldbdsalofoocooo
colococolocoolooodocoooooccooéoogbessldéoocococo
Solcoooloooocoosloooolooooooosloosbloocoscoo oo
coloocoolooooofoooooooooodoosiioofocooooooo
coloocooloooolof ooooooooooofoodssofoocooocooo
colococolococolfocooocolooocoldoogyeasfocolccoccocs
colcocoolooos000 0000000 0s00s6000r000000000008
colooooloofolb oo oo oloofoosbtoofooocoobooooofo
coloooolofoole oo ooooolofooldbs slofoooooolbosoofoo
colococoldocolpooooocoldoogwsasdocooocolococdocn
Soloooslcooolo oo ooooscosdoooslooooooooooosooo o
coloofoloooole oo oo ofolofbaloofooocoloocoolbofoococn
colofoolocoolo oo oo foolddsaofoooooooocoolofoocooo
colfccolocoolooodocosesldooooocoooccolfooococo
Sflcooolcoooboosoosbloooscooooooooooscooooooo
FoloocoolooooloofooLéiloofoooooooooloofoloooococn
coloocooloooolofoodés slofoocooooooolofooloooocooo
colococolocoolfoogpesslféoooccoooocodocolocoococo
Solcoooloooslooshiocoslcoooooooooosocoo0o0 00000
colooooloofolofésloofooooocooooofocccocooccocn
colocoolofooldhzaofoojoooocoooofoojocoocooocooo
colococolfoooieasfocolocooccooéocoocooloococococo

LA ocoooogoogpooogooooooo00o00gooooo00ooocoo o
cojoofolofbzloofooooooooooofoooooocoooooococo
colofoolédz slofoojocoolooooofooooooocoolcooocooo
colfoooiesslfooooocolooooldooooocooocolccoococa
SFloogdloooslcoooocoooooscooooooooocooco0 00000
Foloféloofolocoojocooloofolcooocoooooooloooococn
©0|gé%s slofoojocoooooolofoocoooooooocoolcooocooo
co92esldooolcooopocolfoooccoooocooocolocoococo
2 Gcoorlcooocoooocosco0000000000000000000000 0

Zloofojcccoloocoopofoooojccoojoooobooocooojoooo
.
(]

umn (c)). This figure represents the average number of
arithmetic operations that are performed per SIMD instruc-
tion. Recall that theDP4 and MADinstructions can carry

out up to seven (three additions/four multiplications) and
eight (four additions/four multiplications) arithmetic oper-

(a) Before transformation

ations, respectively. Efficiency of the SIMD implementa-

tion of linear expression is determined by how cleverly the
arithmetic operations are crammed into the SIMD instruc-

tions. The efficiency levels range from 6.4 to 8.0, indicating

that our optimization technique generates very effective ver-
tex shader codes. Interestingly enough, SIMD parallelism is
fully utilized in the Gauss-Seidel example, and its efficiency

The last column (e) shows the number of instructions that
are actually required to write a vertex shader program on

NVIDIAs GeForce FX GPU. To use its vertex engine, all

the input values, that is, the non-zero valuesApfk, and

b of linear expression are loaded into the constant registers

before the vertex program starts. These values are then sup-
plied to its function unit while the linear expression is eval-

uated. A problem is that only one constant register may be
read by a SIMD instruction on the GeForce FX GP\This

o
o0}
(O]
o]
o
5
o
2]
£
2 I
8E-5IPNBGCeIIBOTLIFEONEES PYHE I TREBRY 05T
colpoo oo ooomelocscsoscbosoleoofcsdoocdoss
g =05 i s s g2 4
e Qa0 A, QR =g i SO)92
colbocobecdZoctooccocccanabatdibonctocaibes
B T S e s e e S e e
e e N P e N e e 2 A
e s =il A N A7 b
e e eegain, 7 /AP AP S i = e P
e e e S e S S e S S
e e e S e s e R e S
SokScokesgeecgeecsectesgscscEZgecssgeess
e e S S g e S 7 S
R T S e e e S Ee e S e
SRS S g g i el el 7 g P e
i e S ettt s 2 e s Ve
O e = S s e -2 e S AP 1) ¥
S S R S S S S S A S e S
A S R R e 7 R S
A e GG Do J 7 4 M P
e Qe Qa5 AP S 72 A S P i g
e e e e e RS SRR S S
e ey P T W 7 e e e e T
4 79 e SOy 20 N2 i e =R A==
PO n, W, ¥)OO Qg0 e e S S . S
B e e s s e SR R R S S
e e e S 7 A S e e e g
e el =2 4 SNV o e R g S
e S G- P S S
R e e e e
e S e 7 2 g i e S e v - VS
e f o el bbbl st e e b 2 ¥/ 4
o), Qe e i e e S g
Sohacokocgbacaeacscacacccoioccbasstsoosace
e e 7 A S S it ot N e g
e SO 7 GGy b S O S O 0
e 7 QR e A o e S N S g
ey e e e T R R R e
e e e Sl S P e e el =
i 7 Qe it 5 e i A S e S
e 7 e e s s X e e e e s
e S E e S S S S S S S S S
e R I P b e o N e e
L]
[]
[]

limitation forces frequent data moves between constant reg-
isters and temporary (read/write) registers. Forahavave

equation and theGauss-Seidel examples, 18 and 15 extra

(b) After transformation

MOVinstructions were required, respectively. On the other
hand, the extra 64 instructions in tRenge-Kutta example

Figure 7: Transformation for the Gauss-Seidel method. Our

SIMD optimization technique generates an equivalent linear

include these move operations, and the arithmetic operations
for evaluating Eq. (4), (6), (8), and (10). Due to the extt@V

expression that can be evaluated more efficiently. The num-
ber of necessary SIMD instructions per iteration drops from

112to 72.

instructions, the actual efficiency is lower than that shown
in column (d). However, we expect it to be enhanced when

vertex shaders are implemented on the newer GPUs that are

equipped with more temporary registers.

Finally, Figure 8 shows how the cd8tE) decreases dur-
ing the simulated annealing process, where three different

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

@ (@O @© @ (e Cost
2D wave equation 462 82 63 7.3 81

160 it

120 . iy T —————————
Runge-Kutta 360 80 56 6.4 120 % P rae A A
Gauss-Seidel 576 112 72 80 87 4

5000 10000 15000 20000 25000 30000
of moves

Table 2: Statistics on vertex shader implementations. (a)
Number of total arithmetic operations, (b) & (c) Costs be- (a) 2D wave equation
fore and after the transform, (d) Efficiency = (a) / (c), (e)

Number of instructions in the final vertex shader. o
ost

V] B T S —
sets of control parameters were tested. We observe that all 20 S E el sl ,H{nﬁ‘m '"
three annealing schedules find the same minimum although ©

the times taken to reach it for the first time vary. It appears 5000 10000 15000

that the search patterns are less affected by the schedules for # of moves

the Runge-Kutta example. On the other hand, the difference

is noticeable for the other examples. Recall that the search
space (20!) of the first example is rather small compared to

the search spaces (64!) of the latter examples. During the an- Cost
nealing process, since there are more possible ways to move, [
around the larger spaces, the search process is more sensitiveso ""WQ',‘L' *:”’"“"M

(b) Runge-Kutta

A . I e A T)
to the annealing schedules. In any case, we conjecture that';] v i
the simulated annealing algorithm successfully found one of . , _ , ,

. .. 5000 10000 15000 20000 25000
possibly many global minima. # of moves

. L (c) Gauss-Seidel
3.5. Implementing the Optimized Vertex Shaders on

NVIDIA's GeForce GPUs

Figure 8: Performance of the simulated annealing algo-
rithm. Three different sets of control parameters were tested.
Itis conjectured that the simulated annealing algorithm suc-
d cessfully found a global minimum in these examples.

So far, we have described how various numerical algorithms
can be mapped ontabstractvertex shaders that support a
simple SIMD parallelism. In implementing this optimiza-
tion technique, we have used vertex state program offere
by NVIDIAs GeForce GPUs. It shares the same SIMD in-
struction set as vertex program and have a similar execution

model. Unlike the vertex program that is executed implicitly

when a vertex transformation is provoked by drawing it, the ~ When vertex programs or vertex state programs are exe-
vertex state program is executed explicitly, independently of cuted, the data transfer between the CPU and the GPU must
any vertices. be minimized. In fact, it is often unnecessary to transfer the
data computed by vertex state programs to main memory.
As mentioned above, there is no need to move the com-
puted position and orientation in the example of Subsec-
tion 3.2. Furthermore, it is possible to render the waves in
Subsection 3.1 without transferring the computerbordi-
nates back to main memory. When each vertex of the wave
is enumerated using thgVertex*(*) command, onlyi andy
coordinates are described. At the same time, the index to the
program parameter register that holdzit®ordinate is sup-
plied to the vertex program as a vertex attribute. The vertex
program can then use the index as a relative offset for read-
ing thez value from the proper program parameter register.

The major purpose of the vertex state program is to com-
pute various program parameters that are required for exe-
cuting vertex programs. The computed values stay in pro-
gram parameter registers, shared by both the vertex state
program and the vertex program, and are then used appro-
priately by subsequently executed vertex programs. Unlike
the vertex program, no vertex is put in the graphics pipeline.
This execution model is well-suited to implementing our
optimization technique. For instance, a vertex state pro-
gram, containing the optimized differential equation solver
explained in Subsection 3.2, is executed for each frame to
compute the positiogg and the orientatiory, of the vehi-
cle, and store them in program parameter registers. A ver- Implementations of vertex shaders with vertex state pro-
tex program, repeatedly called for each vertex of the vehicle grams are currently limited because of the shortcomings of
model, can then perform modelling transformations appro- available vertex shader hardware. Such hardware generally
priately using these parameters. supports a small number of available program parameter

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

registers, and simple control structures that do not support 4.1.1. Enhanced Block Jacobi Method for the
branching and looping. For instance, the vertex state pro- Two-Dimensional Poisson Solver
gram must be called explicitly for every iteration of the
Gauss-Seidel method (presented earlier) because looping
instructions are not supported by the current vertex state
program. When the unoptimized and the optimized vertex
shaders were used on an NVIDIA GeForce FX 5900 GPU
solving a Poisson equation of si@é x 64, they took 4.27 ms

and 3.65 ms, respectively, for 174 iterations. Obviously, this .. - N .
is lower performance than modern CPUs, but such problems P U Xm0 6 -1 =A%) = D
are expected to be relieved as vertex shader hardware be~ ij=012.
comes more flexible in future GPUs.

Consider ar8 x 8 grid through which fluid is simulated. A
sparse linear systedw = b is obtained by discretizing the
Poisson equation over the pressure term. A linear equation
per grid point is produced, where the unknown variabje
denotes the pressure value at thg)-th point:

.,7. Let X € R% be the vector of un-

knowns, wherexjjs are enumerated in row-major fashion,

The SIMD optimization technique is not currently as ef- SO indexi varies faster.

fective for vertex shaders as it is for pixel shaders, yet The iteration in the well-known Jacobi method is then ex-
it is promising for applications such as moving vehicle pressed as

simulation in Subsection 3.2, which are inherently per- " . g =

vertex oriented. We believe that efforts to optimize ver- XV =D (L+U)X""" +by,

tex shader codes whether it is on vertex programs or ver- whereL, D, U, and 52 are defined in the same way as in

tex state programs, are important, because to reduce thegecion 3.3, In the Gauss-Seidel method, the updated values
computation time and shorten the codes, allowing Vertex .. yepjace older values immediately. This property makes
shader codes for larger problems to fit into the vertex shader it yificylt to implement the method on current pixel shader
hardware (the vertex shader still limits the number of in- 5 rqare. because of its inability to read and write the same
structions in its codes; for example, 256 are permitted for ;. e memory location in the same pagsin contrast,
NV_vertex_program2 of NV30). the standard Jacobi method computes all new components
of x before replacement, resulting in slower convergence of
the Jacobi iteration. Our pixel shader technique, however, is
faster than the standard Jacobi method, as will be explained

4. Applications to Pixel Shader Programming shortly

The presented optimization technique can also be applied |f two T blocks are added in the first and last block rows,
effectively for programming pixel shaders. An important the 64 x 64 matrix —D (L +U) of the two-dimensional
arChiteCtUI’al diﬁerence betWeen vertex Shaders and pixel Poisson equation can be represented as a repetition of a T-
shaders is that the latter offer fast access to texture memory, S-T plock sequence (see Figure 9). This block-tridiagonal
which can hold a large amount of data. To utilize the textur-
ing function of the pixel shaders, we add another instruction
TEXto the instruction set (shown in Table 1). Given texture
coordinates and a texture image, this additional instruction
fetches a correct texel value from texture memory. Unlike
the technique presented in the previous section, the SIMD
optimization technique can harness the fragment processing
power of the pixel shader. In this section, we show a cou-
ple of examples which demonstrate how our optimization
method is employed to enhance the performance of pixel
shaders.

4.1. An lterative Sparse Linear System Solver

As the first example, we apply the SIMD optimization tech-

nigue to develop a pixel shader that solves Poisson equa-
tions, generated during the integration process of the Navier-
Stokes equations. Although our Poisson equation solver has Figure 9: The block structure of the matrixD_l(L-i-U) in

been developed for three-dimensional grids, we will first ex- e jacobi iteration. The matrix from the 2D Poisson equa-
plain the solver in terms of a two-dimensional problem for ion exhibits a block-tridiagonal structure.

the sake of simplicity.

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

structure exhibits a very simple pattern in the matrix-vector
multiplication x!) = —D~Y(L+U)x!' =Y which is highly A

desirable for the pixel shader implementation. Figure 10(a) i?:i
illustrates arelementary blockwise multiplicatianvolving ;z,m
the j-th block row, where two sets of artificial unknowns ﬁ
{X0,—1,%X1,—1,%2,~1,-" - ,X7,—1} and {Xos,X18,X28, " " ;X78} Ty
are additionally assumed fgr=0andj = 7. 0 /L\ /Sﬁ /Tﬁ ij;i
As in the vertex shader implementation, each quadruple of ﬁ‘l’: b NPPd POPIRRd M N | [P b N d P e ;‘3:
(Xoj.X1j, X2}, X3j)" and (Xaj,Xsj, Xej,X7j)', j = 0,1,2,--,7 % [00%0/0000[0%0%/0000/00%0[0000]
is stored as a four-tuple of floating-point numbers. The figure |*¥|— g g g g 2 g 8 g g g z 2 g 2 g g g g g g 2 g g g a
shows that 10 shader instructions are required to implement x4: 0000[0%00/0000/B0%0/0000/0%o0O0 x4]7
the entire elementary blockwise multiplication. However, it | 0000[00%50/0000/0%B0%B 00000080 | X
is obvious that the SIMD processing power of pixel shader L'7J L0 00 0[0007%[0000]0 0% 0[0000[000%] l
is not fully exploited when the S block is multiplied with the .
two quadruples. §27v1
341
Applying our optimization technique to tf8ex 8 S block if’ !
returns a more efficient SIMD computation that requires xb::
only four instructions instead of six (see Figure 10(b)). No- LY+
tice that 30 scalar multiplications are actually carried out
using 10 four-wide SIMD instructions before the optimiza- (a) Before transformation
tion. Hence, only 75% (530%) of the fragment processing
power is used. On the other hand, the efficiency increased
to 93.75% (9) after the optimization, where eight SIMD o
instructions were used. o
er—l
The optimized elementary blockwise multiplication in %
Figure 10(b) becomes the fundamental computation kernel o x;i
that is mapped to the pixel shader hardware. Xetnd ‘ ig,,l
X, j =0,1,2,---,7 denote the two permuted four-tuples A=
(Xaj, X7}, X0}, X3j)" @nd (xqj,Xsj,Xej, X2})", respectively. Be- 288 0000 8888 8828 8288 0000 x
cause the current pixel shader supports four-wide SIMD pro- 8 P 2 g g 8 8 2 g 8 g @ 8 g 2 g 8 p 2 8 g g g i::
cessing, each optimized multlpllca_tlon must be perfqrmed 000m000l008 00008 0000%000 v—;
using two fragments. One problem is that the expressions to 000[0BO00[E000/00480[0000/0BOO| Xy
computex} andx), are not identical. Since the same kernel g 8 8 8 g g 2 8 g 8 ‘; 2 g 8 g g 8 g 8 8 8 g 2 o
must be executed over all fragments of a stream in the cur- - ﬁf’l
rent pixel shader, we have implemented the matrix-vector o X1
multiplication using two pixel shader programs, one for ’ ﬁf: :
and another foid, so the unknown vectax is partitioned T,‘
into two one-dimensional textures, as illustrated in Fig- is.rl
ure 11:TEX_X_EVENstores all even-numbered quadruples o
¢, and TEX_X_ODDstores the remaining odd-numbered S
quadruplesd. (b) After transformation

These two textures, and another one-dimensional texture
TEX_B containing the correctly permuteloh vector, are
loaded into texture memory. To compute the new unknown
vectorX in the I-th Jacobi iteration, a line segment is ren-
dered twice, bound to the texture images and the correct (al
ternately even-numbered or odd-numbered) shader program.
In the first line drawing, all even-numbered quadruples of
x) are updated by performing the first part of the elemen-
tary blockwise multiplication and addirg; values. The up-
dated unknowns are then used to calculate the remaining un-
knowns in the second line drawing. The immediate replace-

Figure 10: The elementary blockwise multiplication for the
2D Poisson equatiore(= — % andb = — 1). As in the vertex
shader optimization, the transformation on the S block finds
|. @ more efficient SIMD computation.

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

TEX_X_EVEN TEX X ODD

j=0123 4567 j=0123 4567

TEX B

j=0 123 4567012343567
Figure 11: Packing of data into 1D texture images. Be-
cause the evaluation of the elementary blockwise multipli-
cation requires two computation kernels, one each pr
andx$, the unknown vectoris partitioned into two textures
TEX_X_EVENandTEX_X_ODDIn order to perform a Ja-
cobi iteration, a line segment is rendered twice as bound to
the correct pair of kernel and texture alternately.

ment of the unknowns provides a faster convergence of the
iterations than that obtained for the standard Jacobi method.

We now discuss how boundary conditions of the Poisson
equation are handled in our pixel shader implementation.
Dirichlet conditions can easily be imposed by setting bound-
ary values directly. The free Neumann conditi%: Ocan
be realized by copying the unknown values of the first and
last rows and columns of the two-dimensional grid towards
their respective exteriors. At the two vertical boundaries, this

stance, a0 x 80 x 80 grid, where the 256,000 unknowns
Xijk, i =0,1,2,---,39, jk=0,1,2,---,79 are enumer-
ated again in row-major fashion (see Figure 12). Xt=
(XOjkvxljk7X2jk7 cee ,ngjk)t, j,k=10,1,2,--- 79 be vectors
in R*C that partition the unknown vectot Then eachki¥
represents a line in the grid that shares the sgaedk in-
dices. The(j,k)-th elementary blockwise multiplication
the Jacobi iterations is represented similarly as

AR 5 L R

§T KLk

Here, T € R*%*40js a diagonal matrix whose diagonal entry
is — (except the first and last diagonals, which ar§), and
Se RA*40js a diagonal block as depicted in Figure 13(a),
where the Neumann boundary conditi§§1 = 0 is already
imposed at the two boundary planes perpendicular toxthe
axis.

As before, our optimization technique finds a more effi-
cient method of computing the matrix-vector multiplication.
Figure 13(b) shows the matri® after the optimization. In
the three-dimensional case, 238 scalar multiplications (78
for S and 40 each foiT) are needed to compute an ele-
mentary blockwise multiplication. Before the computation
is optimized, 78 SIMD instructions (38 fd& and 10 each
for T) were required, and only 76.3%;(%) of the SIMD
capability was utilized. After the transformation 8f only
60 instructions (20 foiS and 10 each foil') are required
for the same computation. The efficiency approaches 99.2%
(= %), as the SIMD processor is how almost fully ex-
ploited. Notice that there are only two ‘wasted’ zeros in the

has a consequence that the diagonals in the Poisson equathick line segments of the optimize!

tion Ax = b, corresponding to the boundary unknowns, de-
crease by one. The matrix, shown in the example of Fig-
ure 10(a), has been constructed by imposing this partial con-
dition, where the denominator for the first and last rows in
the elementary blockwise multiplication is 3. However, the
boundary condition at the horizontal boundaries has not been
reflected in the elementary blockwise multiplication yet, as
it would complicate the matrix and require additional pixel
shader kernels. Instead, the horizontal boundary condition
is imposed during the execution of the pixel shader pro-
grams. The unknowns of the first and last rows are stored in
the four border texels of the two one-dimensional textures
TEX_X_EVENand TEX_X_ ODDWhen the unknowns in

Unlike the two-dimensional Poisson solver, the un-
knowns in the three-dimensional grid are packed into
two-dimensional textures. For the simplicity of nota-
tion, XX now denotes the group of unknowns whose
elements have been permuted in the optimization pro-

cess. We Iet>?(iil<), i =0,1,2,---,9 be the quadruples

(Xai,jk Xai 1.k Xai 2, k> %ai13k) that further partitionx!®
(refer to Figure 12 again). Becaug& contains 10 such
quadruples, 10 fragments must be processed to compute the
entire (j,k)-th elementary blockwise multiplication. As in
the two-dimensional solver, each fragment is calculated dif-
ferently, so we need to run 10 separate pixel shader ker-

the exterior rows, whose texture coordinates are outside the nels, one for eacﬁj:‘. This partition of the task forces the
texture range, are accessed with the texture wrap mode set top56,000 unknowns to be stored in 10 two-dimensional tex-

GL_CLAMP_TO_EDGIhe corresponding unknown values
in the boundary rows are fetched. In this way, the boundary
condition % = 0 in both horizontal and vertical directions
can be satisfied using only two pixel shader programs.

4.1.2. Extension to Three-Dimensional Space

The method presented here is easily extended for solv-
ing three-dimensional Poisson equations. Consider, for in-

(© The Eurographics Association and Blackwell Publishers 2004.

ture images of siz80 x 80, where the-th textureTEX_X_i
(i=0,1,2,---,9) holds all 6,400 quadrupleﬁg:‘), ik =
0,1,2,---,79. Figure 12 illustrates the correspondence be-
tween slabs of width 4 in the three-dimensional grid and
texture images. In order to impose the Neumann boundary
conditions for the remaining two directions, the texture wrap
mode must be set 8L_CLAMP_TO_EDGHr both texture
coordinates.

Bajaj, lhm, Min, and Oh / SIMD Optimization

000

TEX X 0 TEX X 1

cosccolecccecogecodecogeccdcococlcccclcocsloons
e e e P K P g2
cocojcccaeoococoodeccaoocooooolocs ol oooldodo
e P e P e e
ccoocccdccodccodeoodoocooooooco oo on cjanen
cocojcccooccooccogooooooccooooolocoolodoslcoco
i i e P S g
e e e e P e g
cooojcccooocoodcocodoooooooocooocos clmeeBlco oo
cococccaecocncooceocaeocaoonaodoscoooloonn
cocojcccooccooccogoooooocaococaldodolcocaleacs
e e e e P g e P
ccoocccoccodccocdooodoocoocoscmeeBcooocoo o
coscojcccooocoocoogooooooocoodosccoolcooolooco
cocolcccoocoacocdeccaocoaldodolccoclcccncocn
coscccccdoocogcoogoos cmmem o doclccoclcooolooce
cococoocccoococogocococcocCocogclmmEmmcoccoccoocococo
cocojcccoccooccodooooodoscooccccolcooaloocn
coscojcccocooocoogoooododococacccalcooaleocn
coscleccceoococco qomemodoooooalccoclcooaloocs
ccoccccdccodccodoos Jmeeeccoocccoocoooooo
cococccoeocoocoogodoscccooccococolocoslooos
cocolccoooooaeocddodoocoolococolcocolococooos
e e P e P e e
EEEE CEEEELEEEEEE 2 - - EEEEE EEEEE EEEEE EEEEEERD
cocolcccooocoocdogoccoocoolococolcooolococlooos
cococccooeooododdocccocoooocococolocoalooos
cocoocc omemcdodocooocoooooocccolocoalooos
ScoojcccoocosmemEcocoocoocccocccoocooooas
cococcocoodogcocdoccgooooloscolconolocoolonns
cooojcccododoccocdococoocoooonaconolocnaloonn
oo lomemc docjccodoccoocoooccocccoloccalosns
coocloosc@eesccodoooodoccojoocooocooooooooo
coocoedescoooccodoocoocaoooccacocalooccaloons
cocodedococcocodooococacooocacocaloooaloons
e e e e P e S
cosclmeeecoccoccodocoooooooococoooooooloooo
cdcslcccclcoccccogocccecaooocococaloooaloons
dodolcccccoogeccogoocgocoajcooocooocooolooos
cdoclocccccocccccogocccocaooccococoloooaloons
=

5}

©

L

1%

0]

)]

©

€

....... _ o

ﬂ S

% m

i 8

N o

...... > Y

18 2

S £

- 5

5

- [a)

=g ™

B3 bS)

c

o

~ =

=1

G

(2

=

N

—

g

=)

L

slab of width 4 is stored in a 2D RGBA texture. All unknowns
in a slab are updated by executing a corresponding pixel

(a) Before transformation

shader kernel. The computed values update the unknowns

immediately, and are used to compute the unknown values

of the remaining slabs. These immediate updates within an 4 ¢ o[o 0 0 000 0[0 0.0 0[0 0 0 0o 00 0[0 0 0 o]0 0 0 0ls=es0.0]0 0 0 0

iteration step lead to an enhanced convergence rate, com-

pared with the standard Jacobi method.

cocolcog@occolcooo|jococo|lcoooloccoolooocogoooecoo
cocolcoffiolccco|lococoo|joooco|lcoocccoolcccodEo@ocoe
cocol@oolccco|lcocoo|jococo|lcooclccooloococRdblocoe
coolooolcoccolocooojoooo|coocccooloccocoWolcc oo
YR EEEE EEEE EEEE EEEE EEEE EEEE EEEEEEEREEE 3
Je psloccocolcocojlcocoojococo|lcooclocooloo o ojcoooladade
Wfolcococolcccojococosjoococo|lcooc|jocoolo oo oc oo oo
ccolocooolococoloocoo|ococo|lcoooocooloocojcooocco®R
EEE CEEL EEEE EEEE EEEE EEEEEEEEE EE S EEEEEEEDR
cocolcooolcoccojococos|jcococo|logclococclodecococojoccoe
coolcoocolcoco|locooojcocoo|g@olblccoogadrojcooojccoo
cocolocooolccocojococosjooocojccoBococo|/Moojcooojocoe
EEE EEER R CEEEEY EEEE EEEEE EEEEE EEEEEEEEEEER
coolcoco/dilc slocfblocccc|lcoocccooloocojcooolccoe
cocolcoocodoft|Fololcccc|lcooclocooloocojcooo|locoo
coolcoocolcc@olooo|jocooco|lcooclccooloocojcooojccoo
EEEE EEEEEE EEEE EEEEEEEEEEEE I CEEEEEEEEER
cocoldJcscccojloccos|jococo|jcococjococo|doamlccoojocoe
ccofclfolocccocjlcocoojoccco|lcooc|lccoolgofesjcooojccoo
ccol@ccolcocoloocoojoocco|lcoococcooc@oojcooolocoo
EEE CEELE EEEE . B S EEEE EEEE EEEE EEEEEEER
cocolcooolcoc ook oo deoccoococoolcocolccoc|locco
ccolcoocolcocolcocRol@droc|loccoolcooolcococcoc|locco
ccolocoocolcocojcocRMoco|lccoojcocoolcocoococlececo
EEE CEEE EEEE EEEER CEEEEEE EEEEY EEEEEEEEEEEE
coolcoocolcocolcocoo|cRoo|lccoolcMolbloccocojccocilocco
ccolcoocolcoco|lcocosloRecflocoo|Fgoldolcocolococ|locce
ccolocoocolococolcocoojocWolocoolfoocolcocolococ|locce
EEF EEEE EEEE EEEE EEEE EEEE EE CEEEEEEEEEEEEER
Mcfolccocolccoco|lcocoo|jocooco|lccoojgdlolcococcoc|locco
cWolcoocolococco|locooo|jocooco|locoo|AIoRcocoloccoc|locce
coolccocolococolcocooooccolccoo/cl@oolcococcoclecc e
EEE CEEL EEEE EEEE EEEE EE S EEEE EEEE EEEEEEE
ccolcooolccoco|loccoo|jococojlofoplcoocolcocoloccoc|oc fo
ccolcoocolococo|lococoo|joococo|gftoRcoocolcococcoo|lgc o
ccolooocolcocolococoojoocco|fcoolcoocolcocoococ|cMe o
cocolcccolcocglcocoojcccclocoolcoocolcocofocmelocco
coolccocolg@dclccoojcoccjlocoolcooolcocolodIklocco
ccolcococo|gclolccoojcccclocoolcoocolcocolgfeoklocco
cocolcococoocojcooojcocojlocoolcooolcocolfcoc|locco

Once the shader kernels and textures are prepared, includ-

ing one for thel:_)z vector, it is straightforward to solve the

three-dimensional Poisson equation. In Ithh Jacobi itera-

tion step, a rectangle is drawn 10 times. In every drawing,

the correctly bound shader kernels update the unknowns,
slab-by-slab. Note that the newly computed unknown val-

ues of a slab are immediately used to update the unknowns
of the remaining slabs. These slabwise serial updates of the
unknown vector within an iteration step enhance the conver-

gence speed of the standard Jacobi method remarkably.

Our sparse linear system solver differs from previous
solvers in that only the unknown vectaris loaded into

texture memory for the matrix-vector multiplication. In the

(b) After transformation

work of Bolz et al?, for instance, all nonzero entries of the
matrix A and their indirection information are additionally
loaded in texture memory. Their formulation is appropriate

Figure 13: The diagonal bloclsof the matrix-D (L +U)

for arbitrary sparse matrices; however, many of the sparse '

in the enhanced block Jacobi solver for 3D Poisson equa-

1
6

1
5

matrices found in engineering applications are structured. In

). The matrix transformation re-

=—¢andb=—
‘melted’ into the duces the cost of SIMD instructions from 38 to 20. Through

tions @

there is often no need to store all information in

such cases,

the matrix, as the nonzero entries can be

the optimization effort, we were able to utilize the SIMD

computation kernels instead. Our easy-to-implement pixel

capacity of pixel shader hardware with an efficiency of

shader is optimized in both space and time since only the

99.2/elementary blockwise multiplication. Notice that only

unknown vector is loaded into texture memory, and no addi-

two ‘wasted’ zeros are found in the thick line segments of the

tional indirection operations are required to access the ma-

trix entries and the unknowns.

optimizedS.

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

iterations (iter) than the enhanced block Jacobi method in

10-3 tofﬁ? = 10-5 this experiment. However, the experime_ntal results _indicate
- that the ‘slower’ enhanced block Jacobi method without a
GS time 101.6 364.8 1178.6 SIMD optimization EBJ on GPU) runs faster on the GPU
on CPU iter 16 61 200 than the ‘faster’ Gauss-Seidel meth@is(on CPU) does on
EBJ time 62.8 1424 419.1 the CPU. They also reveal that a considerable enhancement
on GPU iter 20 84 291 in the GPU implementations is obtained when the presented
EBJ time 49.1 111.6 315.9 SIMD optimization technique is applied (for example, when
on GPU ©8) (68.3) (272.6) comparing the timings dtBJ on GPU andEBJ on GPU (op-
(optimized) ~ iter 19 77 253 timized)). We find that about 23 per cent of the computation

time is saved on average. It is interesting to note that the op-
Table 3: Comparison of timing performances. The compu- timized GPU implementation demanded slightly fewer iter-
tation times in milliseconds (time) spent solving a Poisson ations to satisfy the same tolerance constraint. For instance,
equation of siz&56,000x 256,000are given with the num- the optimized implementation required only 253 iterations
bers of iterations (iter) required to achieve the specified pre- g achieve a tolerance 00—57 whereas the unoptimized im-
cisions (tolerance). The figures in parentheses are the pure plementation required 291 iterations. As discussed, our op-
computation times spent by the optimized enhanced block timjzation technique packs the necessary arithmetic opera-
Jacobi solver. They exclude the times for data transfers be- tjons of the solver more efficiently into the four-wide SIMD
tween the CPU and the GPU that must be made to store the jnstructions of the GPU. The new arrangement of arithmetic
initial vector in the GPU and to read the solution vector back operations produced by the SIMD optimization process pro-
into the CPU. duces a more effective ordering of computations that leads

to a faster convergence. As a result, the number of required

SIMD instructions per iteration is reduced, and the conver-

4.1.3. Comparisons between CPU and GPU gence rate is accelerated.

Implementations The timings for the two GPU implementations include

To verify the effectiveness of the presented optimization t:e _dgFal_transfer time l:;}etv:gen the C_:PU and the _G_PU.hIn
technique, we have implemented the enhanced block Ja- the initialization stage, the 10 texture images containing the

0
cobi method on an NVIDIA's GeForce FX 5900 Ultra GPU. 258 000 elements o must be moved from the CPU to
We have also implemented the Gauss-Seidel method on anthe GPU. When the Poisson solver finishes iteration, another

Intel's 2.66 GHz Pentium 4 CPU. We applied these GPU data transfer from the GPU to the CPU must be performed
and CPU techniques to solving the Poisson equation that 0 9et the solution vector back. The figures in parentheses
arises in the projection step of Stam'’s solver for incompress- indicate the pure computation times spent by the solver, yet
ible viscous Navier-Stokes equatidhsAlthough we have exclude the data transfer time, which is about 40 ms on av-
described the GPU technique using the Neumann bound- €ra9€ in this experiment. Notice that this extra time for data
ary conditions, it is possible to impose either Dirichlet or {ransfer can be saved if the entire solver of the Navier-Stokes
Neumann conditions to each direction in three-dimensional eduations is implemented completely on a GPU, or at least
space. In this experiment, zero Dirichlet conditions were jm- amortized over the diffusion step that precedes the projec-
posed on the boundary plane perpendicular toxtteis, tion step in Stam’s solver. Our optimized GPU implementa-

and zero Neumann conditions were applied to the other two tion can be easily modified to solve the linear equations from

directions. We tested Poisson equations of %6 000 x the diffusion step. Usually, these equations are more diago-
256,000with 240 % 80 x 80 grid. nally dominant, therefore only a few (5 to 10) iterations are

sufficient to achieve a high precision.
Table 3 compares the performance of three different im-

plementations of the Poisson solver. First, the Gauss-Seidel
method was coded in highly optimized softwa@S(on 4.2. Applying the SIMD Optimization Technique to
CPU). The enhanced block Jacobi method was programmed Other Problems

with and without applying our SIMD optimization tech-
nique EBJ on GPU (optimized) and EBJ on GPU, respec-
tively). To measure the computation time in milliseconds
(time), we have evolved the Navier-Stokes equations in time
1,000 times, and averaged the timings required to solve the
1,000 generated equations. In each time frame, the respec-
tive solver of each implementation was iterated until a target
tolerance was achieved.

One of the most critical factors in mapping an algorithm onto
pixel shaders is the design of an efficient texture storage and
access pattern. As a result, pixel shader programming tends
to be more specific to the problem than vertex shader pro-
gramming. The implementation of the enhanced block Ja-
cobi method on pixel shaders turned out to be somewhat
complicated as the fragment processing units are fully uti-
lized. However, it is clear that the GPU provides a major
The Gauss-Seidel method requires 20 to 30 percent fewer speedup over the CPU implementation, and that applying

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

the SIMD optimization technique results in a considerable
improvement in timing performance for GPU implementa-
tions.

The SIMD optimization technique presented here is very
well suited to problems that are based on repeated evalua-
tions of linear expressions. As another example, recall the
two-dimensional wave equation (Eg. (3)), described in Sub-
section 3.1. We have simulated waves o512 x 512 grid,
from which a wave matrix of size62 144 x 262 144is gen-
erated. In this experiment, we imposed zero Dirichlet condi-
tions in one direction, and zero Neumann conditions in the
other direction, where the application of a similar mapping
technique as used in the previous subsection also produces
an efficient GPU implementation. Here, we give only a brief
description, without repeatedly explaining what is basically
the same implementation technique.

(a) A snap shot

The wave matrix is sparse and has a simple structure, and
can be, as before, represented as a repetition of a T-S-T
block sequence of siz812x 512 Instead of applying our
SIMD optimization technique to the somewhat large diag-
onal S block, we have subdivided it into a sequence of di-
agonal subblocks™Sof size32 x 32 (see Figure 14(b)). Af-
ter the elementary block*Sis optimized, we find that the
SIMD cost reduces from 38 to 24 (see Figure 14(c)). Two
coefficients around each corner of @re missing, as the
S block is partitioned into the *Sblocks. In coding pixel
shaders, two extra SIMD instructions are additionally re-
quired to handle them, for a total of 26 SIMD instructions
after the optimization. Because the T block is a simple diag- (b) Before transformation
onal matrix, two partitioning subblocks*Tof size 32 x 32
can be multiplied using 16 SIMD instructions. Hence, the
total number of SIMD instructions for an elementary block-
wise multiplication of size82 x 32 decreases from 56 to 42
through the optimization effort. Note that the en@@2 144
variables containing the heights at the grid points are stored
similarly as four-tuples in eight two-dimensional texture im-
ages, which are updated in each time step using eight sepa-
rate pixel shader kernels.

cococclcococolooc|ccoo|cooolcoooldddfolccco
cococcolcccolooccoloccocolococojamemdFoclccoo
cococclccocolooclcoccolocoldddfclccccloocns
cococcolcccolooccloccc olmemdFoc/ccoolccos
ccoolccocolooclodd slccooco/lcoco|lccoclccce
ccoolccocoloooldFolcoocolcoco|ocoolccco
ccoolccocclemesddoojcoco/lcocs|locoolccco
EEEE EEEE Y I CEEE CEEE EEEE EEEE
ccoolcccclFscocclcocojlcocs|lccoclcoce
ccocolcoccogdFolococojlcooco/lcocs|locoolccoo
ccoolememd Focjlococclcoocolccocs|locoolccoo
cococcolcossmeesccoococcojloocoo|locoolcoo o
cococcoldéffoloooclcccojcoco|lcooco|lococlccce
ooewld fFooclooclcococolcocolcocolocoalcccs
B I CEEE EEEE EEEE EEEE EEEE R
cgdslcccclooocclcocolcoco|lcooo|lococlccce
Fgddolcccolooclcocnjlcoco|lcooco|locoalcccs
dFococlcccolpooc|ccocjcoco|locoo|locoolcooo

cococologdslcooclocccojlcoco|locooo|locoolccoo

Sccoolccocoloooolcossmeeelccco|lccoolcoo o

ccoccolcccoloocclocccojlcoco|lcocolcccolocss
cococlccoolpoooc|cocoo|cooco|coocolocoolodds
cococclcoccolpooccloccolcocoolcocclocooidFo
cococclococcolooccloccoloccolo oo olomemiddo o
cocolcocolcooo|occooloo oolc oo oo of P e
cococcolcocolpocclococoloccoolcocoolcddslccoo
EEEE CEEE CEEE EEEE EEEE I CEER
ccoccolcccoloocclocccolcocolcddslcccclocns
EEEE CEEE CEEE EEEE EE R I CEEE EEER
cococclcocolpoocclocccoloddslococ|ccocclocos
cococclcoccolpoocclocccodFolcoocc|lccoclocos
cococcolcccoloocclomesldfoocjccocc|ccocclocos

The timing measurements summarized in Table 4 again
show a quite favorable result for both the GPU implementa-
tions and the SIMD optimization technique. Here, the figures
represent the computation times in milliseconds for a single
integration of the wave equation, averaged over the first 2000
time steps. In the GPU implementations, the height values of
simulated waves are stored in texture memory, hence a data
transfer from the GPU to the CPU is necessary per time step
to move the newly computed values. Currently, this overhead
is unavoidable on most GPUs, because the height informa-) .))
tion must be read back to the CPU for rendering and further Figure 14: The simulation of two-dimensional waves. The
processing. In spite of the extra data transfer time, the GPU (€sted512x 512 grid offers a very detailed wave simula-

implementations are shown to be faster than the CPU imple- tion: The matrix transforma.tio.n again dem.onstratgs the ef-
mentation (compare the timings in the raatal). fectiveness of the SIMD optimization technique as in the pre-

vious examples. Tha2 x 32 S* blocks are shown before

The performance could improve further if it was possi- and after the transformation. The cost reduces from 38 to
ble to bind the render target to memory objects like ver- 24 (q = 2(1_2)\2) andb = \?).

ccoolcocolemeclocccojlcoccolccccleooolecme
ccoolcocoldotclccocolccoolcoccloooolocd®
ccoolcocofogiclocccolccoolccccloccoledloc
ccoolcoccolcocRccoolocooolcocclooooldeoo
Scoolcocolcocolcco@cooolcomoloco@lo o o
ccoolcocolcocclocFolococoolc oo afclocc o
ccoolcococolcocolofoolocooolcFociofoocloccce
ccoolcocolcoco|fcocolcocooldcccdooclocco
EEEE CEEE CEEE EEEE CEERE I R S EEED
ccocolcocolcocclcccolcoccoldadclodoslccncs
ccoolcocolcoccloccoolcoccolodlogloFoclocoe
ccoolcocolcocclcccolcoccoldodofocclococs
EEEE CEE CEEE R EEE EEEE CEEE EEED
ccoolgoocklcoco|doegloccd olcccclccoclocos
ccoologoelcoco|dofolodoolcocclccoclocos
ccoolcc¥olcoco|docoldocolcocclocoolocos
ccoolcoocolcooclcocodocoMmolccocolcoo@cooa
ccoolcocolooclcodoleFoblccccloodoloccce
ccoolcoocolooclcdoolofeoccocccloFoclccce
ccoolcococolcoocclfccolfoocolcocc/fooolcccs
R CEEE CEE EEEE CEEE EEEE EEEE EEER
o oolcocokodclocccclocccolcocolos oalaleme
cogolcocoedocloccocojococoo|lcocc|ocoololeles
cococklococodoccloccolcocoolcoccolocoolo®on
ccoplcocoflcocc|ccoo|lcccsoooc|jocoolocoo
scoolcodolcocclccco|meclolccocloccclocos
cegolcdoclcocclccco|lobanlccoclococlocon
cslocoldcocolocclcoccolocaolccocloccclocos
EEE I R EEEE EEEE EEEE B EEEE
cogdolomoleloegoclccco|locccolccoclococlocon
cf coldfcicelc ctclcccoleccelccoclocooloc oo
docolcowoclcocsjccco|lcccooccoclococlocon

(c) After transformation

(© The Eurographics Association and Blackwell Publishers 2004.

Bajaj, lhm, Min, and Oh / SIMD Optimization

On CPU On GPU On GPU

(optimized) 1
Total 17.73 8.34 8.08
No data transfer - 1.28 1.02

Table 4: Comparison of timing performances. The compu-
tation times in milliseconds per time step to integrate the 2
two-dimensional wave equation over5a2x 512 grid are
summarized. The figures were measured by averaging the
times spent updating the 262,144 variables over the first
2000 time steps. While the data transfer from the GPU to 3
the CPU clearly harms the performance, this problem is ex-
pected to be alleviated in the near future. In any case, the
experiment reveals a very favorable result for both the GPU
implementations and the SIMD optimization technique. 4.

tex arrays, as their data can be reinjected into the geome- 5.

try pipeline directly without data transfers, as proposed re-
cently in the uber buffers extensidAsWhen the data trans- 6.
fer time is excluded, the performance enhancement of the
GPU over the CPU is remarkable as indicated in the Kow

data transfer. It is also evident that the SIMD optimization
technigue presented here provides a considerable speedup
for the GPU implementations. We believe that our SIMD
optimization technique can be used effectively in a wider
range of graphics-related problems, as GPUs evolve to sup-
port more flexible framebuffer architectures in the near fu- 8.
ture.

5. Conclusion

Linear expressions appear frequently in many scientific and
engineering areas, including computer graphics, and their 9
efficient evaluation is often critical in developing real-time
applications. We have presented a SIMD code optimization
technique that enables efficient codes to be produced for
evaluating linear expressions. In particular, our technique

exploits the four-wide SIMD computing capacities offered g

by modern GPUs. We have demonstrated that the new tech-
nique can be effectively applied to solving a variety of gen-
eral mathematical computations on a GPU. Although our
emphasis was on code optimization for the GPU, the ideas
are valid for any processing unit that supports the simple
SIMD processing model as described.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work was supported
by grant No. R01-2002-000-00512-0 from the Basic Re-

search Program of the Korea Science & Engineering Foun- 13.

dation.

(© The Eurographics Association and Blackwell Publishers 2004.

12.

References

J. Bolz, I. Farmer, E. Grinspun, and P. Sather. Sparse
matrix solvers on the GPU: Conjugate gradients and
multigrid. ACM Transactions on Graphic82(3):917—
924, July 2003.

N. Carr, J. Hall, and J. Hart. GPU algorithms for ra-
diosity and subsurface scattering. Rmoceedings of
the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardwarepages 51-59, 2003.

N.A. Carr, J.D. Hall, and J.C. Hart. The ray engine. In
Proceedings of Graphics Hardware 20Q#ages 1-10,
2002.

V. Cerny. Thermodynamical approach to the travel-
ling salesman problem: an efficient simulation algo-
rithm. Journal of Optimization Theory and Application
45:41-51, 1985.

M.F. Cohen and J.R. Wallac&adiosity and Realistic
Image SynthesisAcademic Press, Inc., 1993.

K. Engel and T. Ertl. Interactive high-quality volume
rendering with flexible consumer graphics hardware.
In Proceedings of Eurographics 2002 - STAR Report
pages 109-116, 2002.

N. Foster and R. Fedkiw. Practical animation of liquids.
In Proceedings of ACM SIGGRAPH 2QQdages 23—
30, 2001.

N. Goodnight, C. Woolley, G. Lewin, D. Lue-
bke, and G. Humphreys. A multigrid solver for
boundary value problems using programmable graph-
ics hardware. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics
Hardware pages 102-111, 2003.

M. Harris, W. Baxter, T. Scheuermann, and A. Las-
tra. Simulation of cloud dynamics on graph-
ics hardware. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics
Hardware pages 92-101, 2003.

M.J. Harris, G. Coombe, T. Scheuermann, and A. Las-
tra. Physically-based visual simulation on graph-
ics hardware. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics
Hardware pages 1-10, 2002.

11. J. Hart. Perlin noise pixel shaders. Pnoceedings of

the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardwarepages 87-94, 2001.

W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl.
Applications of pixel textures in visualization and real-
istic image synthesis. IRroceedings of ACM Sympo-
sium on Interactive 3D Graphicpages 145-148, 1999.

K. Hillesland, S. Molinov, and R. Grzeszczuk. Nonlin-
ear optimization framework for image-based modeling

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Bajaj, lhm, Min, and Oh / SIMD Optimization

on programmable graphics hardwar&CM Transac-
tions on Graphics22(3):925-934, July 2003.

W.J. Palm lll. Modeling, Analysis, and Control of Dy-
namic SystemsJohn Wiley & Sons, Inc., 2nd edition,
2000.

N. Kapadia and J. Fortes. Block-row sparse matrix-
vector multiplication on SIMD machines. Proceed-
ings of 1995 International Conference on Parallel Pro-
cessingvolume IIl, pages 34-41, 1995.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimiza-
tion by simulated annealing.Science 220:671-680,
1983.

J. Kriger and R. Westermann. Linear algebra opera-
tors for GPU implementation of numerical algorithms.
ACM Transactions on Graphic®2(3):908-916, July
2003.

E. S. Larsen and D. McAllister. Fast matrix multiplies
using graphics hardware. I8upercomputing 2001
2001.

E. Lindholm, M.J. Kilgard, and H. Moreton. A user-
programmable vertex engine. Rroceedings of ACM
SIGGRAPH 200]1pages 149-158, 2001.

R. Mace. OpenGL ARB Superbuffers. Game Develop-
ers Conference 2004, 2004.

C. Maughan and M. Wloka. Vertex shader introduction.
NVIDIA Technical Brief, 2001.

N. Metropolis, A. Rosenbluth, M. Rosenbluth,
A. Teller, and E. Teller. Equations of state calculations
by fast computing machines.Journal of Chemical
Physics$21:1087-1091, 1953.

K. Moreland and E. Angel. The FFT on a GPU.Rro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardwarepages 112-119,
2003.

A.T. Ogielski and W. Aiello. Sparse matrix computa-
tions on parallel processor array$SIAM Journal on
Scientific Computingl4(3):519-530, 1993.

M.S. Peercy, M. Olano, J. Airey, and P. J. Ungar. Inter-
active multi-pass programmable shading. Piroceed-
ings of ACM SIGGRAPH 200@ages 425-432, 2000.

K. Proudfoot, W.R. Mark, S. Tzvetkov, and P. Hanra-
han. A real-time procedural shading system for pro-
grammable graphics hardware.RFroceedings of ACM
SIGGRAPH 2001pages 159-170, 2001.

T. Purcell, C. Donner, M. Cammarano, H. Jensen,
and P. Hanrahan. Photon mapping on programmable
graphics hardware. IrProceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware pages 41-50, 2003.

28.

29.

30.

31.

32.

33.

34.

35.

36.

T.J. Purcell, I. Buck, W.R. Mark, and P. Hanrahan. Ray
tracing on programmable graphics hardware.Plo-
ceedings of ACM SIGGRAPH 2Q0gages 703-712,
2002.

L.F. Romero and E.L. Zapata. Data distributions for
sparse matrix vector multiplicationParallel Comput-
ing, 21(4):583-605, 1995.

M. Rumpf and R. Strzodka. Using graphics cards
for quantized FEM computations. Rroceedings of
IASTED International Conference Visualization, Imag-
ing, and Image Processingages 160-170, 2001.

J. Stam. Stable fluids. IRroc. of ACM SIGGRAPH
1999 pages 121-128, 1999.

J.C. Tannehill, D.A. Anderson, and R.H. Pletcher.
Computational Fluid Mechanics and Heat Transfer
Taylor & Francis Publishers, 2nd edition, 1997.

C. Thompson, S. Hahn, and M. Oskin. Using modern
graphics architectures for general-purpose computing:
a framework and analysis. Proceedings 35th Interna-
tional Symposium on Microarchitecture (MICRO-35)
November 2002.

M.P. Vecchi and S. Kirkpatrick. Global wiring by sim-
ulated annealing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Syste@AaD-
2:215-222, 1983.

D. Weiskopf, M. Hopf, and T. Ertl. Hardware-
accelerated visualization of time-varying 2D and 3D
vector fields by texture advection via programmable
per-pixel operations. IfProceedings of Vision, Mod-
eling, and Visualization 20Qbages 439-446, 2001.

D.F. Wong, H.W. Leong, and C.L. LiuSimulated An-
nealing for VLSI DesignKluwer Academic Publishers,
1988.

. L.H. Ziantz, C.C. Ozturan, and B.K. Szymanski. Run-

time optimization of sparse matrix-vector multiplica-
tion on SIMD machines. IfrParallel Architectures and
Languages Europgages 313-322, 1994.

(© The Eurographics Association and Blackwell Publishers 2004.

