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Abstract

We develop a volumetric video system which supports interactive browsing of compressed

time-varying volumetric features (significant isosurfaces and interval volumes). Since the size

of even one volumetric frame in a time-varying 3D data set is very large, transmission and on-

line reconstruction are the main bottlenecks for interactive remote visualization of time-vary-

ing volume and surface data. We describe a compression scheme for encoding time-varying

volumetric features in a unified way, which allows for on-line reconstruction and rendering.

To increase the run-time decompression speed and compression ratio, we decompose the vol-

ume into small blocks and encode only the significant blocks that contribute to the isosurfaces

and interval volumes. The results show that our compression scheme achieves high compres-

sion ratio with fast reconstruction, which is effective for interactive client-side rendering of

time-varying volumetric features.
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1. Introduction

Scientific simulations of today are increasingly generating densely sampled time-

varying volume data which have very large sizes. For example, the size of an ocean-

ographic temperature change data set tested in this paper is 237MB/frame
(2160� 960� 30 float) � 115 frames, and the gas dynamics data set is 64MB/frame

(256� 256� 256 float) � 144 frames. To visualize such time-varying volumetric data,

volume rendering and isocontouring techniques are performed frame by frame, so that

a user can navigate and explore the data set in space and time. Both rendering tech-

niques have their own strengths. While volume rendering can display amorphous

volumetric regions specified by the transfer function with transparency, isocontour-

ing can provide the geometric shape of the surfaces specified by significant isovalues.

Both techniques can be combined for better understanding of the overall informa-
tion present in a volumetric data set. For example, Fig. 1 shows visualization of sim-

ulated explosion during galaxy formation through rendering of time-varying

volumes and isosurfaces.

While current state-of-the-art graphics hardware allows very fast volume and sur-

face rendering, transfer of such large data between data servers and browsing clients

can become a bottleneck due to the limited bandwidth of networks. Efficient data

management is an important factor in the rendering performance. To reduce the size

of the data set, it is natural to exploit temporal and spatial coherence in any com-
pression scheme. However, since the data size of even a single frame is very large,

run-time decompression can also be a bottleneck for interactive playback.

From this motivation, we have developed a unified compression scheme for en-

coding time-varying volumetric features. In most cases, we use the term feature to

mean an isosurface and/or an interval volume specified by a scalar value range.

An interval volume can be a whole volume. The inputs for compression are k iso-

values isoi; i ¼ 1; :::; k, l value ranges ½ra; rb�i; i ¼ 1; :::; l and discretized time-varying

volume data V . The data V , containing T time steps can be represented as
V ¼ fV1; V2; :::; VTg, where Vt ¼ ff t

i;j;kji; j; k are indices of x; y; z coordinatesg is the vol-
ume at time step t, containing data values f t

i;j;k at the indices i; j; k. Our primary goal

in compression is to

• compress time-varying isosurfaces and interval volumes in a unified way;

• reduce the size of time-varying volumetric data with minimal image degradation;
Fig. 1. Interactive volumetric video playback of simulated explosion gas dynamics.
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• allow real-time reconstruction and rendering with PC graphics hardware acceler-

ation.

We borrow the idea of MPEG compression to efficiently exploit spatial and tem-

poral coherence in data sets. However, direct extension of MPEG for 2D video com-

pression to the compression of time-varying volumetric features is not suitable for
satisfying our goals. Since MPEG encodes and decodes every block in each frame

of the volumetric time-varying data, unnecessary regions within the data may also

be encoded and decoded.

We adopt a block-based wavelet transform with temporal encoding in our com-

pression scheme. The wavelet transform is widely used for 2D and 3D image com-

pression. By truncating insignificant coefficients after wavelet transformation,

these schemes achieve high compression ratio while keeping minimal image distor-

tion. However, complete transformation of each frame is a waste of space and time
resources, because function values not contributing to the given isosurfaces and vol-

umetric features do not need to be encoded. In addition, the contributing values

which have small changes over time do not need to be updated. Therefore encoding

and decoding only the values significant in space and time instead of the full volume

can improve both compression ratio and decompression speed.

Each volumetric frame is classified as either an intra-coded frame or a predictive

frame. The intra-coded frames can be decompressed independently while the predic-

tive frames are the differences from their previous frames. Assuming that different
blocks have different temporal variance, we can sort the blocks based on their tem-

poral variance and truncate insignificant blocks to achieve higher compression ratios

and faster decompression speeds.

In addition to efficient compression, fast reconstruction and rendering of the iso-

surface and volumetric features are also achieved. By attaching seed cells in the com-

pressed stream of each volume frame, the rendering browser can construct the

isosurfaces in minimal time. The fast speed comes from removing the search phase

for finding at least one cell intersecting with each isosurface component. Since the
isosurface is fixed, we need to store only one seed cell per isosurface component,

which hardly affects the compression ratio. We can also compress the selected set

of components in isosurfaces and volumes, and their evolution by using the feature

tracking method [24]. The reconstructed features can be rendered in real-time using

PC graphics hardware.

Fig. 2 shows the overall architecture of our interactive volumetric video frame-

work. The algorithm requires the features to be defined before compression. These

features can be identified manually or by automatic feature detection tools [18].
To save disk storage space and to overcome the limitation of I/O bandwidth in net-

work systems, a series of compressed frames are read from data source servers to

browsing clients. Once each compressed frame is read, it is decompressed in soft-

ware. The reconstructed image array is used for accelerated isocontouring and also

sent to the texture memory in the graphics hardware for displaying volumetric fea-

tures. This architecture can allow users to explore and interact with isosurfaces em-

bedded in the amorphous volumetric features in space and time, which is our

ultimate goal.



Fig. 2. Interactive volumetric video: remote streaming and display pipeline.
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The remainder of this paper is organized as follows. First, the related work is de-

scribed. Then, in Section 3, an architecture for displaying volumetric video is de-

scribed. In Section 4, a volumetric video compression scheme supporting

interactive decompression is proposed. Section 5 describes our scheme for interactive

browsing of compressed time-varying features. Experimental results are described in

Section 6. Finally, in Section 7, we give a conclusion.
2. Related work

Visualization of time-varying volume data has been a challenging problem. Com-

pression, time-based data structures, and high performance visualization systems

have been introduced to cope with overwhelming data sizes and heavy computation

requirements.

2.1. Compression

Compression is extremely useful for large data manipulation, especially for trans-

mission of data from servers to browsing clients. Since scientific data tend to be very

large and have lots of redundancy, people prefer to use compressed data for efficient

use of the memory and I/O bandwidth. A number of algorithms for image and sur-

face compression have been developed.
Papers on single resolution and progressive compression of triangulated surfaces

(e.g., isosurfaces) include those by Khodakovsky et al., Taubin and Rossignac

[12,27]. A compression scheme specialized for isosurfaces [29] utilizes the unique

property of an isosurface that only the significant edges and function values defined

on a vertex are required to be encoded.

Most image compression techniques are geared towards achieving the best com-

pression ratio with minimal distortion in the reconstructed images. JPEG and

MPEG [6] are developed for compressing still images and 2D video data with
controllable size and distortion trade-off. Embedded coding algorithms such as
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embedded zero tree wavelet (EZW) [21] and set partitioning in hierarchical trees

(SPIHT) [19] are useful for progressive transmission and multimedia applications.

For 3D image compression, Ihm and Park [11] described a wavelet-based 3D

compression scheme for the visible human data and later extended it to 3D RGB im-

age compression for interactive applications such as light-field rendering and 3D tex-
ture mapping [1]. Compression ratios can be improved by capturing and encoding

only significant structures and features in the data set [2,16]. In those compression

schemes, the primary goal is fast random access to data, while maintaining high com-

pression ratios. This allows interactive rendering of large volume data sets [9].

Guthe and Straser [8] applied the MPEG algorithm to time-varying volume data

using wavelet transformations. They compare the effects of motion compensation

and the usage of different wavelet basis functions. Lum et al. [14] exploit texture

hardware for both rendering and decompression. Since data are transferred in the
compressed format between different memory systems, I/O time is significantly

reduced.

2.2. Time-based data structures

Time-space partitioning (TSP) tree was introduced and accelerated later by using

3D texture mapping hardware [5] for fast volume rendering of time-varying fields.

The efficiency comes from skipping insignificant rendering operations and reusing
the rendered images of the previous time step.

Shen [22] proposed the temporal hierarchical index (THI) tree data structure for

single resolution isocontouring of time-varying data, by an extension of his ISSUE

algorithm [23]. The THI tree provides a compact search structure, while retaining

optimal search time. Hence, expensive disk operations for retrieving search struc-

tures are reduced. Sutton and Hansen [26] proposed temporal branch-on-need tree

by extending octrees for minimizing unnecessary I/O access and supporting out-of-

core isosurface extraction in time-varying fields.
Shamir et al. [20] developed an adaptive multiresolution data structure for time

dependent polygonal meshes called time-direct acyclic graph (T-DAG). T-DAG is

a compact representation which supports queries of the form time step, error-tol,

and returns an approximated mesh for that time step, satisfying the error tolerance.

2.3. High performance visualization systems

Ma and Camp [15] describes a remote visualization system under the wide area
network environment for visualization of time-varying data sets. Current state-of-

the-art graphics hardware enables real-time volume and isosurface rendering [28]

and decompression [14].

2.4. Isosurface extraction

A large amount of research has been devoted in the past for fast isosurface extrac-

tion from 3D static volume data. The Marching Cubes algorithm [13] visits each cell



440 B.-S. Sohn et al. / Computer Vision and Image Understanding 96 (2004) 435–452
in a volume and performs appropriate local triangulation for generating the isosur-

face. To avoid visiting unnecessary cells, accelerated algorithms [4] minimizing the

time to search for contributing cells are developed.

The contour propagation algorithm is used for efficient isosurface extraction

[3,10]. Given an initial cell that contains an isosurface component, the remainder
of the component can be traced by contour propagation. This property significantly

reduces the space and time required for searching cells containing the isosurface by

using a small number of seed cells. Multiresolution [7] and view-dependent tech-

niques [30] are useful to reduce the number of triangles in an isosurface.
3. Interactive volumetric video

Like widely used 2D video systems, a volumetric video system displays a sequence

of 3D images over time, frame by frame. While in a 2D video, users can only look at

continually updated 2D images in a passive way, a volumetric video, or time-varying

volume visualization system allows them to explore and navigate the 3D data in both

space and time. Considering that most scientific simulations generate dynamic vol-

ume data, volumetric video systems are especially helpful for scientific data analysis.

A naive way for displaying time-varying 3D volume data is to read each frame

from the data server and render the volume with the given visualization parameters.
Since most time-varying scientific data sets are very large and have high spatial and

temporal coherence, it is natural to apply compression for reducing storage over-

heads and transmission times. However, run-time decompression of data encoded

by standard static and time-varying image compression schemes may become a bot-

tleneck in real-time playback of volumetric video because they usually decompose an

image into blocks and decode every block during decompression. During compres-

sion, we order the blocks based on their significance and encode only significantly

changing blocks. This increases the run-time decompression speed as we have limited
the number of blocks to decode.

A two-stage strategy is adopted to enable interactive navigation and exploration

of very large time dependent volume data. In the first stage on the server side, the

large time-dependent volume is analyzed and processed on a high performance ser-

ver so that results of this volumetric processing is an intermediate multiresolution,

time-dependent volumetric representation of interesting features (isosurface, volume

within a range) of the data, generated and stored in a compressed format. The inter-

mediate multiresolution representation permits trade-offs between interactivity and
visual fidelity for the second, interactive browsing stage. In the second stage on

the client side, the volumetric video is decoded and played back by an interactive vi-

sualization browser that can be made available on a standard desktop workstation

equipped with a 3D graphics card. In contrast to a standard video player, the visu-

alization browser can allow certain levels of interactivity such as dynamically chang-

ing viewing parameters, modifying lighting conditions, and adjusting color–opacity

transfer functions, in addition to timed playback of the volumetric video along with

some user-specified fly-path in space and time.
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4. Compression scheme

In this section, we describe a unified scheme for compressing both time-varying

isosurfaces and volumetric features at the same time. By encoding only significant

function values based on associated weights using a wavelet transform, we can
achieve high compression ratios. However, simple function encoding requires on-line

isosurface extraction in the client-side. To accelerate this surface extraction process,

we insert seed cells into the compressed volume frames.

4.1. Compression

The input data set is a time dependent volume data set, V ¼ fV1; V2; :::; VTg with k
isovalues iso1; :::; isok and l value ranges r1 ¼ ½ra; rb�1; :::; rl ¼ ½ra; rb�l. Each frame of
the volume is classified as either an intra-coded frame or a predictive frame. For each

isovalue and range, the reconstructed quality can be specified as a threshold value for

wavelet coefficients and another threshold value for the blocks in predictive frames,

such that wavelet coefficients or blocks not satisfying that value are truncated. The

criteria for truncation is given in the steps of the compression algorithm below. The

whole data set is represented as V ¼ ffI1; P11; P12; :::; P1p1g; ...,fIN ; PN1; PN2; ...,PNpN gg
where Ii is an intra-coded frame in the ith temporal group and Pij is the jth predictive

frame in the ith temporal group.
Assuming that there are only small changes between consecutive frames, wavelet

transformation of changes instead of the entire frames yields higher compression ra-

tios and lower decompression times. The compression of an intraframe is indepen-

dent of other frames while compression of a predictive frame is dependent on

previous frames in the same temporal group. The overall compression algorithm is

shown in Fig. 3. Note that compression is performed on each volume and only sig-

nificant values contributing to the features are encoded. All 3D frames are decom-

posed into 4� 4� 4 blocks and wavelet transformation is performed on each
block contributing to the specified features in the volume. The steps of the compres-

sion algorithm are as follows:

(1) Difference volume: DVk ¼ Vk � V 0
k�1, where Vk is original image of kth frame and

V 0
k�1 is the reconstructed image of the compressed volume Vk�1. If Vk is an intra-

coded frame, we assume V 0
k�1 ¼ 0.

(2) Wavelet transformation: W DVk ¼ wavelet transformation of DVk. Compute co-

efficients c1; :::; cm representing DVk in a 3D Haar wavelet basis.

(3) Classification: Each wavelet coefficient c and block b is classified as either in-
significant or significant. c and b are further classified based on which features

they contribute to. c and/or b can belong to more than one feature. In such cases,

the survival of c or b is dependent on the highest weighted feature that contains

them.

(4) Truncation of blocks: A block which does not contribute to the features or has

very small changes over time is considered as an insignificant block. By truncat-

ing insignificant blocks, we can achieve higher compression ratios and can con-

trol the time for the volume reconstruction. To identify blocks contributing to



Fig. 3. Overall compression algorithm.
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the ith feature and having insignificant changes, the sum of the square of coeffi-

cients is compared with a threshold value ki. If the sum is less than ki, the block is

truncated. For encoding the truncated block, only one bit is assigned in the block

significance map.

(5) Truncation of wavelet coefficients: The ith feature to be compressed has its own
weight represented as a threshold value si. By setting the threshold value, the re-

constructed quality of a specific feature can be controlled. If a wavelet coefficient

c associated with the ith feature is less than si, the coefficient is truncated into

zero.

(6) Encoding: The overall encoding scheme is shown in Fig. 4. Once wavelet coef-

ficient truncation is performed based on each features weight, we take the surviv-

ing coefficients and encode them. The encoding is performed on each block,
Fig. 4. Suggested encoding scheme for supporting fast decompression and high compression ratios.
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resulting in a sequence of encoded blocks. We classify 64 coefficients in a block as

one level-0 coefficient, seven level-1 coefficients and 8� 7 level-2 coefficients to

take advantage of the hierarchical structure of a block.

In the header of a frame, a bit stream representing each block’s significance is

stored to indicate whether the block corresponding to each bit is a zero-block or
not. This avoids additional storage overhead for insignificant blocks. One bit is as-

signed to each block in a sequence. Then, for each significant blocks, we store an 8

bit map representing whether the one level-0 and seven level-1 coefficients are zero or

not. Next, we have another 8 bit map representing whether each eight 2� 2� 2 sub-

block has non-zero wavelet coefficients followed by a significance map for represent-

ing non-zero level-2 coefficients. After storing the level-2 coefficient significance

maps, the actual values of non-zero wavelet coefficients are stored in order. We used

two bytes for storing each coefficient value. Lossless compression is further applied
to improve compression.

4.2. Seed cells insertion

To allow browsing clients to quickly extract isosurfaces encoded in a volume, seed

cells are attached to the compressed stream of each frame. A seed cell is guaranteed

to intersect with a connected component of the isosurface. By performing surface

propagation from the given seed cells, we can avoid visiting unnecessary cells and
save extraction time. Since only one seed cell per isosurface component is necessary,

the size of the seed cells is negligible and search structures such as octrees and inter-

val trees are not required. Therefore, the isosurface extraction time is only dependent

on the number of triangles regardless of the volume size.

4.3. Run-time decompression

Since we have a sequence of wavelet encoded volumes W DVk, we can get an ap-
proximated image V 0

k by decoding and performing an inverse wavelet transforma-

tion. More specifically, DV 0
k ¼ inverse transformation (W DVk) and V 0

k ¼ V 0
k�1 þ DVk.

For the intra-coded frame Vi , V 0
i�1 ¼ 0 and we can get V 0

i directly from DV 0
i with

no dependency on other frames. Once Vi is reconstructed, succeeding predictive

frames can be decoded frame by frame until the next intra-coded frame is reached.

The decompression is based on block-wise decoding. In intra-coded frames, every

block needs to be decompressed with complete inverse wavelet transformation. On

the other hand, in predictive frames, only significantly changing blocks are updated
so that it can approximate the actual image as accurately as possible while minimiz-

ing decompression time. The specific decoding algorithm is as follows. Using the

block significance map, we can identify every significant block and its corresponding

encoded blocks. For each encoded block, perform the following steps: read 8 bit

b11; :::; b
1
8 to decide whether one level-0 coefficient and seven level-1 coefficient are zero

or not. Next, read 8 bit b21; :::; b
2
8 to decide whether each eight subblocks has non-zero

value or not. If b2k , where k ¼ 1; :::; 8, is set as 1, read 8 bit ck1; :::; c
k
8 to determine

which coefficients of the kth subblock are non-zero. From the significance maps read



Fig. 5. Performance comparison of different encoding schemes. Although the compression ratio of (A)

and (B) is same (181:1), the quality of the reconstructed image using (A) is better than (B). RMSE of

(A) is 0.110 and (B) is 0.131. (A) Only the values contributing to features are encoded. (B) Every value

in the volume is encoded.
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above, we can read the actual non-zero coefficients in order. When all values of the

coefficients are determined, inverse transformation is performed to get the actual

data values and the corresponding block is updated.

Once significant function values are decoded, we perform isosurface extraction.

For each significant isovalue, we have a seed set, and hence we can perform the
above extraction quickly.
5. Interactive browsing

While compression ratio is an important factor for improving I/O performance in

the memory and network systems, it is equally important that the visualization brow-

ser can read and interactively display compressed streams of multiresolution, time-
varying data sets.

5.1. Multiresolution isosurface rendering

Since an isosurface often contains a lot of triangles, multiresolution techniques are

necessary for saving both extraction and rendering time as a trade-off with visual fi-

delity. One strength of wavelet transforms is that it provides multiresolution and

compressed representations in a consistent format.
In our block-based wavelet transform, there are three levels consisting of one 0th

level, seven 1st level, and fifty six 2nd level coefficients. The 0th level coefficient pro-

vides low-pass filtered average value of 4� 4� 4 cells. 0th level and 1st level coeffi-

cients together provide approximated intermediate values averaging 2� 2� 2 cells.

When fast extraction and rendering of isosurfaces are more important than accuracy,

the client can take only the 0th level and/or 1st level coefficients, and reconstruct a
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volume of lower resolution. Since the reconstructed low resolution volume is a good

approximation of the original volume, not only is the extracted isosurface a good ap-

proximation of original isosurface, but the number of triangles extracted is also re-

duced. This process has the effect of low-pass filtering the volume, which can remove

noise and artifacts incurred by lossy compression. Fig. 6 shows three images ren-
dered using the same volumetric data, but different levels of an isosurface.

5.2. Combined rendering of isosurface and volumetric data

We combine isosurface and volume rendering to take advantages of both tech-

niques. We take an isosurface as the region we need to see in greater detail, with

an opaque or translucent volume in the object space. The rendering results are shown

and compared in Fig. 7. In this data set, isosurface extraction provides a shaded sur-
face representing a specific temperature value. Volume rendering shows temperatures
Fig. 6. Three different levels of an isosurface. The number of isosurface triangles and extraction time for

level 0 (left), level 1 (middle), and level 2 (right) are (11,878, 204ms), (41,624, 625ms), and (20,7894,

3110ms).

Fig. 7. The visualization of the oceanographic temperature change data set. Upperleft: isosurface render-

ing, Lowerleft: volume rendering, right: combined rendering of isosurface and volume.
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around the isosurface. By combining both techniques, visual information contained

in the rendering is enhanced.

We tested our work on an implementation based on OpenGL. OpenGL gives us

the ability to perform depth tests and maintain a depth map. We take advantage of

this to render the isosurface and volume in a consistent manner. So we set the iso-
surface to be completely opaque and render it using OpenGL, with the depth test

on. Then, we render a set of 3D textured polygons sliced from a volume from back

to front ordering. This is consistent with what is recommended in the OpenGL doc-

umentation [17].

During the rendering of the isosurface, we build up a depth map, which is used

during volume rendering. While isocontouring in general needs a large amount of

time, we already have the seeds required to perform the seed set isocontouring.

Hence, we achieve fast isosurface reconstruction. When we perform volume render-
ing, to obtain correct transparency results, we render the polygons in a sorted order.

While it is generally time consuming to perform polygon sort, Nvidia 3 graphics

card’s 3D texture mapping capability helps overcome this. The volume data is stored

in the graphics card texture memory. We create polygons through a simple incremen-

tal algorithm, making slices through the volume. These polygons are rendered with

the corresponding texture values in the 3D memory. An interactive transfer function

map to control color and opacity values is used to obtain the required images. If the

user rotates a volume, we need to update the slicing direction. To get slightly better
performance, we turn off building the depth buffer (using glDepthMask(0)) when we

render the volume, as we are sure of rendering the polygons in order, and since all

polygons previously rendered are opaque.
6. Experimental results

Compression and rendering results were computed on a PC equipped with a Pen-
tium III 800MHz processor, 512MB main memory, and a NVidia GeForce 3 graph-

ics card which has 128MB texture memory. We used standard OpenGL functions

for 3D texture mapping based volume rendering.

Table 1 provides information about our test data sets. The first data set is gener-

ated from a computational cosmology simulation for the formation of large-scale

structures in the universe. Since the functions in the data set have negligible changes

in the last few frames, we have given all our compression results, for this data set,

based on the first 100 frames. The second data set is generated by an oceanographic
simulation and represents temperature changes in the ocean over time. The original
Table 1

Information on time-varying data sets

Data Res. Type No. of frames 1 frame size (MB)

Gas 256 � 256 � 256 Float 144 64

Ocean(decim) 512 � 256 � 32 Float 39 16

Hemoglobin 128 � 128 � 128 Float 30 8
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model has an approximate resolution of 1/6 degree (2160� 960) in latitude and lon-

gitude and carries information at 30 depth levels. Since the original resolution of the

data is too high for hardware volume rendering, we decimated it into 512� 256� 32

by subsampling and took every third frame. The third data set is obtained from he-

moglobin dynamics simulation. The simulation generated a sequence of hemoglobin
pdb files with 30 time steps and electron density volumes are computed from each

pdb file.

For testing the performance of our compression scheme, we encoded only high

temperature regions ranging between 21.47 and 36.0 �C in the oceanographic temper-

ature data set and high density regions ranging between 0.23917 and 3.26161 in gas

dynamics data set as shown in Figs. 8 and 10. After encoding wavelet coefficients, we

used gzip for lossless compression.

Tables 2 and 3 show the reconstruction time, root mean squared error (RMSE),
and the compression ratio changes over time in gas dynamics and oceanography

data sets. The reconstruction time includes the time for disk read, gunzip, and decod-

ing of wavelet coefficients. The RMSE was calculated using only those function val-

ues which contributed to the features. The compression ratio was calculated by

comparing the size of original time-varying volume data and feature-based com-

pressed data encoded by applying our lossy compression and gzip. As you can see

in the tables, the reconstruction time of a P frame is much less than that of an I frame

while the compression ratio of P frame is much higher than that of an I frame. The
reason for this is that our compression scheme only encodes significantly changing

blocks in P frames.

InFig. 5,we compare our feature based encoding (FBE) schemewith the full volume

encoding (FVE) scheme. Since FBE encodes only the values contributing to the spec-

ified features, both the decompression time and the compression ratio are significantly

improved with respect to schemes encoding full volumes. While transmission and

reconstruction times of volumetric and isosurface features are reduced by FBE encod-

ing, client-side rendering is significantly accelerated by using PC graphics hardware.
Table 2

Compression performance on gas dynamics data set

Frame# Recon. time (ms) RMSEa Comp. ratio

Average compression ratio — 148:1, RMSE — 0.108

1(I) 687 0.105 40:1

2(P) 177 0.131 378:1

3(P) 271 0.101 182:1

4(P) 235 0.103 234:1

Average compression ratio — 301:1, RMSE — 0.139

1(I) 489 0.127 70:1

2(P) 141 0.156 988:1

3(P) 207 0.130 422:1

4(P) 188 0.134 516:1

aOriginal density range [0, 8065.299].



Table 3

Compression performance on oceanographic data set

Frame# Recon. time (ms) RMSEa Comp. ratio

Average compression ratio — 183:1, RMSE — 0.090

1(I) 124 0.076 72:1

2(P) 76 0.087 273:1

3(P) 96 0.089 226:1

4(P) 86 0.091 223:1

Average compression ratio — 348:1, RMSE — 0.177

1(I) 106 0.157 103:1

2(P) 57 0.169 615:1

3(P) 65 0.175 493:1

4(P) 64 0.178 482:1

aOriginal temperature range [)2.0, 36.0].
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Figs. 8 and 9 show a typical frame of the gas dynamics data set compressed with

different compression ratios. Figs. 10 and 11 show the flow of two isosurfaces of spe-

cific temperatures. Fig. 9 shows a zoomed view of the same set of volumes rendered

in Fig. 8. We notice that good visual quality is maintained even at such zoom factors

and high compression ratios. While a zoomed image of a volume compressed at a

ratio of 148:1 is visually almost the same as the original, we get only a few artifacts
Fig. 9. Gas dynamics data set. Zoomed images from Fig. 8.

Fig. 8. Gas dynamics data set. Original volume (left), reconstructed volume with compression ratio 148:1

(middle), and compression ratio 301:1 (right).



Fig. 11. Oceanographic temperature change data set. Zoomed images from Fig. 10.

Fig. 10. Oceanographic temperature change data set. Original volume (left) and reconstructed volume

with compression ratio 183:1 (right).
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at compression ratios of 301:1. Figs. 10 and 11 show that similar results were ob-

tained when our compression and rendering scheme was applied to the oceano-

graphic data set. We have used isosurfaces to track the movement of water with a

specific temperature and a translucent volumetric region to represent the surround-
ing temperatures. These figures demonstrate the strength of our scheme in being able

to interactively render specific regions of interest with high quality isosurfaces,

surrounded by related volumetric data. Timing results of rendering are presented

in Table 4.

Fig. 12 shows the compression result of hemoglobin dynamics simulation. Vol-

ume rendering was applied to each compressed volumetric frame and we measured

the frame rate. We achieved high compression ratio (110:1) and high frame rate

(6.3 frame/s) with reasonable reconstruction quality.
Generally, the frame rate of volumetric video playback is mostly dependent on the

resolution of volumes and the number of triangles in the extracted isosurfaces. The

size of rendering is also an important factor because the texture based volume ren-

dering relies on per pixel operations.
Table 4

Timing results of rendering isosurfaces with amorphous volumetric features in one frame: (the data set

name, 3D texture loading time, isosurface extraction time, number of triangles in the isosurfaces, isosur-

face rendering time, and volume rendering time)

Data set Load (ms) Ext. time (ms) Tri# Isosurface (ms) Volume (ms)

Gas 701 1703 135362 312 422

Ocean 156 1640 104900 235 281



Fig. 12. Hemoglobin dynamics simulation. Left: original volume, Middle: zoomed original volume, Right:

zoomed reconstructed volume with compression ratio 110:1.
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Although wavelet based encoding can generate some losses in volumes as well as
the topology in the reconstructed isosurfaces, we can achieve very high compression

ratios with acceptable degradation.
7. Conclusion

We describe a lossy compression scheme for encoding time-varying isosurfaces

with amorphous volumetric features specified by scalar value ranges. Since large
time-varying volume data have significant coherence, compression is necessary for

saving storage space, reducing transmission time, and improving the performance

of visualizing the time-varying data. We have achieved several of our goals: (i) high

compression ratio with minimal image degradation, (ii) fast decompression, by trun-

cating insignificant blocks and wavelet coefficients, and (iii) interactive client-side

rendering of compressed multiresolution isosurfaces and volumetric features. There-

fore, our compression scheme is useful for the interactive navigation and exploration

of time-varying isosurfaces with amorphous volumetric features residing in local
and/or remote data servers.
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