
Patient-Specific Vascular NURBS Modeling
for Isogeometric Analysis of Blood Flow∗

Yongjie Zhang1, Yuri Bazilevs1, Samrat Goswami1, Chandrajit L. Bajaj2, and
Thomas J.R. Hughes1

1 Institute for Computational Engineering and Sciences, The University of Texas at Austin,
United States.

2 Department of Computer Sciences and Institute for Computational Engineering and
Sciences, The University of Texas at Austin, United States.

Abstract: We describe an approach to construct hexahedral solid NURBS (Non-Uniform
Rational B-Splines) meshes for patient-specific vascular geometric models from imaging data
for use in isogeometric analysis. First, image processing techniques, such as contrast enhance-
ment, filtering, classification, and segmentation, are used to improve the quality of the in-
put imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed
data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams.
Next, the skeleton-based sweeping method is used to construct hexahedral control meshes.
Templates are designed for various branching configurations to decompose the geometry into
mapped meshable patches. Each patch is then meshed using one-to-one sweeping techniques,
and boundary vertices are projected to the lumenal surface. Finally, hexahedral solid NURBS
are constructed and used in isogeometric analysis of blood flow. Piecewise linear hexahedral
meshes can also be obtained using this approach. Examples of patient-specific arterial models
are presented.
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1 Introduction

Recently, patient-specific modeling was proposed as a new paradigm in simulation-based
medical planning. Physicians, using computational tools, construct and evaluate combined
anatomical/physiological models to predict the outcome of alternative treatment plans for an
individual patient. A comprehensive framework has been developed to enable the conduct of
computational vascular research [1, 2]. Blood flow simulations provide physicians with phys-
ical data to help them devise treatment plans.

Isogeometric analysis is a new computational technique that improves on and generalizes
the standard finite element method. It was first introduced in [3], and expanded on in [4].
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Fig. 1. The abdominal aorta model is divided into 26 patches, and each color represents one
different patch. (a) - volume rendering result; (b) - isocontouring result; (c) - surface model and
its path after removing unnecessary components; (d) - control mesh; (e) - solid NURBS mesh
after refinement (73,314 elements); (f) - fluid-structure interaction simulation results: contours
of the arterial wall velocity (cm/s) during late systole plotted on the current configuration. Only
major branches are kept in (d-f).
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In an effort to instantiate the concept of isogeometric analysis, an analysis framework based
on NURBS was built. Mathematical theory of this NURBS-based approach was put forth in
[5]. NURBS is not the only possible basis for isogeometric analysis but it is certainly the
most highly developed and widely utilized. For an introductory text on NURBS, see Rogers
[6]. A more advanced treatment of the subject is given in Piegl and Tiller [7]. Other geometric
modeling techniques that have potential as a basis for isogeometric analysis include: A-patches
[8], T-splines [9], and subdivision [10]. These warrant further investigation.

Figure 1 shows one such model, obtained from patient-specific imaging data. We have
designed a set of procedures which allows us to create solid NURBS vascular models directly
from patient-specific data. We have named this process the vascular modeling pipeline, which
can be divided into four main steps:

1. Preprocessing – in scanned Computed Tomography (CT) or Magnetic Resonance Imag-
ing (MRI) data, the intensity contrast may not be clear enough, noise exists, and some-
times the blood vessel boundary is blurred. Therefore, we use image processing tech-
niques to improve the quality of CT/MRI data, such as contrast enhancement, filtering,
classification, and segmentation.

2. Path Extraction – The goal is to find arterial pathes. Vascular surface models can be con-
structed from the preprocessed imaging data via isocontouring. The skeleton is then ex-
tracted from the surface model using Voronoi and Delaunay diagrams. This skeletoniza-
tion scheme is suitable for noisy input and creates one-dimensional clean skeletons for
blood vessels.

3. Control Mesh Construction – a skeleton-based sweeping method is developed to construct
hexahedral NURBS control meshes by sweeping a templated quad mesh of a circle along
the arterial path. Templates for various branching configurations are presented which de-
compose the geometry into mapped meshable patches using the extracted skeleton. Each
patch can be meshed using one-to-one sweeping techniques. Some nodes in the control
mesh lie on the surface, and some do not. We project nodes lying on the surface to the
vascular surface. The blood vessel wall can be built by radially extending the surface
outside 10%-15% of the distance to the center line.

4. NURBS Construction and Isogeometric Analysis – after generating hexahedral control
meshes, we construct solid NURBS geometric models and employ isogeometric analysis
to simulate blood flow. Piecewise linear hex meshes can also be obtained. Three numeri-
cal examples, coronary, thoracic and abdominal arteries, are presented.

The remainder of this paper is organized as follows: Section 2 reviews related previous
work. Section 3 describes the meshing pipeline and preprocessing for our geometric mod-
eling approach. Section 4 talks about solid NURBS construction and isogeometric analysis.
Section 5 explains the skeleton-based sweeping method and decomposition templates for var-
ious branching configurations. Section 6 presents three numerical examples. Section 7 draws
conclusions and outlines planned future work.

2 Previous Work

Sweeping Method: Sweeping, or 2 1
2 -D meshing, is one of the most robust techniques to

generate semi-structured hexahedral meshes. One-to-one sweeping requires that the source
and target surfaces have similar topology. The source surface is meshed with quadrilaterals
[11], which are swept through the volume using linking surfaces as a guide [12].

However, few geometries satisfy the topological constraints required by one-to-one sweep-
ing. In the CUBIT project [13] at Sandia National Labs, a lot of research has been done to
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automatically recognize features and decompose geometry into mapped meshable areas or
volumes. Various many-to-one and many-to-many sweeping methods have been developed
[14, 15, 16, 17]. Care should also be taken in locating internal nodes during the sweeping
process [18, 19].

Medial Axis-based Mesh Generation: Medial axis is the locus of points that are mini-
mally equidistant from at least two points on the geometry’s boundary. The medial axis trans-
form provides an alternative representation of geometric models that has many useful prop-
erties for analysis modeling [20]. Applications include decomposition of general solids into
subregions for mapped meshing, identification of slender regions for dimension reduction and
recognition of small features for suppression. The medial surface subdivision technique [21]
decomposes the volume into map-meshable regions, which are then filled with hex elements
using templates.

Medial axis has been used to construct hexahedral meshes for CAD objects. The skeleton-
based modeling methods were developed for solid models [22]. Quadros et al. used a skeleton
technique to control finite element mesh size [23]. Besides other unstructured mesh generation
methods [24, 25, 26], a skeleton-based subdivision method has also been used in biomedical
applications, such as a below-knee residual limb and external prosthetic socket [27], and bi-
furcation geometry in vascular flow simulation [28]. However, trifurcations and more complex
branchings also exist in the human artery tree. Therefore, decomposition templates for arbi-
trary branching configurations are desirable and are constructed in this paper.

NURBS in Mesh Generation and Analysis: As the most highly developed and widely
utilized technique, NURBS [6, 7, 29] has evolved into an essential tool for a semi-analytical
representation of geometric entities. Sometimes NURBS solid models are taken as input for
finite element mesh generation [30]. Anderson et al. proposed a fast generation of NURBS
surfaces from polygonal mesh models of human anatomy [31]. An enhanced algorithm was
developed for NURBS evaluation and utilization in grid generation [32]. In isogeometric anal-
ysis [3], NURBS basis functions are used to construct the exact geometry, as well as the cor-
responding solution space.

3 Meshing Pipeline and Preprocessing

The input images are often of poor quality which makes it difficult to generate quality meshes
for regions of interest. To circumvent this problem we pass the raw imaging data through a
preprocessing pipeline where the image quality is improved by enhancing the contrast, filtering
noise, classifying, and segmenting regions of various materials. The surface model is then
extracted from the processed imaging data, and the vessel path is obtained after skeletonizing
the volume bounded by the surface. First we modify the geometry by removing unnecessary
components, then extract the skeleton. The generated path can also be edited according to
simulations, e.g., adding a path for a Left Ventricle Assist Device (LVAD) in the thoracic aorta
model (Figure 12). A skeleton-based sweeping method is then used to generate hexahedral
control meshes for solid NURBS construction and isogeometric analysis. Figure 2 shows the
meshing pipeline. The preprocessing step of our skeleton-based meshing approach is described
below, including image processing, isocontouring and geometry editing, and path extraction.

Image Processing: We choose a fast localized method for image contrast enhancement
[33]. The basic idea is to design an adaptive transfer function for each individual voxel based
on the intensities in a suitable local neighborhood. A bilateral pre-filtering coupled with an
evolution driven anisotropic geometric diffusion PDE (partial differential equation) [34] is
utilized to remove noise. Sometimes we need to classify the voxels into several groups, each
of which corresponds to a different type of material. We choose an approach which relies on
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Fig. 2. A schematic diagram of the meshing pipeline. Preprocessing includes three modules:
image processing, isocontouring and geometry editing, and path extraction.

identification of the contours by membership of seed points which are located by the gradient
vector diffusion [35]. A variant of the fast marching method is adopted [36] to segment the
imaging data to find the clear boundary of each voxel group belonging to a certain category.

Isocontouring and Geometry Editing: There are two main isocontouring methods from
imaging data: Primal Contouring (or Marching Cubes [37]) and Dual Contouring [38]. In this
application we choose Dual Contouring to extract the isosurface, because it tends to generate
meshes with better aspect ratios. We then modify the model to suit our particular application.
This can be done in various ways, for example, by removing unnecessary components, adding
necessary components which are not constructed from imaging data, denoising the surface,
etc. After getting the vessel path, we can edit it according to simulation requirements. For
example, we can add a path for the left ventricle assist device (LVAD) in the thoracic aorta
model (Figure 12).

Path Extraction: The vertex set of the extracted and possibly repaired geometry is then
used to create an interior path lying in the middle of the blood vessels. We define a squared
distance function which assigns to any point x∈R3, the minimum square distance to the vertex
set. We further compute the index 1 and index 2 saddle points of this distance function and
compute the unstable manifold of these two types of critical points. The identification of the
critical points along with their indices and the computation of the unstable manifold are done
efficiently via the Voronoi and its dual Delaunay diagram of the point set. The details of this
method can be found in [39]. We adopt this method of path generation because it has several
advantages which are useful for the patient specific modeling of blood vessels. One advantage
is that it can handle noisy input gracefully. Often the noise present in the data is not fully
eliminated after the preprocessing stage. In the path generation step we employ another stage
of filtering which helps to construct a clean skeletal path for the extracted geometry. Secondly,
the extracted geometry may have flat regions where it is not straight forward to obtain a linear
path. Fortunately our starring scheme, as described in [39], eliminates these spurious features
and create the one-dimensional path. The results of this path generation step are shown on
various datasets (Figures 1, 11, 12).

4 Solid NURBS Construction and Isogeometric Analysis

In a NURBS-based isogeometric analysis a physical domain in R3 is defined as a union of
patches. A patch, denoted by Ω, is an image under a NURBS mapping of a parametric domain
(0,1)3
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Ω = {x = (x,y,z) ∈ R3 | x = F(ξ,η,ζ), 0 < ξ,η,ζ < 1}, (1)

where

F(ξ,η,ζ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Rp,q,r
i, j,k (ξ,η,ζ)Ci, j,k, (2)

Rp,q,r
i, j,k =

Ni,p(ξ)M j,q(η)Lk,r(ζ)wi, j,k

∑
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m
ĵ=1 ∑
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k̂=1

Nî,p(ξ)M ĵ,q(η)Lk̂,r(ζ)wî, ĵ,k̂
. (3)

In the above, Rp,q,r
i, j,k (ξ,η,ζ)’s are the rational basis functions, and Ci, j,k’s ∈ R3 are the control

points. In the definition of the rational basis, Ni,p(ξ)’s, M j,q(η)’s, and Lk,r(ζ)’s, are the uni-
variate B-spline basis functions of polynomial degree p, q, and r; wi, j,k’s, strictly positive, are
the weights.

In isogeometric analysis the geometry generation step involves construction of a control
mesh, which is a piecewise multi-linear interpolation of control points, and the correspond-
ing rational basis functions. The initial mesh encapsulates the ‘exact geometry’ and, in fact,
defines it parametrically.

For the purposes of analysis, the isoparametric concept is invoked (see Hughes [40]). The
basis for the solution space in the physical domain is defined through a push forward of the
rational basis functions defined in (2) (see [5] for details). Coefficients of the basis functions,
defining the solution fields in question (e.g., displacement, velocity, etc.), are called control
variables.

As a consequence of the parametric definition of the ‘exact’ geometry at the coarsest level
of discretization, mesh refinement can be performed automatically without further communi-
cation with the original description. This is an enormous benefit. There are NURBS analogues
of finite element h- and p-refinement, and there is also a variant of p-refinement, which is
termed k-refinement, in which the continuity of functions is systematically increased. This
seems to have no analogue in traditional finite element analysis but is a feature shared by
some meshless methods. For the details of the refinement algorithms see [3].

The isogeometric approach is fundamentally higher-order. For example, in order to rep-
resent circles, cylinders and spheres, rational polynomials of at least quadratic order are nec-
essary. The generation of refined NURBS bases of all orders is facilitated by simple recur-
sion relationships. The versatility and power of recursive NURBS basis representations are
truly remarkable. Equation systems generated by NURBS tend to be more homogeneous than
those generated by higher-order finite elements and this may have some benefit in equation
solving strategies. NURBS satisfy a ‘variation diminishing’ property. For example, they give
monotone fits to discontinuous control data and become smoother as order is increased, un-
like Lagrange interpolation polynomials which oscillate more violently as order is increased.
NURBS of all orders are non-negative pointwise. This means that every entry of the NURBS
mass matrix is non-negative. These properties are not attained in finite element analysis. On
the other hand, NURBS are not interpolatory. They are fit to nets of control points and con-
trol variables. This aspect is less transparent to deal with than the corresponding finite element
concepts of interpolated nodal points and nodal variables but somewhat similar to the situation
for meshless methods. There are many robust algorithms to create very complex geometries
with NURBS.

5 The Skeleton-based Sweeping Method

Blood vessels are tubular objects, therefore we choose the sweeping method to construct hex-
ahedral control meshes for NURBS-based isogeometric analysis.
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5.1 Sweeping Method

In the sweeping method, a templated quadrilateral mesh of a circle is projected onto each
cross-section of the tube, then corresponding vertices in adjacent cross-sections are connected
to form a hexahedral mesh. A hexahedral NURBS control mesh should satisfy the following
four requirements:

1. Any two cross-sections can not intersect with each other.
2. Each cross-section should be perpendicular to the path line.
3. In the intersection region of several branches, each cross-section should remain perpen-

dicular to the vessel surface.
4. In order to achieve a G1-continuous surface, the boundary vertex shared by two patches

in the control mesh should be collinear with its two neighbors along the axial direction,
and the boundary vertex shared by three or more patches should be coplanar with all of
its neighboring boundary vertices. This is because, for a so-called open knot vector, a
NURBS curve is tangent to the control polygon at the first and the last control nodes.

(a) (b) (c)

Fig. 3. Multi-resolution templates for cross-sections. (a) Level-1-template (9 control nodes);
(b) Level-2-template (17 control nodes); (c) Level-3-template (25 control nodes). Red points
are circle centers, green points are interpolatory control nodes on the circle, and blue points
are non-interpolatory control nodes defined as the intersection point of two tangent lines at its
two neighboring green points.

We choose to parameterize the template cross-section as follows. One parametric direction
is associated with a closed circular curve, while another parametric direction is associated with
a radial coordinate. Rational quadratic basis is used to define the circular curve with a control
polygon given by the linear interpolation of the green and blue points shown in Figure 3.
For the template shown in Figure 3a, the control polygon is a square consisting of 8 control
nodes, while in Figure 3b, it is an octagon. Note that the circular cross-section is unchanged
geometrically and parametrically as more control points are chosen for its representation. The
green control points lie on the circle, while the blue control points do not. This is due to the
fact that the rational basis is interpolatory at the green points and is not interpolatory at the blue
points. Also note that each interpolatory control point has two neighboring non-interpolatory
points that are collinear with it. This construction guarantees the resultant circular curve to
be G1-continuous. Later, when we discuss data fitting, it is only the interpolatory points that
get projected onto the true surface. The non-interpolatory points are adjusted to preserve the
collinearity in order to obtain a G1-continuous cross-section.

In the process of sweeping, we translate the cross-section template to the selected locations
on the path, and rotate it to make its normal vector pointing in the direction tangent to the path
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Fig. 4. The skeleton-based sweeping method. (a) - a blood vessel skeleton; (b) - a templated
circle is translated and rotated to each cross-section. A bifurcation is shown.

as shown in Figure 4. This gives the third parametric direction for the solid NURBS represen-
tation. The hexahedral control mesh is constructed by connecting the corresponding control
nodes in adjacent cross-sections. Piecewise linear hexahedral meshes can also be generated at
the same time by projecting all boundary vertices to the vessel surface, or by interpolating the
elements of the solid NURBS geometry.

5.2 Branching Templates

One-to-one sweeping requires that the source and target surfaces have similar topology. Gen-
erally, arterial models do not satisfy this requirement, therefore we need to decompose arterial
networks into mapped meshable regions. In this section, we will discuss various decompo-
sition templates for different branching configurations. An n-branching is formed when n
branches join together, where n ≥ 3. When n = 3, it is a bifurcation; when n = 4, it is a
trifurcation; when n > 4, we call this situation higher order branching.

In the human vascular system, most branchings are bifurcations. However, trifurcations or
higher order branchings also exist. For example, there are several trifurcations in the coronary
arteries (Figure 11) and the abdominal aorta (Figure 1). In the following, we will discuss
decomposition templates for all possible branching configurations.

Bifurcation

For every intersection, a so-called master arterial branch is chosen. Typically, it is an artery
with the largest diameter. Suppose the master branch consists of two sub-branches (Branch 1
and Branch 2), and the slave branch is Branch 3, as shown in Figure 5a. The axes of Branch
1, 2 and 3 are Axis 1, 2 and 3 respectively (Axis 1 and Axis 2 may not be collinear). There
is one basic case, shown in Figure 5, and all bifurcations can be decomposed into three map-
meshable regions by a variant of this basic template.

Figure 5 shows the path, the constructed hexahedral control mesh, the solid NURBS mesh,
and the piecewise linear hexahedral meshes of the bifurcation template. The bifurcation geom-
etry is decomposed into three patches: the master branch contains two patches (red and green),
and the slave branch has one patch (yellow). Here we choose Level-1-template (Figure 3a) for
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each cross-section, as the master and slave branches have similar diameters. The bifurcation
template also works for finer cross-sections.

Fig. 5. The bifurcation decomposition template. (a) - path; (b) - control mesh; (c) - solid
NURBS; (d) - a piecewise linear hex mesh. The bifurcation geometry is decomposed into 3
patches, and each patch is rendered with a different color.

When the master branch and the slave branch have different diameters, the control nodes
of some cross-sections are distributed unevenly in order to generate better intersection regions.
Figure 6 shows two control meshes and their corresponding solid NURBS meshes. The mas-
ter branch control polygon is deformed from a square to a trapezoid so as to accommodate
a slave branch with a smaller diameter. Note that the NURBS basis changes accordingly so
as to preserve the circular cross-section, and the quality of the intersection geometry is im-
proved as can be seen in Figure 6 and Figure 7, where the axes of the master and the slave
branches are non-orthogonal, or non-coplanar. Although deforming the control polygon of the
master branch gives better results as compared to the non-deformed case, for the intersection
of branches with high diameter ratios we advocate the use of a finer template for the master
branch, such as a Level-2-template or a Level-3-template.

Trifurcation

Trifurcation has one master branch and two slave branches. According to the position of slave
branches relative to the master branch, we classify all possible trifurcations to fall into five
irreducible cases. All other trifurcations can be decomposed into map-meshable regions by
extending the five basic decomposition templates.

Case 1: The two slave branches are distributed along the peripheral direction of the master
branch, and they are in opposite relative to the master branch (the angle between them is
around 180◦). The same cross-section template can be used for the master and slave branches.

Case 2: The two slave branches are distributed along the peripheral direction, and the
angle between them is arbitrary. Finer cross-section template is chosen for the master branch.

Case 3: The two slave branches are distributed along the axial direction of the master
branch, and they intersect with each other.

Case 4: The two slave branches are distributed along the axial direction of the master
branch, and they do not intersect with each other. This situation degenerates into two bifurca-
tions.

Case 5: The two slave branches do not intersect with the master branch at the same point,
but they intersect with each other. In this situation, two bifurcations merge into one trifurca-
tion.

If a Level-1-template is selected as the cross-section of the master branch, then there
are at most two slave branches along the peripheral direction as shown in Figure 8 (Case
1). If the two slave branches are not opposite relative to the master branch, or the two slave
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Fig. 6. Comparison of two meshes for the situation when the master branch and the slave
branch have different diameters. Control nodes on cross-sections are distributed evenly in
Mesh (1) (the top row), and unevenly in Mesh (2) (the bottom row). The red curves in the
right two pictures are transition curves.

Fig. 7. Control mesh and solid NURBS (a) - the axes of the master and slave branches are not
perpendicular to each other; Control mesh and solid NURBS (b) - the axes of the master and
slave branches are not coplanar.

branches have different diameters from the master branch, then a Level-1-template is not suit-
able, and we need to choose finer cross-section templates, such as a Level-2-template or a
Level-3-template. Similarly, if a Level-2-template is selected as the cross-section of the master
branch, then there can be at most four slave branches along the peripheral direction. A Level-
3-template allows at most eight slave branches along the peripheral direction. In Case 2 of
Figure 8, the two slave branches are distributed along the peripheral direction and they are not
opposite, therefore we choose the finer cross-section template for the master branch (Level-2-
template), while the slave branch may have coarser cross-sections (Level-1-template).

Case 3 and Case 4 have the same path, but Case 4 degenerates into two bifurcations
because its two slave branches do not intersect with each other even though their axes intersect.
There is another special situation (Case 5) where two slave branches do not intersect with the
master branch at the same intersection point in the skeleton, but the two intersection points are
very close and the two slave branches intersect with each other. This situation contains two
bifurcations in the skeleton, but it should be considered as one trifurcation. Therefore, when
we choose branching configurations, both the path and the vessel size should be considered.
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Trifurcation Case 1

Trifurcation Case 2

Trifurcation Case 3

Trifurcation Case 4

Trifurcation Case 5

Fig. 8. The trifurcation decomposition templates of Case 1-4. (a) - path; (b) - hex control mesh;
(c) - solid NURBS; (d) - piecewise linear hex mesh. The Trifurcation geometry is decomposed
into 4 patches (Case 1, 2, 3, 5) or 5 patches (Case 4). Each patch is rendered with a different
color.
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Remark: In n-branching, n should be decided not only by the path, but also by the di-
ameter of each slave branch. In other words, if neighboring slave branches intersect with each
other, then it is n-branching. Otherwise, it degenerates into several m-branchings, where m < n.
On the other hand, several m-branchings may merge into one n-branching if its slave branch-
ings intersect with each other.

Higher order branching

Here we discuss three basic templates for n-branching when n > 4. Relative to the master
branch, there are only two directions to arrange slave branches, the peripheral and axial direc-
tions of the master branch. All other n-branching configurations can be obtained by combining
the three basic ones.

Case 1: There are three or more slave branches distributed along the peripheral direction
of the master branch. Figure 9 shows one example of four slave branches along the peripheral
direction. Level-2-template is selected for the master branch. If there are more than four slave
branches, the master branch needs to have a finer cross-section. The cross-section template of
slave branches can be coarser.

Case 2: There are three or more slave branches distributed along the axial direction of the
master branch. Neighboring slave branches intersect with each other.

Case 3: There are three or more slave branches distributed along the axial direction of the
master branch. Slave branches do not intersect with each other. n-branching degenerates into
several m-branchings (m < n).

Several lower order branchings may merge into a higher order one, for example, one
bifurcation and one trifurcation can merge into a 5-branching. Case 1, Case 2 and Case 3 can
be combined together to form more complex configurations. Figure 9 shows one example of
7-branching. It has four slave branches along the peripheral direction and two slave branches
along the axis of the master branch.

5.3 Data Fitting

After the sweeping step, each circular cross-section needs to be projected onto the vessel
surface as shown in Figure 10. First the interpolatory control points (green points) are moved
in the radial direction to the true surface. Then, the non-interpolatory points (blue points)
are placed at the intersection of the lines tangent to the true surface passing through the two
neighboring interpolatory points.

There are situations when the tangent lines do not intersect inside the fan region defined
in Figure 10b, or do not even intersect with each other when they are parallel. This may occur
when the cross-section template is not sufficiently fine to capture features of the true surface,
or when the true surface is noisy. This situation will also result in an overlap in the geometry.
In order to avoid overlap, we force the non-interpolatory point to stay inside the fan region
(the sector between two radial rays) by placing it at the midpoint (indicated by the magenta
color) of the segment connecting the two interpolatory points. Finally, the location of the
interpolatory points is changed so as to preserve G1-continuity of the surface.

After projecting each cross-section to the vessel surface, we construct hexahedral control
meshes and generate solid NURBS for patient-specific vascular models. The geometric error
can be reduced by choosing a finer template for each cross-section.

5.4 Implications for Analysis of Blood Flow in Arteries

The proposed construction of a NURBS solid mesh for isogeometric analysis has the following
implications:
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n-branching Case 1

n-branching Case 2

n-branching Case 3

A combination of Case 1 and Case 2

Fig. 9. The n-branching templates of Case 1-3 and a combination of Case 1-2. (a) - path; (b) -
control mesh; (c) - solid NURBS; (d) - piecewise linear hex mesh. The Trifurcation geometry
is decomposed into 6 patches (Case 1), 5 patches (Case 2) or 7 patches (Case 3, a combination
of Case 1 and Case 2). Each patch is rendered with a different color.
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Ray 1

Ray 2

Ray 1

Ray 2
(b)(a) (c)

Fig. 10. One cross-section template is projected to the vessel surface. (a) Level-2-template
for one circular cross-section; (b) The red curve is the vessel curve. In the blue fan region,
the two tangent lines do not intersect with each other, and the magenta point is the calculated
control node; (c) The two neighboring green control nodes are adjusted. The green curve is
the constructed spline curve. Green control nodes are interpolatory points lying on the vessel
surface, and blue points are non-interpolatory.

1. Parametric definition of the NURBS mesh allows one to refine the boundary layer region
near the arterial wall in order to accurately capture flow features.

2. In the case of a flow in a straight circular pipe driven by a constant pressure gradient,
NURBS basis of quadratic order gives rise to a point-wise exact solution to the incom-
pressible Navier-Stokes equation system. This also has implications on the overall accu-
racy of the approach.

3. The choice of the parameterization of the cross-section template gives rise to a singularity
in the geometrical mapping at the center. This singularity does not seem to affect the ac-
curacy of the computational results. Other parameterizations of the circular cross-section,
containing multiple patches, are also possible.

6 Numerical Examples

In this section we present applications of the meshing pipeline to three patient-specific vascular
models: a model of a portion of the coronary tree, a model of the thoracic aorta, and a model of
the abdominal aorta. Isogeometric analysis is then used to compute blood flow in the models.
In all cases, time-dependent, viscous, incompressible Navier-Stokes equations were used as
the blood model. The fluid density and dynamic viscosity were chosen to be representative
of blood flow. The first example makes use of the Casson model for the dynamic viscosity
while in other examples viscosity was set to a constant value. All models are subjected to
a time-periodic inflow boundary condition, which simulates the input from a beating heart.
The arterial wall is assumed rigid in the first example. Examples two and three present fluid-
structure interaction calculations in which the wall is assumed to be elastic (see Bazilevs et al.
[2] for the details of the mathematical formulation). The rigid wall simulation was performed
on a single processor, while the elastic wall simulations were done in parallel.

A model of a portion of the coronary tree: Data for this model was obtained from CT
Angiography imaging data of a healthy male, over 55 years of age. Large motions of the heart,
as it supplies blood to the circulatory system, decreases the quality of the imaging data, and
makes construction of patient-specific coronary models a challenging task. Nevertheless, we
managed to extract a portion of the coronary tree for the purposes of creating an analysis
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suitable model. Results of the isocontouring algorithm are shown in Figure 11a. Figures 11b-
11d show the path, the control mesh, and the solid NURBS model of the arterial segment. The
model was used to study drug delivery processes in arteries. The drug concentration in the
blood is modeled as a passive scalar governed by an unsteady advection-diffusion equation.
Figure 11e shows the isosurface of the drug concentration at 50% colored by the blood velocity
magnitude, revealing that the flow is unsteady, and has many complex features.

Fig. 11. Coronary artery. (a) - isocontouring results (two different view angles); (b) - path;
(c) - control mesh; (d) - solid NURBS model (20,824 elements); (e) - rigid wall simulation
results: isosurface of the drug concentration at 50% colored by the blood velocity magnitude
(cm/s).

Thoracic aorta model: Data for this model was obtained from CT Angiography imaging
data of a healthy male over-30 volunteer. A patient-specific model of the thoracic aorta was
constructed by running through the meshing pipeline. An extra branch, representing a left
ventricular assist device (LVAD), was added to the arterial model. Evaluation of LVADs, as
well as other electromechanical devices used to support proper blood circulation, is of great
interest to the cardiovascular community. The path, the control mesh, and the solid NURBS
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model are shown in Figures12a-12c. Figure 12d shows a result of the fluid-structure interaction
simulation. Note that the inlet and the three smaller outlet branches were extended for the
purposes of analysis.

Fig. 12. Thoracic aorta. (a) - surface model and the path, a LVAD is inserted; (b) - control
mesh; (c) - solid NURBS (41,526 elements); (d) - fluid-structure interaction simulation re-
sults: contours of the arterial wall velocity (cm/s) during late diastole plotted on the current
configuration.

Abdominal aorta: Data for this model was obtained from 64-slice CT angiography of
a healthy male over 55 years of age. Various stages of the meshing pipeline are illustrated in
Figure 1a-1f. Figure 1g shows a result of the fluid-structure simulation. A computational study
using a truncated geometrical model of this aorta was performed in [2]. We used 85 seconds
for path extraction and 8 seconds for control mesh construction on a 64-bit dual-AMD 2GHz
linux system, and 20 seconds for solid NURBS generation on an Intel 3GHz linux system.

7 Conclusions and Future Work

We have developed a four-stage process to construct analysis suitable geometric models from
patient-specific vascular imaging data with a goal of using them in isogeometric analysis of
blood flow in arteries. We have focused on the NURBS modeling, and did not treat other
geometrical modeling technologies, such as A-patches, T-splines, and subdivision. We would
like to investigate these techniques in the future.

We have successfully applied our method to three patient-specific examples, which in-
volve a model of a part of the coronary arterial tree, a thoracic aorta model, and an abdominal
aorta model. As part of the future work, we would like to apply the techniques described here
to modeling and analysis of the human heart.
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