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Abstract

This paper describes a comprehensive approach to construct quality meshes for implicit solvation models of biomolecular struc-
tures starting from atomic resolution data in the Protein Data Bank (PDB). First, a smooth volumetric electron density map is
constructed from atomic data using weighted Gaussian isotropic kernel functions and a two-level clustering technique. This en-
ables the selection of a smooth implicit solvation surface approximation to the Lee–Richards molecular surface. Next, a modified
dual contouring method is used to extract triangular meshes for the surface, and tetrahedral meshes for the volume inside or outside
the molecule within a bounding sphere/box of influence. Finally, geometric flow techniques are used to improve the surface and
volume mesh quality. Several examples are presented, including generated meshes for biomolecules that have been successfully
used in finite element simulations involving solvation energetics and binding rate constants.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Finite element simulations have become an important tool in the analysis of biomolecular functional models, such
as electrophoresis, electrostatics and diffusion influenced reaction rate constants (Song et al., 2004a, 2004b; D. Zhang
et al., 2005). For efficient and accurate finite element solutions, adaptive and quality meshes are a necessary first step.
The primary difficulty remains in generating satisfactory triangular or tetrahedral meshes for complicated macro-
molecules such as the Ribosome consisting of proteins and nucleic acids (Nissen et al., 2000) (Fig. 1), or protein
structures such as acetylcholinesterases whose active site occurs at the bottom of a narrow gorge (pocket) (Fig. 14).

The protein data bank (http://www.rcsb.org/pdb) (Berman et al., 2000) provides PDB format files for protein
and nucleic acid structures, with the location of principally all the major atoms making up the molecule (e.g.,
hydrogen atoms are not discernible via X-ray diffraction and therefore rarely present in the PDB). The summa-
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Fig. 1. Implicit solvation models of Haloarcula Marismortui large Ribosome 50S (1JJ2) subunit. The light yellow and the pink color show 5S and
23S rRNA respectively, the remaining colors are proteins. (a) The implicit solvation model at the medium resolution level, p1 = 0.0625, p2 = 1.0;
(b) and (c) triangular meshes (16700 vertices, 33400 triangles); (d) the interior mesh (230025 vertices, 1141575 tets); (e) an exterior mesh within
a sphere (234902 vertices, 1162568 tets); (f) an exterior mesh within a bounding box (260858 vertices, 1315112 tets). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

tion of kernel functions centered at each atom can be used to construct a smooth volumetric electron density map
from PDB data (Blinn, 1982; Grant and Pickup, 1995). The volumetric data is often sampled at each rectilinear
grid point, V = {F(i, j, k) | i, j, k are indices of x, y, z coordinates in a rectilinear grid}, and the implicit solvation
surface is approximated as a level set SF (c) = {(x, y, z) | F(i, j, k) = c}, where c is a constant (Blinn, 1982;
Grant and Pickup, 1995; Lee et al., 2003). The computation of density maps can be made very efficient with worst
case complexity linear in the number of grid points and the number of atoms (Bajaj and Siddavanahalli, 2005). In
this paper, we describe an approach to generate quality triangular/tetrahedral meshes for complicated biomolecular
structures directly from the PDB format data, conforming to a good implicit solvation surface approximation. There
are three main steps in our mesh generation process:

(1) Implicit Solvation Surface Construction—A smooth implicit solvation model is constructed to approximate the
Lee–Richards molecular surface by using weighted Gaussian isotropic atomic kernel functions and a two-level
clustering techniques.

(2) Mesh Generation—A modified dual contouring method is used to extract triangular and interior/exterior tetra-
hedral meshes, conforming to the implicit solvation surface. The dual contouring method (Y. Zhang et al.,
2003, 2005) is selected for mesh generation as it tends to yield meshes with better aspect ratio. In order to gener-
ate exterior meshes described by biophysical applications (Song et al., 2004a, 2004b; D. Zhang et al., 2005), we
add a sphere or box outside the implicit solvation surface, and create an outer boundary. Our extracted tetrahedral
mesh is spatially adaptive and attempts to preserve molecular surface features while minimizing the number of
elements.
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(3) Quality Improvement—Geometric flows are used to improve the quality of extracted triangular and tetrahedral
meshes.

The main contributions of this paper include: a simple and uniform treatment for approximating implicit solvation
models, coupled to an adaptive surface and volume mesh extraction scheme combined with geometric flow to yield
high quality meshes. The generated tetrahedral meshes of the monomeric and tetrameric mouse acetylcholinesterase
(mAChE) (Bourne et al., 1995, 1999) have been successfully used in solving the steady-state Smoluchowski equation
using the finite element method (Song et al., 2004a, 2004b; D. Zhang et al., 2005).

The remainder of this paper is organized as follows: Section 2 reviews related previous work. Section 3 intro-
duces how to construct an implicit solvation surface from PDB molecular structural data. Section 4 details our mesh
generation scheme. Finally Section 5 describes our mesh quality improvement technique. Section 6 presents several
molecular meshing results.

2. Previous work

Molecular surface approximation: There are three different yet often used molecular interfaces (Sanner et al.,
1996), the van der Waals surface (VWS), the solvent-accessible surface (SAS) and the solvent-excluded surface (SES)
(Connolly, 1983) or sometimes called the Lee–Richards surface (Lee and Richards, 1971). The SES or the Lee–
Richards surface is by far the molecular surface of choice for solvation energy calculations (Holst et al., 2000; Lee et
al., 2003), and is the surface for our meshing approximations.

According to the properties of molecular structures, Laug and Borouchaki used a combined advancing front and
generalized Delaunay approach to mesh molecular surfaces (Laug and Borouchaki, 2002). Algorithms were developed
for sampling and triangulating a smooth surface with correct topology (Akkiraju and Edelsbrunner, 1996). Skin sur-
faces, introduced by Edelsbrunner in (Edelsbrunner, 1999), have a rich combinational structure and provide a smooth
alternative to the Lee–Richard’s surface. Cheng et al. (2001) maintained an approximating triangulation of a deform-
ing skin surface. Bajaj et al. (1997) give NURB approximation of Lee–Richards molecular surfaces as well as present
methods to maintain molecular surfaces for varying solvent radii (Bajaj et al., 2003). Compressed volumetric repre-
sentation of molecular surfaces is given in (Bajaj et al., 2005). Simplex subdivision schemes are used to generate tetra-
hedral meshes for molecular structures in solving the Poisson–Boltzmann equation (Holst et al., 2000). Gaussian func-
tions have been used to construct density maps (Blinn, 1982; Grant and Pickup, 1995; Mezey, 1993; Agarwal, 1978;
Max, 1988), from which implicit solvation models are approximated as an isocontour (Grant and Pickup, 1995;
Lee et al., 2003; Gabdoulline and Wade, 1996). However, it still remains a challenge to generate quality and adaptive
triangular and tetrahedral meshes for arbitrary molecular structures.

Mesh generation: As reviewed in (Owen, 1998; Teng and Wong, 2000), octree-based, advancing front based and
Delaunay like techniques were used for triangular and tetrahedral mesh generation. The octree technique recursively
subdivides the cube containing the input geometry until the desired resolution is reached (Shephard and Georges,
1991). Advancing front methods start from a boundary and move a meshed front from the boundary towards empty
space within the domain (Frey et al., 1996; Lohner et al., 1986). Delaunay refinement is used to refine triangles or
tetrahedra locally by inserting new nodes to maintain the Delaunay criterion (‘empty circum-sphere’) (Chew, 1997).
Sliver Exudation (Cheng et al., 2000) was used to eliminate slivers (bad aspect ratio). Shewchuk (2002) solves the
problem of enforcing boundary conformity by use of constrained Delaunay triangulations (CDT).

The predominant algorithm for isosurface extraction from volume data is Marching Cubes (MC) (Lorensen and
Cline, 1987), which computes a local triangulation within each cube to approximate the isosurface by using a case
table of edge intersections. MC was extended to extract tetrahedral meshes between two isosurfaces (Fujishiro et al.,
1996). A different and systematic algorithm was proposed for interval volume tetrahedralization (Nielson and Sung,
1997). By combining SurfaceNets (Gibson, 1998) and the extended Marching Cubes algorithm (Kobbelt et al., 2001),
octree based dual contouring (Ju et al., 2002) generates adaptive multiresolution isosurfaces with preservation of sharp
features. The dual contouring method has also been extended to extract adaptive and quality tetrahedral meshes from
volumetric imaging data (Y. Zhang et al., 2003, 2005).

Quality improvement: Algorithms for mesh quality improvement can be classified into three categories (Teng and
Wong, 2000; Owen, 1998): local coarsening/refinement by inserting/deleting points, local remeshing by face/edge
swapping and mesh smoothing by relocating vertices.
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Laplacian smoothing relocates vertex position at the average of the nodes (vertices) incident to it (Field, 1988).
Instead of relocating vertices based on a heuristic algorithm, the optimization technique measures the quality of the
surrounding elements to a node and attempts to optimize it. The optimization-based smoothing yields better results,
nevertheless it is more expensive than Laplacian smoothing. Therefore, a combined Laplacian/Optimization-based ap-
proach was recommended (Canann et al., 1998; Freitag, 1997). The Laplacian operator was discretized over triangular
meshes (Meyer et al., 2002), and geometric flows have been used in surface and imaging processing (Sapiro, 2001;
Xu et al., 2006). Physically-based simulations are used to reposition nodes (Lohner and Parikh, 1988). Anisotropic
meshes are obtained from bubble placement and equilibrium (Shimada et al., 1997). Mesh regularization was dis-
cussed in (Ohtake et al., 2001; Wood et al., 2000).

3. Implicit solvation surface from volumetric density maps

We extract an implicit solvation surface (molecular surface) as a level set (isocontour) of the volumetric electron
density maps (Bajaj and Siddavanahalli, 2005). The implicit solvation surface is chosen to be a good approximation
of the Lee–Richards molecular surface (Lee and Richards, 1971) by choosing an appropriate weighting parameter of
the summation of Gaussian kernel functions.

3.1. Gaussian density map

The molecular surface has been approximated in the past (Blinn, 1982; Gabdoulline and Wade, 1996; Grant and
Pickup, 1995) by an isocontour:

M := {
x ∈ R

3: G(x) = 1
}

with G(x) =
N∑

i=1

e
Bi(

‖x−xi‖2

r2
i

−1)

(1)

where (xi, ri ) are the center and radius of the ith atom in the biomolecule, and Bi < 0 is called the ‘decay rate’, which
controls the rate of decay of each atom’s Gaussian kernel. Note that Bi must be negative to ensure that the density

Fig. 2. Implicit solvation models by choosing various C in (a) and Bi in (b). Yellow balls are two input atoms. The correspondence between C/Bi

values and these models are shown in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
C (1/Angstrom2)/Bi (constant) and implicit solvation models in Fig. 2 (for colors see the web version of the article)

Red Green Magenta Blue

Fig. 2(a) C = −0.125 C = −0.25 C = −0.5 C = −1.0
Fig. 2(b) Bi = −0.125 Bi = −0.25 Bi = −0.5 Bi = −1.0
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function goes to zero as ‖x − xi‖ goes to infinity. In order to make the distance between M and M0 as uniform as
possible, we take C = Bi/r2

i , where C < 0 is a given constant. Now G(x) becomes

G(x,C) =
N∑

i=1

eC(‖x−xi‖2−r2
i ). (2)

In the following for the molecular surface M(Ci) = {x ∈ R
3: G(x,Ci) = 1}, we consider C = C1, . . . ,Cl . As shown

in Fig. 2, the different effects of C and constant Bi(= B) are shown for a two-sphere system, one is centered at
(0,0,0) with radius of 1.0, the other one is at (2.8,0,0) with radius of 2.0. It can be observed that

• C leads to more uniform inflation than Bi .
• Small balls have more inflation than big ones.
• Large error occurs around the intersection region, and the error reduces gradually away from it.
• Larger C and Bi lead to greater inflation. For the same C and Bi value, e.g., −0.125, Bi tends to introduce more

inflation.
• Inflation of the molecular surfaces distorts the polar solvation energies and hence to be seriously avoided.

Fig. 3 shows implicit solvation models of Ribosome 30S. Compared with Fig. 3(a), proteins inflate much more
seriously in Fig. 3(e). rRNA in Figs. 3(c) and (f) looks similar, but proteins in Fig. 3(f) look a little more inflated than
Fig. 3(b). rRNA in Figs. 3(d) and (g) looks similar too, but proteins in Fig. 3(g) are close to proteins in Fig. 3(c).

Fig. 3. Implicit solvation models of Thermus Thermophilus small Ribosome 30S (1J5E) crystal subunit for various Gaussian kernel parameters.
The pink color shows 16S rRNA and the remaining colors are proteins. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 4. The definition of multi-level surfaces.

3.2. Multi-level Gaussian density map

In order to reduce the inflation caused by Gaussian summation as well as to model molecular surfaces with vary-
ing resolution on the implicit solvation surface, we introduce a multi-level Gaussian map. First, we introduce some
notation as shown in Fig. 4. Let N0 = {N(0)

0 , . . . ,N
(n)
0 } denote the index set of all the atoms with N

(i)
0 = {i}. Suppose

N0 is grouped into several subsets N
(i)
1 , i = 1,2, . . . , ni , such that

n1⋃
i=1

N
(i)
1 = N0, N

(i)
1

⋂
1�i �=j�n1

N
(j)

1 = φ. (3)

The set N1 := {N(i)
1 }n1

i=1, whose elements are also sets, may be further grouped into some subsets N
(i)
2 , i =

1,2, . . . , n2, such that
n2⋃
i=1

N
(i)
2 = N1, N

(i)
2

⋂
1�i �=j�n2

N
(j)

2 = φ. (4)

The collection of {N(i)
2 }n2

i=1 is denoted by N2. This hierarchical grouping process could be repeated several times

according to the molecular complex considered. In practice, two or three iterations suffice. By using these sets N
(i)
k

and a given sequence {pk} of p with pk > 0, the k-level Gaussian map are defined recursively as

G
N

(i)
k

(x) =
∑

N∈N
(i)
k

[
GN(x)

]pk , N
(i)
k ∈ Nk,

where 0-level Gaussian map is defined by Eq. (2) (C = 1.0) or

G
N

(i)
0

(x) = K
(‖x − xi‖

)
/K(ri), K(x) = e−x2

.

The atom group format depends on what kind of structure we wish to model and mesh. For a protein, atoms may
be grouped by residues, meaning that atoms in the same residue are classified into one group. Then the residues are
grouped according to their neighborhood along the protein backbone.

For each k-level Gaussian Map G
N

(i)
k

(x), a k-level surface is defined by

M (i)(x) := {
X ∈ R

3: G (i) (x) = 1
}
.

Nk Nk
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Fig. 5. Implicit solvation models of Haloarcula Marismortui large Ribosome 50S (1JJ2) crystal subunit. (a) p1 = 0.03125; (b) p1 = 0.125;
(c) p1 = 0.5, p2 = 1.0. The light yellow and the pink color show 5S and 23S rRNA respectively, the remaining colors are proteins. (For in-
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

This surface encloses the surface MN for N ∈ N
(i)
k . Hence, all these N

(i)
k define a hierarchical surface family. We call

the surface MN as the child of M
N

(i)
k

, and M
N

(i)
k

the parent of MN . The enclosing relation of this hierarchical surface

family is strict, meaning that the minimal distance from MN to M
N

(i)
k

is greater than zero for any N ∈ N
(i)
k . We further

define the B-surface of MN for all N ∈ N
(i)
k as

S
N

(i)
k

= Bd

( ⋃
N∈N

(i)
k

{
x ∈ R

3: GN(x) � 1
})

,

where Bd() denotes the boundary of a region in R
3. Note that S

N
(i)
k

is enclosed strictly by M
N

(i)
k

.

The purpose of introducing a multi-level Gaussian map is to address the structure of molecules at a certain level.
For instance, at the residue level of a protein, we dealt with each residue as one unit and therefore the protein is
considered at the residue level resolution. The sub-structures of the residue (atoms), are not individually identifiable.
Similarly, at the next higher level, a group of residues is dealt as one unit and therefore the protein is considered at an
even coarser feature resolution. The goal of addressing certain level structure and un-addressing the higher level ones
is achieved by the properly selection of the parameter pk in the multi-level Gaussian map. Basically, larger pk should
be chosen to address the k-level structure and a smaller pk−1 is used to un-address the (k − 1)-level structures.

Considering three levels of structures, including the atomic, the residue and the next level of grouping, we can
construct a three level Gaussian map with given p1,p2 and p3. To address the second level structure, we need to
choose p3 larger and p2 smaller, while p1 has less influence than the second level structure. Quite often it also
suffices to consider only a two-level Gaussian map instead of three: level one is at the protein residue level, while
level two is at a coarser resolution level. Henceforth in this paper, we provide details for only two-level Gaussian
maps.

In computing implicit solvation molecular surfaces, various models are constructed by choosing different p1 ∈
(0,∞) and p2 ∈ (0,∞) in the Gaussian map. To make the constructed model correspond to a certain level, p1 and p2
need to be selected properly. For a fixed level, the structure at this level should be distinguishable. For instance, at the
residue level, the individual residues should be observed, while atoms may not be distinguished clearly. Fig. 5 shows
constructed models of Ribosome 50S at low resolution, residue and atomic level resolutions.

3.3. Approximation computation

In order to obtain a good approximation to the molecular surface from the multi-level Gaussian map, we bound
the error at each level. To bound the approximation for the first level, we need to compute the minimal distance from
MN , N ∈ N

(i)
1 to its parent surface M (i) . On the other hand, in order to have an error controlled approximation of the
N1
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second level surface, we need to compute the maximal error from MN , N ∈ N
(i)
2 to its parent surface M

N
(i)
2

. Hence,

we need to consider the error computation for both levels of surfaces. The error computations are based on a point
projection algorithm.

Given the surface MN a point q /∈ MN and a unit direction n, the point projection algorithm in the following
computes a nearby intersection point p of the line q + tn(t ∈ (−∞,∞)) with the surface MN .

Algorithm 3.3.1 (Point projection).

(1) Compute an interval [a, b] for t , on which GN(q + tn) − 1 changes sign once. This is achieved by a linear search
step in a certain range [A,B]. If (∇GN(q))Tn[GN(q) − 1] < 0, search in n direction, otherwise in −n direction.
If such an interval could not be found, the project point does not exist and return a failure signal. After the interval
is determined, set t0 = a+b

2 and k = 0.
(2) Compute tk+1 by the Newton iteration method.

tk+l = tk − GN(q + tkn)

nT∇GN(q + tkn)
. (5)

If tk+i /∈ (a, b), replace tk+1 by a+b
2 .

(3) Replace the interval [a, b] by [a, tk+1] if GN(q + tn) − 1 changes sign over [a, tk+1], and replace [a, b] by
[tk+1, b] otherwise.

(4) If ‖b − a‖ < ε (ε is a given error tolerance, we usually take it to be 10−4), stop the iteration and p = q + tk+1n is
the projection point, otherwise, set k = k + 1 and go back to step 2.

We specify the searching range [A,B] in step 1 of the algorithm to be [−4,4], since the atom diameters are
around 4. Errors beyond that are not considered here. If the projection exists, then the projection point p of point q on
the surface MN in the direction n is denoted by PMN

(q,n).

3.3.1. Minimal error of level one surface
Now we assume k = 1, then the child surfaces are atoms. Let N = {j} ∈ N

(i)
1 , the minimal error from MN = SN to

M
N

(i)
1

is defined by

dn := min
p∈M

N
(i)
1 ,N

‖p − xj‖ − rj , j ∈ N.

Let q = xj +rj
p−xj

‖p−xj ‖ , then q is on the sphere SN and p is the projection of q to the surface M
N

(i)
1

in the spherical nor-

mal direction n(q). That is, p = PM
N

(i)
1

(q,n(q)). Hence in order to compute dN , we need to compute PM
N

(i)
1

(q,n(q))

for q ∈ SN .
Next we consider the computation of the minimal distance from MN to M

N
(i)
1

, where N ∈ N
(i)
1 . First we assume

that each atom (sphere) is uniformly sampled with m vertices. This sampling is achieved by translating a triangulated
unit sphere to each of the atomic centers and re-scaling it to the atom’s van der Waal radius. We obtain the unit sphere
triangulation from (Xu, 2006). For each vertex q on the triangulated atom surface MN , PM

N
(i)
1

(q,n(q)) is computed

using the point projection algorithm, where n(q) is the spherical normal at q .

Algorithm 3.3.2 (Minimal error computation).
Set dN = 4.
for each triangle vertex q ∈ SN ∩ SN0 do {

compute PMN1
(q,n(q)), and then compute

dN = min
{
dN,

∥∥PMN1

(
q,n(q)

) − xj

∥∥ − rj
}
, (6)

if PMN1

(
q,n(q)

) ∈ MN1,N

}
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Table 2
Minimal error and maximal error of first level surfaces of Ribosome 30S (1J5E) (Angstrom)

p1 0.25 0.5 1.0 2.0 4.0 8.0 16.0

Min error (atomic) 8.338e−02 2.829e−03 6.287e−06 < 10−6 < 10−6 < 10−6 < 10−6

Max error (atomic) 1.634e+00 8.656e−01 4.121e−01 2.038e−01 8.893e−02 3.940e−02 1.842e−02

Table 3
Maximal error of second level surfaces of Ribosome 30S (1J5E) (Angstrom)

p2 0.25 0.5 1.0 2.0 4.0 8.0 16.0

Max error (residue) 3.923e+00 2.124e+00 6.832e−01 3.240e−01 1.550e−01 7.794e−02 3.278e−02
Max error (low) 9.899e+00 7.695e+00 8.045e−01 2.365e−01 1.390e−01 6.113e−02 2.653e−02

Table 2 shows the minimal error of our level one surface for a residue and a chain from Ribosome 30S, where
e(M) is defined as e(M) := max

N∈N
(i)
1

dN . It can be observed that the error decreases as p increases. The algorithm

for computing minimal error can also be used to compute the maximal error by changing the min to max in (6).
Maximal errors for Ribosome 30S are also listed in Table 2 for different p1 (see the second row).

3.3.2. Maximal error of level two surface
The maximal error from MN to M

N
(i)
2

,N ∈ N
(i)
2 is defined as

dN := max
q∈MN, PM

N
(i)
2

(q,n)∈M
N

(i)
2 ,N

∥∥q − PM
N

(i)
2

(q,n)
∥∥,

where q ∈ MN,PM
N

(i)
2

(q,n) is the normal direction projection of q to the surface M
N

(i)
2

. This error is computed as

follows. Let N1 ∈ N
(i)
2 .

Algorithm 3.3.3 (Maximal error computation).
Set dN1 = 0.
for each N ∈ N1 do {

for each triangle vertex q ∈ SN ∩ SN0 do {
compute q̃ := PMN1

(q,n(q)), and
compute PM

N
(i)
2

(q̃, n(q̃)) if q ∈ MN1,N

and then compute

dN1 = max{dN1,‖PMN1
(q,n(q)) − PM

N
(i)
2

(q,n(q))‖
if PM

N
(i)
2

(q̃, n(q̃)) ∈ M
N

(i)
2 ,N1

}
}

Again, the projection points q̃ = PMN1
(q,n(q)) and PM

N
(i)
2

(q̃, n(q̃)) are computed by the point projection algo-

rithm, where the searching range [A,B] is set to be [0,4], since we know M
N

(i)
2

enclosing MN and we are not

interested in the errors that are larger than 4.
The first row of Table 3 shows the maximal errors of the second level (residue level) surfaces for Ribosome 30S,

where p1 is chosen to be 0.5, p2 = 0.25,0.5,1.0, . . . ,16. The second row lists the maximal errors of the second level
(low level) surfaces for the same p1 and p2. The results show that the errors decrease approximately as a linear rate
as p2 increases.
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Fig. 6. The left picture shows the inflation effect by the Gaussian map. The right one shows the tight enclosure of atoms. The centers of the five atoms
are (−2,0,0), (2,0,0), (0,−1,0), (0,1,0) and (0,0,0). The corresponding radii are 0.8,0.9,1.1,1.3 and 1.3. The parameter p in the Gaussian
map is chosen to be 0.4. The tight approximation on the right figure is obtained by shrinking the five radii into 0.55644,0.72525,0.60476,1.04567
and 0.0 respectively. The unit is Angstrom.

3.4. Good approximations of molecular surfaces

We have discussed that it is often sufficient to consider a two-level Gaussian map to approximate molecular sur-
faces. To address certain structures, p1 is taken to be a small value to blur the higher level details, p2 is chosen to be
larger to enhance the feature of the current level structure. As we have shown in the last section, a smaller p1 leads to
a larger error for the level one surface, and a larger p2 leads to a smaller error for the second level surface. Therefore,
our strategy for obtaining a tight enclosing surface approximation is to remove the level one error and ignore the error
of the second level.

The main idea to obtain a tight level one enclosing surface M
N

(1)
1

is to reduce the radii of the atoms, such that

M
N

(i)
1

touches the original atoms (see Fig. 6). Suppose y ∈ M
N

(i)
1

is the nearest point to the j th atom, j ∈ N
(i)
1 , and

the distance from y to the atom is dj . Then we have∑
l∈N

(i)
1 ,l �=j

[
K

(‖y − xl‖
)/

K(rl)
]p1 + [

K
(‖y − xj‖

)/
K(rj )

]p1 = 1 (7)

where K(x) = e−x2
. Now we adjust the radius rj to r̃j , such that the new nearest point y is on the j th sphere. Since

the dominating part of (7) is the second term of the left hand side, we therefore require r̃j satisfying

0 � r̃j � rj , (8)

K(rj + dj )/K(rj ) = K(rj )/K(r̃j ). (9)

From this we obtain

r̃j =
{

K−1[ K(rj )2

K(rj +dj )
], if

K(rj )2

K(rj +dj )
∈ Range(K),

0, otherwise,

where K−1 denotes the inverse function of K(x), Range(K) := {y ∈ R: y = K(x), x ∈ (0,∞)}. Based on this
analysis, we build the following iterative algorithm for computing r̃j .

Algorithm 3.4.1 (Sphere shrinking).
For i = 1,2, . . . , ni do the following steps:

(1) Set l = 0, rl = rj , d
(l) = ∞, ∀j ∈ N

(i).
j j 1
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Table 4
Errors e(l)

max for 20 amino acids and p1 = 0.4

l ALA ARG ASN ASP CYS GLN GLU GLY HSD ILE

0 5.13e−01 6.97e−01 5.99e−01 6.23e−01 5.36e−01 6.26e−01 7.06e−01 4.34e−01 7.36e−01 6.00e−01
2 6.22e−02 1.37e−01 2.66e−01 6.75e−02 5.86e−02 1.16e−01 7.78e−02 5.33e−02 7.20e−02 5.62e−02
4 2.80e−03 3.79e−02 5.83e−02 1.50e−03 6.82e−04 1.76e−03 4.57e−04 1.90e−02 1.45e−02 2.73e−03
6 5.76e−04 2.30e−02 1.83e−04 4.93e−04 1.81e−04 4.51e−04 1.38e−04 8.62e−05 5.30e−03 5.60e−04
8 1.30e−04 6.95e−04 6.06e−05 1.64e−04 4.97e−05 1.74e−04 4.26e−05 6.31e−06 2.20e−03 1.25e−04

10 3.14e−05 2.18e−04 2.22e−05 5.59e−05 1.39e−05 7.84e−05 1.32e−05 7.16e−07 9.94e−04 3.11e−05

l LEU LYS MET PHE PRO SER THR TRP TYR VAL

0 8.48e−01 8.62e−01 6.08e−01 6.14e−01 7.98e−01 9.63e−01 1.06e−00 6.01e−01 6.10e−01 7.07e−01
2 6.51e−02 3.96e−01 1.13e−01 8.94e−02 2.06e−03 8.81e−02 3.06e−02 9.17e−02 6.03e−02 2.86e−02
4 5.72e−03 1.54e−03 7.78e−03 6.50e−03 3.62e−04 5.28e−04 6.63e−03 1.49e−02 4.25e−02 5.76e−03
6 1.27e−03 5.18e−04 2.25e−03 1.90e−03 9.12e−05 1.19e−04 1.68e−03 6.42e−03 1.69e−03 1.36e−03
8 3.03e−04 1.77e−04 6.77e−04 7.13e−04 2.35e−05 2.66e−05 4.67e−04 2.90e−03 6.93e−04 3.56e−04

10 7.52e−05 6.23e−05 2.09e−04 3.02e−04 6.26e−06 5.88e−06 1.36e−04 1.56e−03 3.52e−04 9.78e−05

(2) Compute the minimal distance d
(l+1)
j , ∀j ∈ N

(i)
1 from the j th atom to the iso-surface defined by the multi-level

Gaussian map G
(l)

N
(i)
1

(x) = ∑
j∈N

(i)
1

[K(‖x − xj‖)/K(r
(l)
j )]p1 , using Algorithm 4.2.

(3) Compute

r
(l+1)
j =

⎧⎨
⎩K−1

[K(rj )K(r
(l)
j )

K(rj +d
(l)
j )

]
, if

K(rj )K(r
(l)
j )

K(rj +d
(l)
j )

∈ Range(K),

0, otherwise.

(4) If max
j∈N

(i)
1

‖d(l)
j − d

(l+1)
j ‖ < ε (we take ε = 10−4), terminate the l loop and r

(l+1)
j are the required results.

Otherwise, set l = l + 1 and go back to step 2.

Remark. The condition
K(rj )K(r

(l)
j )

K(rj +d
(l)
j )

∈ Range(K) may lead to some of the atoms located in the interior of the molecule

to become untouchable. Fig. 6 shows that the circle at the origin is not touched.

The experiments show the sphere shrinking algorithm converges at a linear rate. Table 4 lists the error e(l)
max =

max
j∈N

(i)
1

‖d(l)
j ‖ for 20 amino acids with p1 = 0.4.

Fig. 7 shows multi-resolution implicit solvation surface approximations of an ASN-THR-TYR peptide with various
p1 and p2. Fig. 7(a) shows an atomic level model, Figs. 7(a)–(g) are residue level models. It can be observed that when
the same p1 is selected, smaller p2 leads to fatter surfaces. Compared with Fig. 7(g), Fig. 7(f) is more tight.

Fig. 8 shows multi-resolution implicit solvation surface approximation of Ribosome 30S. Fig. 8(a) is a low level
model, the pink color shows 16S rRNA and the remaining colors are proteins (for colors see the web version of the
article). One protein (Chain B) is separated from the whole structure. The residue level model can be constructed by
selecting small p1 and large p2 as shown in Fig. 8(b), and the atomic level model is constructed by selecting large p1
and small p2 as shown in Fig. 8(c).

4. Mesh generation

There are two main methods for contouring scalar fields, primal contouring (Lorensen and Cline, 1987) and dual
contouring (Ju et al., 2002). Both of them can be extended to tetrahedral mesh generation. The dual contouring method
(Y. Zhang et al., 2003, 2005) is often the method of choice as it tends to yield meshes with better aspect ratio.

4.1. Triangular meshing

Dual contouring (Ju et al., 2002) uses an octree data structure, and analyzes those edges that have endpoints lying
on different sides of the isosurface, called sign change edges. The mesh adaptivity is determined during a top-down
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Fig. 7. Different effects of changing p2 and tight/non-tight approximations for an ASN-THR-TYR peptide which consists of 49 atoms. The surface
(b), (c) and (d) are the same as outer surfaces of (e), (f) and (g) respectively. The inner surface of (e), (f) and (g) is the hard sphere model of
three residues. (a) shows the atomic level approximation of the hard sphere model, where p1 = 5.0, p2 = 1.0; (b), (e), (c) and (f) show the tight
approximation of the residue level with p1 = 0.4. But different p2 are used. We choose p2 = 2.0 for (b) p2 = 0.5 for (c). It could be observed that
larger p2 leads to closer approximation. (d) and (g) show non-tight approximations using the same p1 and p2 as (c) and (f). Comparing with (f),
even larger error is observed in (g).

Fig. 8. Multi-resolution models of Ribosome 30S. (a) Ribosome 30S at the low level with p1 = 0.0625, p2 = 1.0 in multi-level Gaussian map.
Ribosome 30S contains 22 chains and each of them is painted in a different color. The pink color shows 16S rRNA and the remaining colors are
proteins. The blue box shows one protein (Chain B). (b) Chain B at the residue level with p1 = 0.4, p2 = 5.0. It consists of 234 residues. (c) Chain
B at the atomic level with p1 = 5.0, p2 = 1.0. It consists of 1900 atoms. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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octree construction. Each sign change edge is shared by either four (uniform case) or three (adaptive case) cells,
and one minimizer point is calculated for each of them by minimizing a predefined Quadratic Error Function (QEF)
(Garland and Heckbert, 1998):

QEF[x] =
∑

i

[
ni · (x − pi)

]2
, (10)

where pi, ni represent the position and unit normal vectors of the intersection point respectively. For each sign change
edge, a quad or triangle is constructed by connecting the minimizers. These quads and triangles provide a ‘dual’
approximation of the isosurface.

A recursive cell subdivision process was used to preserve the trilinear topology (Y. Zhang et al., 2005) of the
isosurface. During cell subdivision, the function value at each newly inserted grid point can be exactly calculated
since we know the volumetric function (Eq. (2)). Additionally, we can generate a more accurate triangular mesh by
projecting each generated minimizer point onto the isosurface (Eq. (1)).

4.2. Tetrahedral meshing

The dual contouring method has already been extended to extract tetrahedral meshes from volumetric scalar fields
(Y. Zhang et al., 2003, 2005). The cells containing the isosurface are called boundary cells, and the interior cells are
those cells whose eight vertices are inside the isosurface. In the tetrahedral mesh extraction process, all the boundary
cells and the interior cells need to be analyzed in the octree data structure. There are two kinds of edges in boundary
cells, one is a sign change edge, the other is an interior edge. Interior cells only have interior edges. In (Y. Zhang et
al., 2003, 2005), interior edges and interior faces in boundary cells are dealt with in a special way, and the volume
inside boundary cells is tetrahedralized. For interior cells, we only need to split them into tetrahedra.

4.2.1. Adding an outer boundary
In biological diffusion systems, we need to analyze the electrostatic potential field which is faraway from the

molecular surface (Holst et al., 2000; Lee et al., 2003). Assume that the radius of the circum-sphere of a biomolecule
is r . The computational model can be approximated by a field from an outer sphere S1 with the radius of (20 ∼ 40) r to
the molecular surface. Therefore the exterior mesh is defined as the tetrahedralization of the interval volume between
the molecular surface and the outer sphere S1 (Fig. 9(b)). Sometimes the outer boundary is chosen to be a cubic box
as shown in Fig. 9(c).

First we add a sphere S0 with the radius of r0 (where r0 > r and r0 = 2n/2 = 2n−1) outside the molecular surface,
and generate meshes between the molecular surface and the outer sphere S0. Then we extend the tetrahedral meshes

Fig. 9. The analysis domain of exterior meshes. (a) ‘O’ is the geometric center of the molecule, suppose the circum-sphere of the biomolecule has
the radius of r . The box represents the volumetric data, and ‘S0’ is the maximum sphere inside the box, the radius is r0(r0 > r). ‘S1’ is an outer
sphere with the radius of r1(r1 = (20 ∼ 40)r). (b) The diffusion domain is the interval volume between the molecular surface and the outer sphere
‘S1’, here we choose r1 = 5r for visualization. (c) The outer boundary is a cubic box.
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from the sphere S0 to the outer bounding sphere S1. For each data point inside the molecular surface, we keep the
original function value. While for each data point outside the molecular surface, we reset the function value as the
smaller one of f (x) − α and the shortest distance from the grid point to the sphere S0. Eq. (11) shows the newly
constructed function g(x) which provides a grid-based volumetric data containing the biomolecular surface and an
outer sphere S0.

g(x) =
{min(‖x − x0‖ − r0, f (x) − α), if f (x) < α,‖x − x0‖ < r0,

‖x − x0‖ − r0, if f (x) < α,‖x − x0‖ � r0,

f (x) − α, if f (x) � α,

(11)

where x0 are coordinates of the molecular geometric center. The isovalue α = 0.5 for volumetric data generated from
the characteristic function, and α = 1.0 for volumetric data generated from the summation of Gaussian kernels.

The molecular surface and the outer sphere S0 can be extracted as an isosurface at the isovalue 0, Sg(0) = {x |
g(x) = 0}. All the grid points inside the interval volume Ig(0) = {x | g(x) � 0} have negative function values, and all
the grid points outside it have positive values.

4.2.2. Mesh extraction
Here we introduce a different scheme from the algorithm presented in (Y. Zhang et al., 2003, 2005), in which we do

not distinguish boundary cells and interior cells when we analyze edges. We only consider two kinds of edges—sign
change edges and interior edges. For each boundary cell, we can obtain a minimizer point by minimizing its Quadratic
Error Function. For each interior cell, we set the middle point of the cell as its minimizer point. Fig. 10(b) shows a
simple 2D example. In 2D, there are two cells sharing each edge, and two minimizer points are obtained. For each
sign change edge, the two minimizers and the interior vertex of this edge construct a triangle (blue triangles). For each
interior edge, each minimizer point and this edge construct a triangle (yellow triangles). In 3D as shown in Fig. 11,
there are three or four cells sharing each edge. Therefore, the three (or four) minimizers and the interior vertex of
the sign change edge construct one (or two) tetrahedron, while the three (or four) minimizers and the interior edge
construct two (or four) tetrahedra.

Compared with the algorithm presented in (Y. Zhang et al., 2003, 2005) as shown in Fig. 10(a), Fig. 10(b) generates
the same surface meshes, and tends to generate more regular interior meshes with better aspect ratio, but a few more
elements for interior cells. Fig. 10(b) can be easily extended to large volume decomposition. For arbitrary large
volume data, it is difficult to import all the data into memory at the same time. So we first divide the large volume data
into some small subvolumes, then mesh each subvolume separately. For those sign change edges and interior edges
lying on the interfaces between subvolumes, we analyze them separately. Finally, the generated meshes are merged

Fig. 10. 2D triangulation. (a) Old scheme, (b) new scheme. Blue and yellow triangles are generated for sign change edges and interior edges
respectively. The red curve represents the molecular surface, and the green points represent minimizer points. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Sign change edges and interior edges are analyzed in 3D tetrahedralization. (a), (b) Sign change edge (the red edge); (c), (d) interior edge
(the red edge). The green solid points represent minimizer points, and the red solid points represent the interior vertex of the sign change edge. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. (a) One triangle in the sphere S0 (blue) is extended n steps until arriving at the sphere S1 (red); (b), (c) a prism is decomposed into three
tetrahedra in two different ways. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

together to obtain the desired mesh. The mesh adaptivity is controlled by the structural properties of biomolecules.
The extracted tetrahedral mesh is finer around the molecular surface, and gradually gets coarser from the molecular
surface out towards the outer sphere, S0. Furthermore, we generate the finest mesh around the active site, such as the
cavity in the monomeric and tetrameric mAChE shown in Figs. 17(a)–(b), and a coarse mesh everywhere else.

4.2.3. Mesh extension
We have generated meshes between the biomolecular surface and the outer sphere S0, the next step is to construct

tetrahedral meshes gradually from the sphere S0 to the bounding sphere S1 (Fig. 9). The sphere S0 consists of triangles,
so we extend each triangle radially as shown in Fig. 12 and a prism is obtained for each extending step. The prism can
be divided into three tetrahedra. The extension step length h can be calculated by Eq. (12). It is better for the sphere
S0 to be triangulated uniformly since the step length is fixed for each extension step.

r0 + h + 2h + · · · + nh = rl �⇒ h = 2(r1 − r0)

n(n + 1)
(12)

where n is the step number. In Fig. 12, suppose u0u1u2 is a triangle on sphere S0, and u0, u1, u2 are the unique index
numbers of the three vertices, where u1 < u0 and u1 < u2. For one extension step, u0u1u2 is extended to ν0ν1ν2, and
the two triangles construct a prism, which can be decomposed into three tetrahedra. In order to avoid the diagonal
conflict problem, a different decomposition method (Figs. 12(b)–(c)) is chosen based on the index number of the three
vertices. If u0 < u2, then we choose Fig. 12(b) to split the prism into three tetrahedra. If u2 < u0, then Fig. 12(c) is
selected.

Assume there are m triangles on the sphere S0, which is extended n steps to arrive at the sphere S1. m prisms or 3m

tetrahedra are generated in each extending step, and a total of 3mn tetrahedra are constructed in the extension process.
Therefore, it is better to keep a coarse and uniform triangular mesh on the sphere S0.
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5. Quality improvement

There are two sub-steps in mesh quality improvement:

(1) Denoising and improving the aspect ratio of the surface mesh (surface vertex adjustment in the normal and the
tangent directions).

(2) Improving the aspect ratio of the volumetric mesh (vertex adjustment inside the volume).

We use geometric partial differential equations (PDEs) to handle the first step. Geometric PDEs, such as the mean
curvature flow, the surface diffusion flow and Willmore flow, have been intensively used in surface and imaging
processing (Xu et al., 2006). Here we choose surface diffusion flow to smooth the molecular surface because of its
volume preserving, and furthermore it approximates spheres accurately (quadratic precision).

∂x

∂t
= �H(x)−→n (x) + ν(x)

−→
T (x), (13)

where H is the mean curvature, −→n is the unit surface normal vector, ν(x) is the velocity in the tangent direction
−→
T (x),

and � is the Laplace–Beltrami operator.
Eq. (13) is solved over a triangular mesh with vertices {xi} by discretizing each of its terms. In temporal space,

∂x
∂t

is approximated by the Euler scheme
xn+1
i −xn

i

τ
, where τ is time step-length. xn

i is the approximating solution

at t = nτ, xn+1
i is the approximating solution at t = (n + 1)τ , and x0

i = xi serves as the initial value. Discretizing
schemes for � and H in the spatial space are given in (Xu et al., 2006), we do not go to detail here. Further ν(x)

−→
T (x)

is approximated by[
m(xn

i ) − xn
i

] − −→n (xn
i )T[

m(xn
i ) − xn

i

]−→n (xn
i ), (14)

where m(xn
i ) is defined as the mass center of all the surface triangles incident to xn

i . A mass center P of a region V is
defined by finding p ∈ V , such that

∫
V

‖y − p‖2 dσ = min, where V could be a piece of surface or a volume in R
3.

For our surface mesh case, V consists of triangles around vertex xn
i . Then we could derive that

m(xn
i ) = 1

3
xn
i + 1

3

∑
j∈N(i)

xn
j (�j + �j+1)/A(xn

i ), (15)

where N(i) is the index set of the one ring vertex neighbors of xn
i ,�j is the area of the triangle [xn

i xn
j−1x

n
j ]. A(xn

i ) is
the total of triangle areas.

Usually, people use the geometric center (Xu et al., 2006), instead of the mass center, however we observed that
the mass center works better for biomolecules. The discretization leads to a positive-definite linear system, and the
approximate solution is obtained by solving this linear system.

After the molecular surface is regularized, the next step is to improve the volumetric mesh by relocating each
interior vertex to the mass center of its surrounding tetrahedra. Let pi be an interior vertex, pj be one of its neighboring
vertices, then the mass center of all tetrahedra around pi is computed by m(pi) = 1

4pi + 1
4Vi

∑
j Vijpj , where Vij

is the volume summation of all the tetrahedra around the edge [pipj ], Vi is the volume summation of the tetrahedra
around the vertex pi . This is similar in spirit to the multi-linear centroid smoothing scheme (Bajaj et al., 2002).

Fig. 13 shows the difference of the mesh before and after the quality improvement steps. The left column shows the
original iso-surface of an ASN-THR-TYR peptide, and the right column shows the results after mesh regularization.
It is obvious that after quality improvement, the surface mesh is more regular and has better aspect ratio (twice the
ratio of incircle radius to circumcircle radius).

The left picture in Fig. 16 shows the improvement of the aspect ratio, and Figs. 14 and 15 show the improvement
in mesh regularization. We can see that noises are removed and features are preserved since the surface diffusion flow
preserves volume and spherical geometry. The surface error is restricted within half of the grid size for the binary data
from the characteristic function, and almost zero for the data from Gaussian density map since we have projected each
boundary vertex onto the isosurface.

In (Y. Zhang et al., 2005), the edge contraction and linear averaging method was used to improve the quality
of tetra meshes with the edge-ratio (the longest edge length over the shortest edge length) and Joe–Liu parameter
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Fig. 13. The surface comparison before/after quality improvement. The left column shows the original surface of an ASN-THR-TYR peptide, and
the right column shows the surface after mesh regularization. The top row shows the smooth shading surfaces, and the bottom row shows snapshots
of the meshes.

Fig. 14. Comparison of mAChE (9308 vertices, 18612 triangles) before and after surface mesh regularization. (a)—Original; (b)—after mesh
regularization.

(24/3 × 3 × (|V |)2/3/
∑

0�i<j�3 |eij |2, where |V | denotes the volume, eij represents the edge connecting vertex νi

and νj ) as metrics. The goal is to improve the worst parameters in each iteration. Here we still use the same edge
contraction scheme, but relocate each interior vertex to its mass center (Eq. (15)) since it can minimize the energy
defined earlier (

∫
V

‖y − p‖2 dσ ). From the right picture in Fig. 16, we can see that the worst Joe–Liu parameter is
improved significantly after quality improvement. Figs. 17 and 19 show interior tetra meshes of mAChE and Ribosome
30S.
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Fig. 15. Comparison of Ribosome 30S (13428 vertices, 26852 triangles) before and after surface mesh regularization. Left—original; right—after
mesh regularization.

Fig. 16. The histogram of the aspect-ratio and Joe–Liu parameter.

6. Results and conclusion

Monomeric mAChE: The extracted tetrahedral meshes of the monomer as shown in Fig. 17 have been used in
the finite element analysis of the steady-state Smoluchowski equation (SSSE) for diffusion rate constant calculations
(Song et al., 2004a, 2004b). Note the adaptive meshes around the narrow gorge region (the active site in mAChE is at
the bottom of this gorge).

Tetrameric mAChE: We also generated adaptive tetrahedral meshes for the acetylcholinesterase in tetrameric form,
with two different arrangement of the monomers. Each monomer has an active site accessible though a long narrow
gorge (20 Angstrom), so there are a total of four gorges. Fig. 18 shows the two crystal structures. In the first crystal
structure, two gorges are partially blocked, while the other two are completely accessible to solvent. In the second
one, all the four gorges are open. Each of the adaptive meshes have finer triangles around the region of the four gorges.
These meshes are also used in calculating the diffusion rate constant (D. Zhang et al., 2005).
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Fig. 17. Interior and exterior tetrahedral meshes of monomeric mAChE. The left two pictures conform to the SAS with inflation σ = 2, and the right
two pictures conform to the surface constructed from Gaussian summation with p1 = 0.25, p2 = 1.0. From left to right: (65147 vertices, 323442
tets), (121670 vertices, 656823 tets), (103680 vertices, 509597 tets) and (138967 vertices, 707284 tets). The color shows electrostatics potential
(leftmost) and residues (the right two). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 18. Interior and exterior tetrahedral meshes of tetrameric mAChE, p1 = 0.5, p2 = 1.0. The left two pictures show the 1st crystal structure
1C2O (133078 vertices, 670950 tets), and the right two pictures show the 2nd one 1C2B, (106463 vertices, 551074 tets). Gorges are shown in red
boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Interior and exterior tetrahedral meshes of Ribosome 30S, low resolution, p1 = 0.03125, p2 = 1.0. From left to right: (33612 vertices,
163327 tets), (37613 vertices, 186496 tets) and (40255 vertices, 201724 tets). The pink color shows 16S rRNA and other colors show proteins. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Ribosome: Ribosomes are macromolecular complexes responsible for the translation of mRNA into proteins. These
complexes consist of two subunits: the larger 50S and the smaller 30S, both of the subunits are composed of rRNA and
protein constituents. Atomic level, residue-level and low resolution structure models were constructed from density
maps as shown in Figs. 3 and 5. The constructed exterior meshes are being used for the finite element solution of the
Poisson–Boltzmann equation (Baker et al., 2001). Figs. 19 and 1 show interior and exterior meshes of the Ribosome
30S/50S.
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We have developed a quality molecular meshing approach directly from PDB molecular structural data, with adap-
tivity at prescribed active sites on the molecular surface. Our generated meshes continue to being used in several
boundary/finite element biophysics simulations (Song et al., 2004a, 2004b; D. Zhang et al., 2005).
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