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Abstract— We present computational solutions to two problems
of macromolecular structure interpretation from reconstructed
three-dimensional electron microscopy (3D-EM) maps of large
bio-molecular complexes at intermediate resolution (5Å-15Å). The
two problems addressed are: (a) 3D structural alignment (match-
ing) between identified and segmented 3D maps of structure units
(e.g. trimeric configuration of proteins), and (b) the secondary
structure identification of a segmented protein 3D map (i.e.
locations of α-helices, β -sheets). For problem (a), we present
an efficient algorithm to correlate spatially (and structurally)
two 3D maps of structure units. Besides providing a similarity
score between structure units, the algorithm yields an effective
technique for resolution refinement of repeated structure units,
by 3D alignment and averaging. For problem (b), we present an
efficient algorithm to compute eigenvalues and link eigenvectors
of a Gaussian convoluted structure tensor derived from the
protein 3D Map, thereby identifying and locating secondary
structural motifs of proteins. The efficiency and performance
of our approach is demonstrated on several experimentally
reconstructed 3D maps of virus capsid shells from single-particle
cryo-EM, as well as computationally simulated protein structure
density 3D maps generated from protein model entries in the
Protein Data Bank.

Index Terms— Structure Analysis, Alignment, Similarity Mea-
sure, Segmentation, Secondary Structure Detection, Skeletoniza-
tion, Cryo-EM Maps, 3D Reconstruction

I. INTRODUCTION

X -RAY crystallography [1], [2] and nuclear magnetic
resonance (NMR) [3], [4] are two widely used techniques

that are used to reveal the structure of individual proteins.
These structural models are then deposited in the Protein Data
Bank (PDB) [5]. While individual proteins provide important
structural information about our bodies’ fundamental blocks,
the structural determination of large biological complexes
(e.g., viruses, ion channels, and the ribosome) offer a more
complete description of the protein machinery of life. Detailed
structural knowledge of these complexes not only provides
mechanistic descriptions of how macromolecules interact in
an assembly, but also yields clues for developing therapeutic
interventions related to disease. While x-ray crystallography
and NMR spectroscopy are often restricted to relatively small
biological structures, cryo-electron microscopy (cryo-EM) of
single particles has emerged as a powerful technique in reveal-
ing the ultra-structure of large bio-molecular complexes [6],
[7]. The rapid development of improved image acquisitions
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and sophisticated computational signal and image processing
methods have now made it possible to resolve these large
biological complexes at sub-nanometer resolutions (6Å-10Å)
[8], [9], [10], [11].

Computational signal and image processing have been used
extensively in 3D biological structure reconstruction and at
multiple scales (tissue, cell, molecular) [12]. In particular,
most modern signal/image processing algorithms such as
2D image restoration, noise reduction, contrast enhancement,
feature detection, alignment, classification, 3D reconstruction,
boundary segmentation, and skeletonization, have found fruit-
ful applications in the single particle cryo-EM approach, as
will be briefly reviewed in Section II. Although a number
of software packages for performing 3D reconstructions from
cryo-EM data have been made widely available in recent years
(e.g., EMAN [13], SPIDER [14], IMAGIC [15]), quantitative
and automatic analysis/interpretation techniques operating on
the reconstructed 3D electron density maps of bio-molecular
assemblies, remain largely undeveloped. Current methods for
interpreting reconstructed 3D maps depend primarily upon
manual selection and visual inspection with the help of interac-
tive graphic tools. Due to the large physical size and structural
complexity of the bio-molecular assemblies, however, manual
processing is tedious and subjective. Automatic structural
interpretation and analysis of 3D maps of large bio-molecular
complexes have thus become the preferred avenue of research
and development.

In prior work [16], [17], we presented an automatic ap-
proach to segmenting the reconstructed 3D maps of bio-
molecular complexes into dozens to thousands of individual
structure units. This automatic segmentation makes it consid-
erably easier to determine the structural interactions of the bio-
molecular assembly. Furthermore, with segmentation we are
able to isolate the various grouped protein structure units (also
called conformers), and interpret the ultra-structure of each of
the proteins individually. For symmetric structures, such as
most protein capsid shells of viruses [6], the segmentation
of the entire capsid into asymmetric protein structure units
also helps eliminate structural representation redundancy. In
this paper, we present two additional automatic algorithms of
protein structure interpretation from reconstructed 3D Maps.
The first algorithm is for automatic spatial alignment, and
computation of structural similarity score, between two 3D
segmented structure units. The second algorithm automatically
identifies and locates secondary structure units (i.e., protein α-
helices, β -sheets) within a segmented protein structure unit.
The accuracy and hence the need for the identification of pro-
tein α-helices and β -sheets increases correspondingly with the
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increased rise in resolution and availability of reconstructed 3D
maps at sub-nanometer resolution (i.e., better than 10Å) [8].
Clearly, the better the understanding of the macromolecular
ultra-structure the better the ability to determine its structure-
function relationships.

The rest of this paper is organized as follows. Section II
provides a brief introduction to 3D electron microscopy imag-
ing and 3D map reconstruction. In Section III we present our
automatic 3D structure unit alignment and similarity scoring
algorithm, along with with applications to related problems.
We present our algorithm of automatic protein secondary
structure identification and localization in Section IV, along
with several example results of our implementation on both
reconstructed and simulated 3D Maps.

II. 3D CRYO-ELECTRON MICROSCOPY IMAGING AND
RECONSTRUCTION

Electron microscopy (EM) imaging has been extensively
used in structural biology to study the activities of cells and
organelles. Three-dimensional electron microscopy (3D-EM)
imaging plays a unique role in structural biology, thanks to its
remarkable capability to reveal the three dimensional structure
of biological entities. The mathematical principles of 3D-EM
reconstruction from projection data (experimental EM images)
is basically the same as that used in 3D Computed Tomog-
raphy (CT) medical imaging. The major difficulty with EM
images is the extremely low signal-to-noise ratio (SNR). This
is true partly because the electron dose used in EM imaging
has to be kept to an extremely low level (approximately 0.5∼4
e/Å2) in order to reduce the radiation damage to the specimen.
The flash cooling technique, known as cryo-EM, quickly cools
the samples under study, to liquid nitrogen temperature (about
77 Kelvin or less) such that the surrounding water does not
form crystalline ice, but remains in a vitreous state. Thus cryo-
EM has proved to be quite successful and has hence gained
a growing popularity in structural biology for its capability of
preserving the native in-vivo structure of biological specimens
while reducing the damage caused to the specimens [6], [18].

Using different sample preparations and data collection
methods, 3D-EM encompasses three major techniques: elec-
tron crystallography, electron tomography, and the single parti-
cle cryo-EM method. Electron crystallography [19], similar to
X-ray crystallography, can reveal the bio-molecular structures
at near atomic resolution. However, the weakness of this
technique is that a two-dimensional crystal has to be grown
for cryo-EM imaging, which in many cases is difficult to
do, especially for large macromolecular complexes. Electron
tomography [20], [21] is technically very similar to CT and is
used to study 3D ultra-structures of cell organelles or whole
cells at relatively low resolutions. Mathematically, the 3D
structure of a cell specimen can be reconstructed from a series
of 2D projections generated from different tilt angles. There
are several methods to collect the projection data: single-axis
tilt, double-axis tilt, and uniform conical tilt, depending on
how the specimen is rotated under the fixed camera. However,
the tilt cannot exceed certain angles (usually ±700) due to the
relative orientation of the tilt-stage and limitations on specimen

thickness [22], [23]. For this reason, the reconstructed density
maps always have significant distortions in certain regions,
commonly known as the missing wedge (pyramid, or cone)
problem. Partly due to this problem, and partly because of
the limited electron dose used on a single specimen with
consideration to the radiation damage, the resolution of this
type of reconstructions is often limited to the range of 20Å∼
200Å [20], [21].

The above resolution problems could be resolved if we
had a number of structurally identical particles at multiple
random orientations and found a way to align and average
them together to yield a single 3D structural image. On the
one hand, the average of particles in the same orientation (after
proper alignment) can improve the signal-to-noise ratio (SNR).
On the other hand, particles in different orientations are very
likely to complement each other such that the missing wedge
(pyramid, or cone) of projection orientations of one particle
could be filled by the other particles. This technique, known
as single particle cryo-EM reconstruction, has been used to
resolve 3D structures at about 6Å [8], [24]. To reduce the
radiation damage, each particle is only imaged from a single
tilt angle, but thousands of particles are used to reconstruct
a single 3D structure. Fig. 1(a) shows the overall pipeline of
single particle structure reconstruction and analysis. Starting
from 2D digitized microscopy images, the 3D structure map
reconstruction includes several major steps:

• Particle Picking. The goal of particle picking is to box
out all particles that look reasonably good as projection
of particles, rather than noise, in both size and shape [25],
[26], [27]. Fig. 1(b) shows a small portion of the electron
micrograph of the rice dwarf virus [8], from which we
can see how noisy a typical particle image looks.

• Particle Classification and Alignment. Particle classifica-
tion groups all the particle images that have the same
appearance but do not have to be in the same orientation.
The classified particles can be aligned and averaged such
that the class averages have significantly improved signal-
to-noise ratios (SNR) [23], [28], [29].

• Orientation Assignment. Since in most cases the particles
appear in “in-vivo” random orientations, we do not know
the orientation of each particle image. To assign the ori-
entations, there are direct methods based on the common
line theorem [7] and iterative methods based on initial 3D
models [13].

• Reconstruction and Refinement. The mathematical theo-
rem is well established for 3D reconstruction from 2D
projections, given that the orientation of each projection
is known. The most popular methods include the direct
Fourier space reconstruction [13] and the real-space fil-
tered back projection method [7]. Fig. 1(b) illustrates
the 3D reconstruction from a series of projections at
different angles. The reconstructed 3D map can be used
as an initial model to refine the particle classification,
alignment, and orientation assignments.

The reconstructed 3D maps do not convey meaningful
information unless they are correctly interpreted. The ultra-
structure of the 3D maps can be interpreted in two ways
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as shown in Fig. 1(a). For maps at intermediate resolutions
(6Å− 10Å), the secondary structures are visually identifiable
and computationally auto-detectable. A pseudo-atomic model
can be built based on the secondary structure elements detected
and their topological connections [8]. When the resolution of
the reconstructed 3D maps degrades beyond 10Å, however,
we cannot discern the secondary structure elements with high
confidence but we still can attempt to construct a pseudo-
atomic model by matching and fitting a high-resolution X-
ray structure model (from the PDB) into the 3D map based
on a density distribution and correlation [30]. In either case,
the prior segmentation of the 3D map into individual protein
structure units is both meaningful and necessary for fast and
accurate ultra-structure interpretation [16].

In the subsequent sections, we present computational ap-
proaches for further automatic structural interpretation of 3D
maps, namely, (a) an automatic 3D structure unit alignment
coupled to structural similarity scoring, and (b) automatic
protein secondary structure identification and localization.

III. 3D STRUCTURE ALIGNMENT

While our segmentation algorithm [16], [17] can decompose
3D virus maps into individual structure units (also called
subunits below), it does not tell us how different the segmented
subunits are. From the structural point of view, it is important
to know the similarity between the segmented subunits and
quite often useful to average the subunits of high similarity
in order to improve the signal-to-noise ratio. To this end, we
develop a fast algorithm to align the segmented subunits such
that the similarity measure and averaging can be conducted
between the spatially aligned subunits. In addition, as we
shall see below, knowing the alignments between subunits can
also improve the accuracy of our segmentation algorithm and,
coupled with the structural fitting approaches, simplify the
pseudo-atomic modeling of large bio-molecular complexes.

Technically the goal of 3D structure alignment is to find the
transformation matrix from one 3D structural unit to another,
such that the two 3D maps are best matched according to a
similarity scoring function. In the following we first define
the similarity scoring we use between two 3D maps and then
present a fast algorithm for computing the transformation
matrix aligning two 3D maps of structure units. We also
present a number of further applications of this structural
alignment.

A. Similarity Scoring Function

A traditional similarity scoring function between two 3D
maps, denoted by f and g, is defined by cross-correlation as
follows:

S1
f ,g(T ) = ∑

i, j,k
f (i, j,k)×g(T (i, j,k)), (1)

where T is a 4× 4 matrix using homogeneous coordinates
[34]. It is intuitively treated here as a function that transforms
the coordinate system of f to that of g. The 3D structural
alignment problem is then reduced to determining the best T ,
given two maps f and g, such that the scoring function S1

f ,g(T )

achieves its maximum. It is easy to see that maximizing
S1

f ,g(T ) is equivalent to minimizing the square difference
between f and g:

S2
f ,g(T ) = ∑

i, j,k
( f (i, j,k)−g(T (i, j,k)))2. (2)

The advantage of the cross-correlation method is that the
fast Fourier transform (FFT) can be deployed to speed up
the search in the relative translational space (three degrees
of freedom). However, the search in rotational space has to
be performed in a conventional way. As we shall see, our 3D
alignment between two structure units involves both translation
and rotation, but each of these is restricted to one degree of
freedom. In this particular case, the real space approach, if
properly utilized, can be more efficient than the FFT method.
We shall explain more in Section III-D.

Our similarity scoring function is defined in real space
and related to Equation 2. The intuition is to minimize
the difference between two maps. To speed up the search,
however, we compute the similarity score on a set of critical
points of the 3D maps, instead of the entire collection of
voxels that make up the 3D maps of the structure units. The
critical points are those that best capture the features of a
molecular density 3D map. In general, critical points include
the local maxima, local minima, and saddle points of a scalar
3D map. In our experiments we define as critical points the
local maxima with intensity values higher than a user-defined
threshold (details demonstrated below). If the data is noisy,
one initially preprocesses the 3D map using gradient vector
diffusion as discussed in [16].

Fig. 2. Illustration of similarity calculation based on critical points. Every
critical point cm, (m = 1,2, · · · ,M,) in f is transformed to g according to T
and the difference between f at cm and g at T (cm) is calculated and summed.
If the two maps are identical and the matching is perfect, the total difference
should return zero. Similarly, we calculate the total difference between the
densities at dn,n = 1,2, · · · ,N, in map g and their transformed positions in f .
The final normalized similarity score is given in Equation 3.

Our similarity scoring function is thus defined in the fol-
lowing way:

S3
f ,g(T ) = 1−

∑M
m=1 | f (cm)−g(T (cm))|+∑N

n=1 | f (T−1(dn))−g(dn)|
∑M

m=1 max{ f (cm), g(T (cm))}+∑N
n=1 max{ f (T−1(dn)), g(dn)} , (3)

where cm,m = 1,2, · · · ,M, are critical points of f and dn,n =
1,2, · · · ,N, are critical points of g. Fig. 2 illustrates the idea
of this similarity scoring function. It is worth noting that there
is no direct relationship between the number of critical points
and the size of the map − a large map with slowly-varying
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(a) Pipeline of the single particle reconstruction and analysis (b) An example
Fig. 1. Illustrations of single particle cryo-EM technique. (a) The overall pipeline, including particle picking, particle classification/alignment, orientation
assignment, 3D reconstruction, and map interpretation. In addition, EM contrast transfer function (CTF) correction [31], anisotropic filtering [32], and adaptive
contrast enhancement [33] may also be applied before or after 3D reconstructions, to improve signal-to-noise ratio. (b) An example of electron microscopy
(EM) images showing particle picking (top) and 3D reconstruction from 2D projections (bottom).

densities may have a small number of critical points, while
a small map with sharp density variations can have a large
number of critical points. There are two major differences
between S3

f ,g(T ) and S2
f ,g(T ). First, the new similarity scoring

function is based only on the critical points. Therefore, the
search for the best T using S3

f ,g(T ) is much faster than the
search using S2

f ,g(T ), as the latter is based on all the voxels
of f and g. Secondly, the scoring function of S3

f ,g(T ) is
normalized such that the similarity scores are always scaled to
the range of [0, 1], where 0 means no similarity and 1 signifies
the highest similarity.

B. 3D Alignment Algorithm

In our previous paper [16] we discussed how to detect au-
tomatically the local symmetry axes of protein conformers in
a reconstructed 3D density map of a macromolecule, and how
to segment each of the individual locally symmetric structure
units that comprise the building blocks of that macromolecule.
Given two such individual structure units A and B, as shown
in blue and magenta respectively in Fig. 3, our problem is to
transform A to B in four steps, based on the symmetry axes
computed in [16]:

1) Translate A by t0.
2) Rotate A by r0.
3) Translate A by t.
4) Rotate A by r.
Since the symmetry axes of both A and B are given,

the first two of the above transformations, the translation t0
and the rotation r0, are uniquely determined by the relative
position/orientation of the symmetry axes of A and B. More
specifically, since each symmetry axis is given by two end

points, we translate A from point SA to point SB, followed
by the rotation between the two dashed blue arrows in Fig.
3. However, the translation t and the rotation r have to be
decided based on the similarity scores between the density
maps of A and B as discussed in Section III-A. Therefore,
the transformation from one structure unit to another has
two degrees of freedom: one translation and one rotation, as
illustrated in Fig. 3.

Fig. 3. The alignment between two structure units include translations t0
and t, and rotations r0 and r. But only t and r are unknown and need to be
determined based on the similarity scoring function.

Putting the four transformation matrices together, we have
the following matrix that transforms subunit A to subunit B:

Tt,r = M4(r)×M3(t)×M2(r0)×M1(t0) (4)

The matrices M1,M2,M3,M4 are conventional transforma-
tion matrices for translations or rotations. One can easily
derive the exact expressions for these matrices based on the
given information (i.e., symmetry axes with start/end points).
Substituting Equation 4 into Equation 3, we have the following
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maximization equation for the 3D alignment between structure
units A and B, with density functions f and g respectively:

max
{t,r}

{S3
f ,g(t,r) = 1−

∑M
m=1 | f (cm)−g(Tt,r(cm))|+∑N

n=1 | f (T−1
t,r (dn))−g(dn)|

∑M
m=1 max{ f (cm), g(Tt,r(cm))}+∑N

n=1 max{ f (T−1
t,r (dn)), g(dn)}}, (5)

where Tt,r is the transformation matrix from A to B as
defined in Equation 4. Since the scoring function defined
in Equation 5 indicates the similarity between two structure
units, the transformation matrix that maximizes Equation 5
should give the best alignment between the two structure
units. The range of t is user-defined. In our experiments we
assumed that t ∈ [−10,10] in pixel unit. The range of r is
from 0◦ to 360◦ for non-symmetric objects. However many
of the reconstructed 3D maps from single particle cryo-EM
are virus capsid structures, which typically have icosahedral
symmetries. Therefore, the segmented structure units usually
have n-fold symmetry and r values in the range of 0◦ to

( 360
n

)◦
.

There are a number of optimization techniques to find the
{t,r} that maximize the similarity score between A and B
as defined in Equation 5. In order to find the best {t,r},
we need to calculate the similarity score at values of t and
r sampled regularly over the ranges discussed above. Dense
samplings could yield more accurate t and r but require more
computational time. In contrast, coarse samplings are faster
but less accurate. We adopt a simple two-level hierarchical
method for our search. On the coarse level, the translation
variable t is sampled by every one pixel unit from −10 to 10
and the rotation variable r is sampled by every 5◦ from 0◦ to( 360

n

)◦
where n is the folding number of the symmetry. For

each combination of these t and r, we calculate the similarity
score: the one that maximizes the scoring function is taken
to be the solution of Equation 5 on the coarse level, denoted
by {t(1),r(1)}. On the fine level, the sampling is taken within
a small range around t(1) and r(1). For the translation, the
sampling is taken on the interval [t(1)−0.9, t(1) +0.9] by every
0.1 pixel unit. The sampling for rotation is on the interval
[r(1)−4◦,r(1) +4◦] by every 1◦, where 4◦ is used because the
sampling rate we chose on the coarse level was 5◦. Again, the
similarity score for each of these samples is calculated and
the best one, denoted by {t(2),r(2)}, gives the final solution
of Equation 5. By substituting {t(2),r(2)} into Equation 4, we
have the transform matrix T (t(2),r(2)), which gives the 3D
alignment from subunit A to B. A couple of applications of
this 3D alignment are presented next.

C. Applications

We consider two examples in this section. The first one is
the rice dwarf virus (RDV), which has icosahedral symmetry at
a resolution of 6.8Å [8]. There are five independent structure
units with 3-fold local symmetry, also known as trimers, as
shown in Fig. 4(a). The second example is the bacteriophage
φ29 at a resolution of 15Å [35]. The major components of
φ29 include a major capsid, a tail, a head-tail connector, and

DNAs [36]. Since in the cryo-EM map presented below, a 5-
fold global symmetry is imposed along the vertical axis, only
the major capsid, thanks to its 5-fold global symmetry, is well
preserved during the reconstruction. For this reason, we shall
consider only the major capsid in the following. As shown in
Fig. 5(a), there are ten independent structure units including
one tail on the bottom (structure unit #3), three 5-fold structure
units or pentons (#0, #1, #2), and six 6-fold structure units or
hexons (#4∼ #9).

1) Improving Subunit Segmentation: Our previous seg-
mentation algorithm [16] is based on the multi-seeded fast
marching method [37]. In this method each subunit is assigned
an initial contour which keeps growing according to a pre-
defined speed function until it stops on the boundaries between
structure units. When the structure is symmetric, some of
the structure units are dependent (identical) and hence the
contours corresponding to those structure units must grow
simultaneously by the same amount in the same way. With
this constraint, our previous segmentation [16] incorporates
global symmetry (for example, icosahedral for RDV and 5-fold
for φ29) and the local n-fold symmetry of each subunit into
the segmentation. However, we did not consider the structural
similarity between the independent structure units. In other
words, the contours corresponding to independent structure
units grew independently. This can sometimes yield noticeable
errors especially when the boundaries between structure units
are indistinguishable. An example is shown in Fig. 4(b). This
is the segmentation of the outer layer of the rice dwarf virus
(RDV) and the five types of trimers are colored differently
(see Fig. 4(a) for their relative locations). We can see that the
structure units in different colors are not consistent with each
other. For example, the yellow structure units occupy more
space than the others. To remedy this problem, we utilize
the 3D structure unit alignment discussed in Section III-B,
such that the contours within all the structure units grow
simultaneously by the same amounts in the properly-aligned
directions. The results with this additional constraint are shown
in Fig. 4(c). We can see that the structure units in the new
results look much more uniform and consistent than those
in Fig. 4(b). The segmentation of φ29 is given in Fig. 5(b)
without alignment and in Fig. 5(c) with alignment. We can
also see that the alignment-based segmentation demonstrates
much better consistency between the segmented structure
units. However, it should be pointed out that the structure
units must be segmented before we can align them. Therefore,
our previous segmentation algorithm [16] is still fundamental
in providing us with the initial segmentation from which the
structure units can be aligned. Iteratively the new segmentation
could also be used to refine the alignment but the improvement
is not significant.

2) Quantifying 3D Structural Similarity: Another applica-
tion of our 3D alignment algorithm is a similarity measure
between structure units. This is functionally very important
because it provides us with the structural similarity quanti-
tatively between any two independent structure units. It is
computationally straightforward to obtain a similarity score.
In fact, it is given by the maximum of the similarity scoring
function S3

f ,g(t,r) when Equation 5 is optimized. In Table I we
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(a) Segmented trimers (b) Old segmentation (c) New segmentation (d) Trimers

Fig. 4. Illustrations of segmentation and averaging on rice dwarf virus (RDV). (a) The five independent trimers arranged on the virus capsid (viewed from
outside). (b) The segmentation results without structure unit alignment (viewed from inside). (c) The segmentation results with structure unit alignment showing
better consistency between structure units. (d) The averaged trimer (in green) looks less noisy and more symmetric than the original trimer (in golden).

(a) Density map (b) Old segmentation (c) New segmentation (d) Averaged map
Fig. 5. Illustrations of segmentation and averaging on φ29. (a) The reconstructed cryo-EM density map of φ29. The symmetry axes are detected using our
automatic method [16] and a total of ten independent structure units are labeled. (b) The structure units are segmented based on our previous segmentation
method, without 3D alignment between structure units. One can clearly see some inconsistency between both pentons and hexons. For example, the structure
units in blue are much larger than those in green although both are pentons. (c) The structure units are segmented based on our previous segmentation method,
combined with the 3D alignment approach as presented in Section III-B. (d) The segmented pentons and hexons can be averaged and the whole structure can
be reconstructed from the averaged structure units based on the 3D alignment matrices.

give the similarity scores between the five independent trimers
as shown and indexed in Fig. 4(a). The scores in bold on the
diagonal indicate how symmetric each individual trimer is, and
they are calculated by Equation 3 where T is the rotation along
the related symmetry axis by an amount of 2π

3 (in general, 2π
n ,

where n is the folding number). Table II shows the similarity
scores between the four 5-fold structure units of φ29, where
the indexing numbers are given in Fig. 5(a). The similarity
scores between the six hexons are shown in Table III. The
subunit #5 seems less similar to the others because it is close
to and very likely “disturbed” by the tail.

TABLE I
SIMILARITY SCORES BETWEEN THE FIVE TRIMERS OF RDV

S1 S2 S3 S4 S5
S1 0.955 0.911 0.848 0.900 0.894
S2 0.926 0.854 0.889 0.880
S3 0.872 0.848 0.845
S4 0.934 0.885
S5 0.856

TABLE II
SIMILARITY SCORES BETWEEN THE FOUR PENTONS OF φ29

S0 S1 S2
S0 0.991 0.948 0.949
S1 0.960 0.958
S2 0.961

3) Averaging Subunits: If the segmented structure units of
a large bio-molecular complex (such as viruses) have high
similarities, they can be averaged such that the structural
analysis of the entire complex can be simplified to the analysis
of a single averaged structure unit. Averaging two structure
units is done by aligning one of them to the other and taking
the average density values of both. In general, the averaged
map has a higher signal-to-noise ratio than each individual
structure unit, which makes it easier to further analyze the
structures (e.g., secondary structure identification, as will be
discussed). Fig. 4(d) shows one segmented trimer of RDV
(in golden) and the averaged map of the five independent
trimers (in green). We can see that the averaged trimer has
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TABLE III
SIMILARITY SCORES BETWEEN THE SIX HEXONS OF φ29

S4 S5 S6 S7 S8 S9
S4 0.973 0.793 0.947 0.940 0.869 0.880
S5 0.741 0.793 0.785 0.772 0.787
S6 0.971 0.963 0.884 0.884
S7 0.965 0.888 0.884
S8 0.829 0.938
S9 0.842

higher 3-fold symmetry and better signal-to-noise ratio than
the original trimer. Fig. 5(d) shows the map constructed from
the averaged penton (orange), the averaged hexon (green), and
the tail (blue).

4) Simplifying Pseudo-atomic Modeling: As shown in Fig.
1(a), the goal of structural elucidation of large bio-molecular
complexes is to build a pseudo-atomic model for a given map.
As viruses often contain a number of independent subunits
which are then duplicated to construct the entire capsid, it is
efficient to build the model for the entire map by modeling
the independent subunits and then transforming the model
to the other (dependent) structure units. The transformation
matrices are exactly the outputs of our alignment algorithm.
As we mentioned in Section II, modeling individual subunits
can be conducted in two ways: structural fitting for moderate
resolution maps (10Å−20Å) and secondary structure analysis
for intermediate (sub-nanometer) resolution maps (5Å−10Å).
We shall give details on secondary structure detections in
Section IV. Structural fitting is a process in which a PDB
structure is fitted into the cryo-EM density map such that their
cross-correlation is maximized. There have been a number of
software packages which provide automatic structural fitting
and/or interfaces for manual refinements. A recent review on
the computational approaches can be found in [30]. In the
experiments shown here, we use a software tool called Situs
[38] to fit the PDB structure of φ29 monomer protein into the
monomers of the chosen penton and hexon, as shown in Fig.
6(a) in magenta and cyan respectively. The PDB structures
fitted are then automatically transformed to the other subunits
using the matrices obtained from the 3D alignment algorithm.
Fig. 6(b) shows a close view of the models for the chosen
penton and hexon. The pseudo-atomic model in the top region
of φ29 is shown in Fig. 6(c).

D. Discussions

As we described earlier, the critical points play a crucial role
in our alignment approach. To demonstrate the dependency of
alignment accuracy on the number of chosen critical points, we
show some experiments in Fig. 7 where all six independent
hexons of φ29 are aligned against each other according to
different numbers of critical points. There are a total of 15
pairs and they are indexed from 1 to 15 as given in Table IV
(refer to Fig. 5 for the indexes of subunits Si, i = 4, · · · ,9). The
alignment between each pair of the six hexons is represented
by one translation and one rotation (t and r in Fig. 3).

We first use all the critical points (2901 in total) in the entire
capsid map (1713 voxels in total) to align the hexons and
the alignment results are treated as the “reference”. We then

TABLE IV
INDEXING NUMBERS FOR PAIRS OF HEXONS OF φ29

S4 S5 S6 S7 S8 S9
S4 1 2 3 4 5
S5 6 7 8 9
S6 10 11 12
S7 13 14
S8 15
S9

choose a number of subsets of the critical points by restricting
ourselves to those whose intensity values are greater than
certain thresholds. The thresholds we consider here include
120, 140, 160, 180, 200, 210, 215 and 220 (remember that
the original map is scaled to the range from 0 to 255), and the
corresponding numbers of qualified critical points are 2177,
1336, 852, 719, 518, 277, 125, and 18, respectively. These
thresholds are chosen from a range that we typically used for
most experiments we did. The 3D alignments between the
hexons are calculated based on the subsets of critical points
and then compared with the “reference”. Fig. 7(a) shows the
translation errors in pixel (∼ 5.53Å/pixel for this map). We can
clearly see that, as long as we use more than ∼ 500 critical
points (for the entire capsid map!), the translation errors are
bounded by ∼ 0.5 pixel (or ∼ 3Å). For a map with a resolution
of ∼ 15Å, this upper bound of errors is quite encouraging.
From Fig. 7(a) we can also see that most of the errors
corresponding to 277 and 125 critical points are also bounded
by ∼ 0.5 pixel. This experiment shows that our alignment
method is very robust to the number of critical points used
to calculate the similarity scores (see Equation 5). Compared
to the translation, the rotation errors are more sensitive to
the number of critical points, as shown in Fig. 7(b). When
the number of critical points considered in the map is greater
than 200 (i.e., the top six cases in the legend of Fig. 7(b)), the
rotation errors can be roughly bounded by 0.05 Radian except
a few pairs (indexed as 1,6,7,8,9). Interestingly all these large
errors are related to subunit S5 (see Table IV) and seem to be
caused by the significant dissimilarities between S5 and other
hexons (see Table III too). Since the radius of the hexons is
roughly 80Å, the upper bound, 0.05 Radian, gives the maximal
error of 80×0.05 = 4Å (i.e., the arc length) and the average
error of ∼ 2Å. This is comparable to the translation errors and
is also acceptable given that the resolution of the map is about
15Å.

Another main concern about our alignment algorithm is
the speed of the real space method, compared to the FFT
approach. We did not implement the FFT-based algorithm but
we give below the complexity analysis of both approaches.
In general cases where one has to search in three translations
and three rotations, FFT performs much better than the real
space method as their time complexities are O(P×Qlog2Q)
and O(P×Q2) respectively, where Q is the total number of
voxels in the volume and P is the number of samples in the
rotational search space. In our particular case, however, we
have only one degree of freedom for translation and the other
for rotation. Let P1 and K be the number of samples in the
new rotational and translational search spaces respectively, and
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(a) (b) (c)
Fig. 6. Illustrations of pseudo-atomic modeling of φ29. (a) Two PDB structures were fitted into the monomers of the chosen penton and hexon, using the
software package called Situs [38]. Shown here is the view from the top (head) of φ29. (b) We can transform the fitted PDB structures to the other monomers
of the chosen penton and hexon according to the alignment matrices between the subunits. A closer view of the fitted penton and hexon is shown here. (c)
We can also transform the PDB structure in (b) to the whole capsid and get a pseudo-atomic structure of φ29. Shown here is only the top region of φ29.

(a) (b)

Fig. 7. Illustration of 3D alignment between hexons of phi29 with different numbers of critical points. (a) The translation errors with respect to the number
of critical points. (b) The rotation errors with respect to the number of critical points.

the time complexities for both FFT and real space methods
become O(P1×Qlog2Q) and O(P1×Q×K) respectively. From
the alignment algorithm presented in Section III-B, we know
that K = 40. Furthermore, our algorithm utilizes the critical
points to calculate the similarity scores, which further reduces
the time complexity to O(P1 ×QC × K), where QC is the
number of critical points in the volume. QC is usually much
smaller than Q (in a factor of 100). For example, the size
of the individual subunits of φ29 is roughly 323 voxels (or
Q = 32,768). On the other hand, Fig. 7 tells us that when
∼ 1000 critical points are used, we can have reasonably good
alignment results in both translation and rotation. Since there
are 42 subunits in the entire map, each subunit contains an
average of ∼ 25 critical points. To align two subunits, we need
critical points of both subunits, meaning that QC ' 50, which
is significantly smaller than Q. As an example, it takes about
one minute to align all three pentons and six hexons of φ29
map on a Linux machine (processor: AMD Opteron 246, 2.0
GHz).

IV. SECONDARY STRUCTURE IDENTIFICATION

Proteins typically contain two types of secondary structure
elements: α-helices and β -sheets. There have recently been
a few papers published on secondary structure identification.
An approach for detecting α-helices has been described in
[39], where the α-helix is modeled as a cylinder (length and
thickness) with a Gaussian distribution density function for
each cylinder. The cylinders are then cross-correlated with the
segmented protein map, in an exhaustive search and scoring
procedure. The exhaustive search occurs in both translation
space (three degrees of freedom) and orientation space (two
degrees of freedom), and necessarily is computationally ex-
pensive. A related approach, designed for β -sheet detection,
was recently presented in [40]. This method uses a planar disk
model for β -sheets, and performs exhaustive cross-correlation
search with the protein density function. This method [40]
also inherits a similar disadvantage of high computational time
complexity as of [39], due to the similar exhaustive search, and
cross-correlation scoring, in five dimensional translation and
orientation space.
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In the following sub-sections, we present a fast skeleton-
based approach for protein secondary structure identification
from 3D maps. We capture the location of α-helices and β -
sheets by their skeletons (curves and surfaces, respectively).
Our skeletonization method is based on a prior seed selection
from the 3D density map, and a tracing procedure guided by
the eigenvectors of the local 3x3 structure tensor at selected
seed points of the protein density map. With the help of
eigen-analysis of local structure 3x3 matrices, we can extract
the entire “linear” α-helical and “planar” β -sheet skeletons
without exhaustively searching the relative five dimensional
translation and rotation space of a geometric template and the
3D protein density map. Compared to the above prior methods,
our approach is extremely fast (up to hundreds of times faster
for typical protein 3D maps) and additionally yields high
accuracy identification of secondary structure elements.

A. Local Structure Tensor

Local structure tensor has been used in image processing
for solving a number of problems such as anisotropic filtering
[41], [32] and motion detection [42]. The idea of the local
structure tensor is derived from the well-known principal
component analysis (PCA) [43]. It basically captures the
principal orientations of a set of vectors in space. We first
introduce the gradient tensor, defined on a single vector. Given
a 3D map f (x,y,z), the gradient tensor is defined as:

G =




f 2
x fx fy fx fz

fx fy f 2
y fy fz

fx fz fy fz f 2
z




(6)

This matrix has only one non-zero eigenvalue: f 2
x + f 2

y + f 2
z .

The corresponding eigenvector of this eigenvalue is exactly
the gradient ( fx, fy, fz). Therefore, this matrix alone does not
give more information than the gradient vector. To make
the gradient tensor useful, a spatial average (over the image
domain) is computed for each of the entries of the gradient
tensor, yielding what is called the local structure tensor. The
averaging is usually based on a Gaussian filter:

Tα =




f 2
x ∗gα fx fy ∗gα fx fz ∗gα

fx fy ∗gα f 2
y ∗gα fy fz ∗gα

fx fz ∗gα fy fz ∗gα f 2
z ∗gα




(7)

Here gα is a Gaussian function with standard deviation α .
The eigenvalues and eigenvectors of the structure tensor Tα
indicate the overall distribution of the gradient vectors within a
local 3D window. Three typical structures can be characterized
based on the eigenvalues of this structure tensor [41]. Let the
eigenvalues be λ1,λ2,λ3 and λ1 ≥ λ2 ≥ λ3. Then we have the
following cases (see Fig. 8):
• Spheres: λ1 ≈ λ2 ≈ λ3 > 0.
• Lines: λ1 ≈ λ2 >> λ3 ≈ 0.
• Planes: λ1 >> λ2 ≈ λ3 ≈ 0.

(a) Spheres (b) Lines (c) Planes
Fig. 8. Three typical cases for a local structure tensor.

B. Skeletonization

There are a number of prior skeletonization approaches
that have been published, including boundary-based meth-
ods [44], [45] and boundary-free methods [46], [47]. While
a pre-segmentation is required in boundary-based methods,
boundary-free methods do not have this requirement and so
the skeletons are in general extracted in two steps: volume
thinning and skeleton-tracing. In the following, we present
our method to trace the skeletons, based on a selection and
classification of skeleton-seeds, and guided by eigenvectors of
local structure tensors of the 3D density map.

1) Selecting and Classifying Seeds: As discussed in Section
IV-A, the local structure tensor can be used to distinguish
between spherical, linear, and planar structures. The spherical
case is usually of little interest in skeletonization. Therefore,
we focus on the other two cases in the following. As we shall
see in Section IV-C, these two types of local structures exactly
correspond to the α-helices and β -sheets of a protein density
map.

Seeds are the starting points for tracing the skeletons. There
are multiple ways to define/compute the seed points, with
the common condition that all the seed points must be on
the skeleton. As we shall see, the graphs of the 3D protein
density maps are similar to 3D mountain ranges − with high
densities (features) corresponding to the peaks and ridges,
with the skeleton extraction akin to ridge tracing. For this
particular reason, we select the local maximal (critical) points
of the 3D density maps as the seed points of our skeleton-
tracers. The stable computation of these critical (seed) points
in existence of noise has been detailed in our previous work
[16]. Note that by definition the critical points used here are the
same as those seen in our segmentation/alignment algorithms.
However, since the structural unit used for secondary structure
identifications is usually the averaged one of the segmented
subunits, the actual critical points in the structural unit here are
usually different from those in the original cryo-EM density
map due to their different signal-to-noise ratios.

Since we are dealing with two types of skeletons: linear and
planar, for which the skeleton-tracings are different, we need
to classify each maximal critical point into either ”linear” or
”planar” seed before tracing the skeletons. In [41], the authors
used the three real eigenvalues of the symmetric structure ten-
sor to distinguish lines from the planes. However, this criterion
does not work well for protein secondary structures because
some parts of proteins (e.g., coils, turns) look locally like
helices except that they are thinner. Therefore, a better way to
classify them is to use the thickness of the secondary structure
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elements along three principal axes. The thickness along any
direction is defined by the width of the region above a pre-
chosen threshold in that direction. Since we know the typical
thickness of a helix, the threshold values can actually be
determined automatically from the seed points that correspond
to the helices based on the initial linear classification using
the eigenvalue criterion in [41]. Once we know the thickness
information for each seed point, we classify the seeds into
”linear” and ”planar” according to a range criterion. Let t1,
t2, t3 be the thicknesses corresponding to the eigenvectors as
shown in Fig. 8. The following ranges are then used to classify
the seeds:

• lines: t1+t2
2 > helixmin and t1+t2

2 < helixmax and
min( t1

t2
, t2

t1
) > max( t1

t3
, t2

t3
),

• planes: t1 > sheetmin and t1 < sheetmax and
min( t2

t3
, t3

t2
) > max( t1

t2
, t1

t3
),

where helixmin and helixmax are user-defined possible thick-
nesses ranges for α-helices in the given density map, and
similarly sheetmin and sheetmax are user-defined thicknesses
ranges for β -sheets. While we have chosen default ranges in
our implementation, each of these parameters are modifiable
by the biological users.

2) Tracing Skeletons: As mentioned earlier, the α-helices
and β -sheets are respectively captured by curves and surfaces
in our method. The seeds discussed above provide good
starting points for the individual skeletons. To avoid exhaustive
search, we extract the skeletons by tracing the eigenvectors
of the local structure tensors. The line-tracer (used for α-
helices) is one-dimensional and hence is much easier than
the plane-tracer (used for β -sheets). To trace a line structure,
we start from the seed in two opposite directions, and follow
the principal axis, defined by the eigenvector corresponding
to the minimum eigenvalue of the local structure tensor (see
Fig. 9(a)). To trace a planar structure, we utilize the popular
isocontouring technique [48]. We start from the seed point
and compute the plane that is perpendicular to the eigenvector
corresponding to the maximal eigenvalue (v1 in Fig. 8(c)). The
plane partitions all eight vertices of the cell containing the seed
point into two classes: positive and negative. In addition, the
plane intersects with some of the twelve edges of the cell. Both
the classification of the vertices and the intersection informa-
tion with the edges can be used in the isocontouring lookup
table, yielding a polygon (a list of triangles) representing the
skeletons within the current cell (see Fig. 9(b)). Next, we
move to the neighboring cells with which the detected skeleton
(polygon) intersects. For the example in Fig. 9(b), we need to
check four neighboring cells (back, front, right, and bottom).
For each of those new cells, the “checking” point (similar to
the seeds) is calculated as the center of the existing intersecting
points between the already-detected skeletons and the new cell.
The new polygon within the new cell is extracted using the
idea as explained above, based on the “checked” point and
the new structure tensor around it. This process is repeated
until a certain stopping criterion is reached. The plane-tracer
outputs a triangular mesh of skeletons. The stopping criteria
for both line-tracer and plane-tracer are similar − the tracing
process terminates whenever no new cells satisfy the criteria

as discussed in Section IV-B.1.

(a) Line-tracer (b) Plane-tracer
Fig. 9. Skeleton-tracers. (a) Tracing 1D skeletons. (b) Tracing 2D skeletons
(the marching cube method [49]).

3) Merging Skeleton: For each of the seed points, we
extract a curve or a surface, corresponding to a helix or sheet
respectively. However, quite often we see more than one seed
point corresponding to the same secondary structure. One
example is illustrated in Fig. 10(a) and a closer view is shown
in Fig. 10(b). In order to have only one curve/surface for each
helix/sheet, we merge the superfluous skeletons corresponding
to the same helix/sheet. Let the skeletons initiated from seeds
A and B be denoted by S(A) and S(B) respectively. They
are line segments for α-helices and triangulated surfaces for
β -sheets. S(A) and S(B) are subject to being merged if the
minimal distance between S(A) and S(B) is less than a preset
threshold. The threshold is usually set as the thickness of
α-helices or β -sheets in the given map that is assumed to
be isotropic in X, Y, and Z directions. Besides eliminating
the redundancy, the merging process also yields balanced
skeletons because the new skeletons are the average of pre-
viously redundant ones. Fig. 10(c) shows the skeleton after
merging. It is worth pointing out that the topological ambiguity
problem seen in the original marching cube method [49] can
be resolved by an improved algorithm as discussed in [48].

(a) Traced skeleton (b) Closer view (c) Merged skeleton
Fig. 10. Skeleton extraction. (a) The initial skeletons traced by the line-
tracer. (b) A zoomed-in view of the rectangular region as shown in (a). The
thick “dots” are seed points. (c) The skeletons after merging

C. Applications: Protein Secondary Structure Detection

Once the skeletons of a protein density map are extracted,
it is quite straightforward to locate the protein secondary
structure elements. It is generally enough to represent β -sheets
using the extracted triangular mesh. In case the resolution
of the given maps is high enough to distinguish between
individual beta-strands, we could apply the line-tracer to
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extract the strands and get a more refined model of the β -
sheets. As for α-helices, we construct a cylinder model for
each helix based on the extracted skeletons.

We have tested our skeleton-based protein secondary struc-
ture identification approach on a large number of simulated
and experimentally-reconstructed protein density 3D maps. We
only provide a few typical examples here. Fig. 11 illustrates
the performance of our approach on a Gaussian blurred map of
two X-ray atomic structures. The first example is cytochrome
c’ (PDBID = 1bbh). The blurred map at 8Å and detected
skeletons are shown in Fig. 10. From the skeletons, four α-
helices are detected as shown in Fig. 11(a). To demonstrate the
accuracy of our approach, the skeletons and detected helices
are compared with the PDB structure in Fig. 11(b) and (c).
Another example is the blurred map of rat CD4 (PDBID =
1cid) as seen in Fig. 11(d). The detected skeletons (sheets)
are shown in Fig. 11(e) and compared with PDB structures in
Fig. 11(f).

We also tested our approach on two simulated maps contain-
ing both α-helices and β -sheets. Fig. 12(a) shows the blurred
map of the triose phosphate isomerase from chicken muscle
(PDBID = 1tim) at 8Å. The detected α-helices and β -sheets
are shown in Fig. 12(b) with density map and in Fig. 12(c)
with PDB structure. We can see that most helices/sheets agree
very well with the PDB structure except that one small α-
helix that is immediately adjacent to a long helix is missed
(indicated by a red arrow). This result also agrees with that
seen in [39]. Fig. 12(d) and (e) give another view of (b) and
(c), respectively. In Fig. 13(a) we show a more complicated
simulated map at 8Å, blurred from the PDB structure of the
bluetongue virus VP7 (PDBID = 1bvp). This map contains a
total of 27 α-helices in the lower domain and 3 α-helices and a
few β -sheets in the upper domain. The detected α-helices and
β -sheets are shown in Fig. 13(b) with density map and in Fig.
13(c) with PDB structure. All 30 α-helices and major portions
of β -sheets are correctly identified and agree very well with
the PDB structure. Although two small α-helices (indicated by
red arrows) are misidentified due to a couple of turns getting
very close to each other, our results show better performance
than the method proposed in [39]. Fig. 13(d) shows another
view of (c). A closer view of the skeletons together with the
PDB structure is shown in Fig. 13(e).

We also demonstrate our approach on a 3D map, re-
constructed from experimental cryo-EM images of the rice
dwarf virus (RDV) [8]. Fig. 14(a) shows two capsid layers
segmented: the outer layer (on the top) and the inner layer (on
the bottom) [16], [17]. For better illustrations, only a quarter
of the whole layers are seen here. The segmented P3 protein
(from inner layer) and P8 protein (from outer layer) are shown
in Fig. 14(b). The detected α-helices and β -sheets for both
proteins are shown in Fig. 14(c).

D. Discussions

In this subsection, we would like to give some numerical
analysis of the performance of our algorithms. A number
of maps are used to estimate the detection errors and they
are blurred at 8 Å from a list of chosen PDB structures

including 1BBH, 1BVP, 1C3W, 1CID, 1DXT, 1IRK, 1LGA,
and 1TIM. These structures include those of only α-helices
(1BBH, 1DXT, and 1LGA), those of only β -sheets (1CID,
with a negligibly short helix), and those of both types (the
rest).

We start with the error estimation of our helix detection
algorithm. We first compute the false negative or FN (missed
helices) and false positive or FP (wrongly detected helices) for
each of the chosen PDB structures. The total number of helices
for each structure is shown in the 2nd column of Table V. As
a comparison, some of the FNs and FPs by HelixHunter [39]
are listed in the 3rd and 4th columns of Table V (based on
Figure 2 of [39]). The FNs and FPs by our method are listed
in the 5th and 6th columns of Table V.

Excluding the false positives and false negatives, there
should be a one-to-one correspondence between the α-helices
in the PDB structure, denoted by {Hi, i = 1,2, · · · ,n}, and
the α-helices detected by our method, denoted by {Ĥi, i =
1,2, · · · ,n}. We can further evaluate the accuracy of our
algorithm by comparing each pair of helices taken from {H}
and {Ĥ} respectively. For simplicity we represent each α-
helix by two end points. For α-helices in {H} the two end
points, denoted by {Ai,Bi}, i = 1,2, · · · ,n, are calculated by
principal component analysis of all the Cα atoms in the ith

helix in the PDB structure. The end points in {Ĥ}, denoted by
{Âi, B̂i}, i = 1,2, · · · ,n, are readily available as outputs of our
algorithm. To estimate the error between each pair of helices
in {H} and {Ĥ}, we define the distance between two vectors
as follows:

HE(A,B;C,D) = min(
d(A,C)+d(B,D)

2
,

d(A,D)+d(B,C)
2

),
(8)

where A, B are the end points of a helix in {H} and C, D are
the end points of the corresponding helix in {Ĥ}. d(X ,Y ) is the
Euclidean distance between points X and Y . Equation 8 gives
the error estimation between a helix in PDB structure and the
corresponding helix detected by our approach. Fig. 15 shows
the error estimations of all helices (except the false negatives
and false positives) for the chosen PDB structures. Short
helices tend to have larger errors partly because the principal
component analysis has significant errors when modeling short
helices with cylinders due to few number of Cα atoms. The
averaged helix error (denoted by AHE) for each PDB structure
is given in the 7th column of Table V.

Compared to α-helices, β -sheets are more difficult to model
due to their arbitrary shapes and curvatures. At low to in-
termediate resolutions it is impossible to distinguish between
individual beta strands and sometimes it is even difficult to
find the exact boundaries of individual β -sheets. In the worst
cases, the extracted median surfaces (skeletons) may contain
a few small “holes” near the boundaries of sheets where it is
more ambiguous for the local structures to be classified into
one of three cases as shown in Fig. 8. Due to the difficulty of
characterizing topologically the shapes of β -sheets, the error
estimation of β -sheet detection is hence approximated by the
(globally) average distance between the Cα atoms and the
vertices of the triangular mesh detected by our approach. Let
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(a) Detected helices (b) Skeletons (c) Helices with PDB (d) Blurred map (e) Skeletons (f) Sheets
Fig. 11. Examples on two blurred maps of x-ray crystal structures. (a) The α-helices detected from the blurred map of cytochrome c’ (PDBID = 1bbh). The
blurred map at 8Å and extracted skeletons were shown in Fig. 10. (b) The skeletons detected from the blurred map and compared with the PDB structure.
(c) The detected helices are compared with the PDB structures. (d) The blurred map of rat CD4 (PDBID = 1cid) at 8Å. (e) The skeletons (corresponding to
β -sheets) detected from the blurred map. (f) The sheets are compared with the PDB structures.

(a) Blurred map (b) Helix-sheet (map) (c) Helix-sheet (PDB) (d) Another view of (b) (e) Another view of (c)

Fig. 12. Secondary structure identification on the triose phosphate isomerase from chicken muscle (PDBID = 1tim). (a) The blurred maps at 8Å from the
x-ray crystal structure. (b) The α-helices (green) and β -sheets (pink) detected using our method. (c) The detected helices/sheets are compared with the PDB
structures. We can see that most helices/sheets agree very well with the PDB structure except that one small α-helix that is immediately adjacent to a long
helix is missed (indicated by red arrow). This result also agrees with that seen in [39]. (d) Another view of (b). (e) Another view of (c).

(a) Blurred map (b) Helix-sheet (map) (c) Helix-sheet (PDB) (d) Another view of (c) (e) Zoomed-in skeletons

Fig. 13. Secondary structure identification on the bluetongue virus VP7 (PDBID = 1bvp). (a) The blurred maps at 8Å from the x-ray crystal structure. (b)
The α-helices (green) and β -sheets (pink) detected using our method. (c) The detected helices/sheets are compared with the PDB structures. All α-helices
and major portions of β -sheets are correctly identified and agree very well with the PDB structure. Although two small α-helices (indicated by red arrows)
are misidentified due to a couple of turns running into each other, our results show better performance than the method proposed in [39]. (d) Another view of
(c). (e) A closer view of the detected skeletons together with the PDB structure. The chosen region is roughly in the rectangular area right below the center
of (c).

Ci, i = 1,2, · · · ,n denote the Cα atoms of all β -sheets in one
PDB structure and Vj, j = 1,2, · · · ,m be the vertices of the
triangular mesh detected. We calculate two errors as follows:

SFN(C,V ) =
1
n

n

∑
i=1

m
min
j=1

d(Ci,Vj), (9)

SFP(C,V ) =
1
m

m

∑
j=1

n
min
i=1

d(Ci,Vj), (10)

where d(X ,Y ) is the Euclidean distance between points X
and Y . Basically SFN(C,V ) indicates the false negatives of

the β -sheet detection (or in other words, the β -sheets that
appear in the PDB structures but are not detected). In contrast,
SFP(C,V ) corresponds to the false positives, indicating the
amount of β -sheets that are detected but are not truly β -sheets
in the PDB structures. These two error estimations for each
of the chosen structures are shown in the 8th and 9th columns
of Table V, respectively.

Since our secondary structure detection is based on the
local structure tensor, it would be worth investigating how
the size of the local window (used in Equation 7) affects
the accuracy of our secondary structure detection approach.
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(a) Segmented layers (b) Segmented proteins (c) Detected helices/sheets
Fig. 14. The example of a real cryo-EM reconstructed map. (a) The outer layer (top) and inner layer (bottom) of the rice dwarf virus (RDV) after segmentations
[8], [16]. Shown here is only a quarter of the whole layers. (b) The segmented P3 protein (left) from inner layer and P8 protein (top-right) from outer layer.
(c) The α-helices (green) and β -sheets (pink) detected from the P3 and P8 proteins.

Fig. 15. The illustration of the error estimations of all helices (except the false negatives and false positives) for the chosen PDB structures. Short helices
tend to have larger errors partly because the principal component analysis has significant errors when modeling short helices with cylinders due to very few
number of Cα atoms.

TABLE V
ERROR ESTIMATIONS OF SECONDARY STRUCTURES DETECTION

PDB # HelixHunter Our Method
FN FP FN FP AHE SFN SFP

1BBH 4 N/A N/A 0 0 1.63 N/A N/A
1BV P 30 6 1 0 2 3.29 1.45 2.28
1C3W 8 1 0 1 0 2.76 4.08 2.02
1CID N/A N/A N/A N/A N/A N/A 1.16 2.40
1DXT 8 N/A N/A 1 0 2.75 N/A N/A
1IRK 9 1 1 2 0 2.67 2.45 2.95
1LGA 13 N/A N/A 2 1 4.09 N/A N/A
1T IM 12 2 0 1 0 2.51 1.51 2.19

#: total number of helices in PDB.
FN and FP: false negatives and false positives, respectively.
AHE (in Å): average helix error.
SFN and SFP (in Å): sheet errors defined in Eq. 9 and Eq. 10, respectively.

As mentioned before, the local structure tensor is basically
a variant of the principal component analysis (PCA), which
captures statistically the features of the density map in a local
window. Therefore, the window size must be big enough to
characterize the local structures from a statistical point of

view, but small enough to exclude any neighboring features
that could influence the eigenvectors of the local structure
being studied. An ideal window size is hence the size of the
feature to be extracted. In case of the α-helix, for example,
the radius of an α-helix is about 6 Å in the PDBs but in
electron density maps an α-helix looks much “thinner” − the
authors in [39] suggest ∼ 2.5Å as the radius of an α-helix in
an intermediate resolution map. Therefore, the window size
could be chosen from any value from 2.5Å to 6Å, although
the optimal one may vary slightly from structure/resolution to
structure/resolution. As an example, the α-helices of 1BBH
blurred map at 8Å resolution are detected based on different
window sizes: 2Å−10Å, and 15Å. The average error of the
detected α-helices are: 1.59Å, 1.63Å, 1.40Å, 1.33Å, 1.65Å,
1.75Å, 2.02Å, 2.72Å, 3.01Å, and 3.31Å, respectively. The
optimal size for this map is around 5Å. The thickness of β -
sheets is usually smaller than the diameter of α-helices, but
for simplicity, we use the same window size for both α-helices
and β -sheets. In the experiments shown in Fig. 10 − Fig. 15
and Table V, the window size is chosen as 3Å, which has a
good balance between speed and accuracy.
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In addition to the encouraging accuracy, the speed of our
approach is another significant advantage compared to the
previous methods [39], [40]. Depending on the parameters
chosen, the HelixHunter [39] may take ten minutes or up to
one hour on a Linux machine (processor: AMD Opteron 246,
2.0 GHz), for such maps as P8 or P3 proteins of RDV (1283

voxels), to detect only the α-helices. Our method takes only 3
seconds for P8 protein and 10 seconds for P3 proteins on the
same Linux computer, to detect both α-helices and β -sheets.
In fact, the majority of time in our method is consumed in
the preprocessing step, namely, the calculations and diffusions
of gradient vectors, making our approach sufficiently fast for
interactive adjustments of parameters by the users from an
interface. We do not have the timings for SheetMiner as
presented in [40]. However, we believe that the SheetMiner of
[40] should be as slow as, if not slower than, the HelixHunter
of [39] because both methods used exhaustive searching
schemes in the translational and orientational spaces.

V. CONCLUSIONS

In the prior sections, we have presented computational ap-
proaches for automatic ultra-structure analysis of reconstructed
3D-EM maps of macromolecules. In particular, we give fast
methods to align (match) two segmented structure units in
3D space, and to identify secondary structure elements of a
protein density map. The 3D alignment algorithm yields a
set of transformation matrices which are essential for a num-
ber of 3D map post-processing methods, including similarity
quantification, segmentation refinement, similar structure unit
averaging/improvement, and pseudo-atomic modeling. Our
skeleton-based method for secondary structure identification
is extremely fast (usually more than a couple of magnitude
times faster) compared to existing methods [39], [40]. While
the existing methods could detect either α-helices or β -
sheets, our approach simultaneously identifies both types of
secondary structures with high accuracy. When combined with
our previous segmentation method [16], [17], the approaches
presented here can be employed to interpret automatically
a wide range of bio-molecular structures especially those
reconstructed by single particle cryo-EM.
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