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Summary. The selection of appropriate level sets for the quantitative visualization
of three dimensional imaging or simulation data is a problem that is both funda-
mental and essential. The selected level set needs to satisfy several topological and
geometric constraints to be useful for subsequent quantitative processing and vi-
sualization. For an initial selection of an isosurface, guided by contour tree data
structures, we detect the topological features by computing stable and unstable
manifolds of the critical points of the distance function induced by the isosurface.
We further enhance the description of these features by associating geometric at-
tributes with them. We then rank the attributed features and provide a handle to
them for curation of the topological anomalies.

1 Introduction

Problem and Motivation.

The selection of isosurfaces (or alternatively level sets of a trivariate function) for
the visualization of volumetric imaging or simulation data, is often subject to the
constraints imposed by the application domain. While some applications put more
stringent criteria on this process than others, every application requires an analysis
of topological and geometrical information to ensure that an appropriate choice is
made. Topological constraints require that the extracted level set should have a cer-
tain topology. Naturally, this problem has drawn the attention of researchers for a
long time. As a result, the basic topological information of level sets can be unam-
biguously encoded by the well-known data structure, called the Contour Tree [31].
The Contour Tree (CT) is a topological description of the entire volumetric data,
and furthermore encodes the information of the number of connected components.

While extremely useful, CT does not capture all the necessary information about
the topology of the level sets. In particular, information about the combinatorics
and topology of tunnels (complementary space) of every connected component of
the level set is not encoded in CT. To overcome this deficiency, an enhanced CT
data structure was proposed by Pascucci and Cole-McLaughlin [29], who gave an
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algorithm to further detect and store some additional information of the level set,
in an Augmented Contour Tree (ACT).

The ACT, while appropriate in encoding the topology related to the first 3 Betti
numbers [29] of each level set, it does not give a quantitative measure of the level
set and its complementary space features, to aid in its selection or curation . This is
the main motivation of our work. In this paper, we will show that suitable selection
of an isosurface in any application context must be additionally guided by a close
examination of the complementary space to the primal domain. Further, we will
show how relevant topological and geometrical features of a selected isosurface can
be calculated, ordered, visualized, and, if necessary, curated.

The significance of such complementary space features can be seen in the iso-
surface choices for the simple example of the ion channel Gramicidin A, obtained
from soil bacteria Bacillus brevis. The initial molecular surface selection process
makes use of the CT. In Figure 1 (a.1-4) we show two isosurfaces extracted from the
same edge of the contour tree for the volumetric data which has been synthetically
created from the atomic model obtained from Protein Data Bank (PDB) [5]. The
PDB entry of this molecule is 1MAG. Figure 1 (a.1) shows a snapshot of the volume
rendering of the data in our in-house interrogative volume visualization software
VolRover [13] along with the CT shown in the bottom panel. In Figure 1 (a.2)
we show the molecular surface selected using CT which does not accommodate any
tunnel through the molecular surface. Figures 1 (a.3,4) show two views of another
molecular surface selected from the same scalar volume which, on the other hand,
has the ion channel through the molecule present. This means the choice of the first
isosurface is incorrect. Note that there is no change in the number of components
as one contour is deformed into the other, hence the CT is not sufficient in guiding
our choice of isovalue. Further as can be seen in Figure 1 (a.4), the surface accom-
modates two more small tunnels (marked by black circles) which are merely the
artifacts of the selection process. Using the algorithm presented in this paper, we
can eliminate those small tunnels.

Figure 1 (b.1-3) shows another example of the isosurface of the molecule mouse
Acetylcholinesterase (mAchE). In this case, the active site of the molecule is buried
deep inside a depression on the molecular surface. We will later computationally
define such depressions and we will call them “pockets”. Correct extraction of the
molecular surface of mAchE, in this case, requires that the pocket near the active
site is properly preserved and also it should not be too narrow, e.g. narrower than
the diameter of Acetylcholine molecule which has to pass through the opening of
the pocket in order to bind to the active site of mAchE. Figure 1 (b.1) shows
all such pockets identified on the molecular surface of mAchE. The small pockets
on the surface arising from incorrect selection of isovalue, are not desired because
they adversely affect the calculation of molecular energetics. Using the algorithm
presented in this paper, we can rank the pockets based on their geometric attributes
(volume, for example) and that helps deleting those small pockets. Figure 1 (b.2)
shows the surface after selective removal of all the small pockets keeping only three
significant ones which include the one near the active site. Closeup of the main
pocket is shown in Figure 1 (b.3).

The selection of an isosurface should also aim to preserve inherent symmetry
in the data. In Figure 1 (c.1-3) we show two isosurfaces for the Nodavirus. This
icosahedral virus infects the central nervous system of fish and causes a disease called
viral nervous necrosis. The main point of contention while selecting an isosurface
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is preserving the symmetry of the viral capsid. We show the volume rendering of
the cryo-EM density map of the virus in Figure 1 (c.1). Figure 1 (c.2) shows one
plausible isosurface that does not respect the symmetry. In particular, near the
points of five-fold rotational symmetry, we ought to have five tunnels arranged in
a circle or none at all. In Figure 1 (c.3) we show another isosurface which actually
reflects the symmetry properly. Without careful investigation of the complementary
space topology, aided by the algorithm described in this paper, it is not possible to
apply the knowledge of these features to guide the isosurface selection. Therefore,
we seek both topological and geometrical details of the complementary space to an
extracted isosurface.

The overall isosurface extraction process from a scalar volume is thus guided by
the knowledge of both topology and domain-specific geometry of both the primal
and complementary space. As in [19], we also consider the homology as a measure of
topological complexity of the extracted level set. We further consider the depressions
on the surface as added complexity as they play a bio-chemically vital role in the
context of selection of molecular interface [18]. We call these depressions pockets.
The main contribution of this work is the attachment of geometry and possibly
other domain-specific attributes with the detected topological features that guides
the subsequent curation process.

Prior work.

Systematic interrogation of topological and geometric attributes of the level sets
over a range of isovalues started with the introduction of two powerful data struc-
tures Contour Spectrum (CS) [4] and Contour Tree (CT) [31]. While CS focuses
mostly on the differential and integral attributes like, area, volume, curvature etc.,
CT encodes topological properties like, number of connected components etc., of
the contours over a range of isovalues. Historically, CT was first introduced in [6].
It was first used with regard to isosurfaces by van Kreveld et al. [31]. They also
used CT to compute seed sets, which help generate isosurfaces efficiently. Further
work by Carr et al. proved that contour trees of any dimension could be computed
in O(n log n) time, where n is the number of simplices in the geometrical decom-
position [8]. Pascucci and Cole-McLaughlin expanded the topological information
in the CT data structure by adding Betti number information to each edge of the
graph [29]. Recently, CT has been further enhanced by adding information about
domain specific geometric attributes and such multi-attributed CT (MACT) proved
to be very useful in analyzing the bio-chemical properties of the molecular interfaces
[35]. Carr, Snoeyink and van de Panne simplified the CT based on local geometric
data [9]. The algorithm in [9], although different from our approach, can be used to
further facilitate in simplification of the volume and selection of the isosurface.

Due to the fundamental nature of the problem, topology simplification of geo-
metric models have received attention from outside of visualization community as
well. In order to achieve controlled topological simplification of triangulated geom-
etry, Guskov and Wood [25] grow a small ball of radius ǫ on the surface to detect
small tunnels and remove them by cutting the mesh. Wood et al. [32] use the Reeb
graph of a height function to detect and delete small handles from an isosurface.
El-Sana and Varshney have worked on topology controlled simplification of CAD
models where they first detect the crease edges and roll a ball of small radius to
identify the holes which do not allow the ball to pass through [20]. Nooruddin and
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Turk have proposed an algorithm that converts a model into volumetric data and
apply dilation and erosion to perform simplification [28]. It is to be noted, that all
these techniques fall short of depicting the symmetry and a proper ranking of the
geometry of the depressions and tunnels of the geometry to be simplified.

A fundamentally different approach was due to Edelsbrunner et al. [19] who
proposed the notion of persistence in the context of the alpha complex to detect
topological features which prevail while the alpha complex undergoes a filtration. A
series of results followed along the same line which formalized the notion of persistent
homology in order to distinguish between stable topological features from unstable
or noisy features [7, 12, 37, 36]. A similar notion of persistence has also proved to
be useful in detecting short-lasting and noisy topological features in the context
of witness complex [15]. At this stage it is important to note the novelty of our
approach. We compute the topological features related to the homology group of
the level set and attach geometric attributes which are often meaningful in the
context of application the scalar volume has originated from.

The key ingredient of our algorithm in ranking the topological features of the
extracted level set is the distance function over R

3. The distance function has been
used earlier for reconstruction and image feature identification [1, 10, 17, 21]. Chazal
and Lieutier [11] have used it for stable medial axis construction. Dey, Giesen and
Goswami have used distance function for object segmentation and matching [16].
Goswami, Dey and Bajaj have used it for detailed feature analysis of shape via
an annotation of flat and tubular features in addition to shape segmentation [22].
Recently, Bajaj and Goswami have shown a novel use of distance function, induced
by a molecular surface, in order to detect secondary structural motifs of a protein
molecule [2]. The close connection between the critical point structure of the distance
function and the topology of the surface, and its complement, is what we utilize to
detect and remove small topological artifacts.

Approach.

The main contribution of this work is the systematic use of the distance function
induced by an isosurface, to geometrically complement the encoding of the topology
by the Contour Tree, in yielding a curated, selection. With our new approach the
selected isosurface is extracted, and then filtered, with the aid of the critical point
structure of the distance function, which allows detection and a geometrical ranking
of the complementary structure of the isosurface, i.e. the tunnels and pockets.

First, a suitable isovalue is selected using CT in order to select an isosurface with
the required number of components. In the case of molecular interface selection, the
number of components is always one. The subsequent computations based on the
distance function are then applied to detect the tunnels and pockets. Finally, these
features are ranked according to some domain-aware “importance” function which
usually quantifies the geometric attributes of those features, and thereby allows the
removal of insignificant ones.

We first give a brief description of the distance function, here. Given a compact
surface Σ smoothly embedded in R

3, a distance function hΣ can be designed over
R

3 that assigns to each point its distance to Σ.

hΣ : R
3 → R, x 7→ inf

p∈Σ
‖x − p‖
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In this context, Σ is the level set. For the ease of computation, we approximate
hΣ by hP which assigns to every point in R

3, the distance to the nearest point from
the set P which finitely samples Σ.

hP : R
3 → R, x 7→ min

p∈P
‖x − p‖

We identify the maxima and index 2 saddle points of hP which lie outside the
level set. The stable manifolds of these critical points help detect the tunnels and
the pockets of Σ. Additionally these stable manifolds are used to compute geometric
attributes of the detected topological features that they correspond to. Thus we
obtain a description of the isosurface, and its complement, in terms of its topological
features quantified by their geometric properties, based on which the insignificant
features are removed.

2 Preliminary

2.1 Contour Tree

Isosurfaces and contour trees are derived from scalar fields. A scalar field can be
characterized as a domain M and a function f : M → R

1. In differential topology
and Morse theory, the critical values of f are formally defined as those values r ∈ R

1

for which the derivative map dfx is not surjective for some point x ∈ f−1(r) (see
[24], for example) Put differently, r is a critical value of f if and only if f−1(r) is
not a manifold of dimension dim(M) − 1. Each level set f−1(r) is a collection of
contours and the topology of these contours allows us to create the contour tree. We
note that in all of our examples, our domain M will be R

3, ensuring that our data
structure is in fact a tree and not the more general Reeb graph.

The unqualified term “contour tree” refers to a data structure created from
a subset of the critical values of f . The first such data structure to be computed
efficiently was a “minimal” contour tree by de Berg and van Kreveld [14]. A minimal
contour tree has nodes only for isovalues at which contours emerge, split, merge, or
vanish. The edges of a minimal contour tree connect nodes along which a contour
smoothly deforms and hence indicate the evolution of a contour over a range of
isovalues. A minimum contour tree of any dimension can be computed in O(n log n)
time as was proved by Carr et al. in [8]. Such trees can be used to compute seed
sets, that is, a set of points from which all contours of a particular level set can be
generated [31].

To capture more topological information, the augmented contour tree, as de-
fined by Carr, Snoeyink and Axen, was introduced in [8]. In their terminology, the
augmented contour tree refers to a contour tree with nodes for all values in the
range of the scalar field, not just the critical values. Thus, the augmented or “full”
contour tree can be reduced to the minimal contour tree by removing all degree two
nodes. Pascucci and Cole-McLaughlin expanded the data structure by attaching the
Betti numbers of each contour in a level set to its corresponding edge in the “full”
contour tree [29]. The Betti numbers of a surface, however, are a strictly topological
feature and thus do not indicate the geometrical significance of the tunnels and voids
that they count. Moreover, it is not clear how to use this data structure in order to
selectively remove some undesired topological artifacts.
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2.2 Voronoi-Delaunay

In this paper we always assume the distance metric to be Euclidean unless otherwise
stated. For a finite set of points P in R

3, the Voronoi cell of p ∈ P is

Vp = {x ∈ R
3 : ∀q ∈ P − {p}, ‖x − p‖ ≤ ‖x − q‖)}.

If the points are in general position, two Voronoi cells with non-empty intersection
meet along a planar, convex Voronoi facet, three Voronoi cells with non-empty inter-
section meet along a common Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decomposition consisting of the Voronoi
objects, that is, Voronoi cells, facets, edges and vertices is the Voronoi diagram Vor P

of the point set P .
The dual of Vor P is the Delaunay diagram Del P of P which is a simplicial

complex when the points are in general position. The tetrahedra are dual to the
Voronoi vertices, the triangles are dual to the Voronoi edges, the edges are dual to
the Voronoi facets and the vertices (sample points from P ) are dual to the Voronoi
cells. We also refer to the Delaunay simplices as Delaunay objects.

2.3 Critical Points of hP

The distance function hP induces a flow at every point x ∈ R
3. This flow has been

characterized earlier [21, 22]. See also [17]. For completeness we briefly mention it
here.

The critical points of hP are the points in R
3 which lie within the convex hull of

its closest points from P . It was shown by Siersma [30] that the critical points of hP

are the intersection points of the Voronoi objects with their dual Delaunay objects
(Figure 2).

• Maxima are the Voronoi vertices contained in their dual tetrahedra,
• Index 2 saddles lie at the intersection of Voronoi edges with their dual Delaunay

triangles,
• Index 1 saddles lie at the intersection of Voronoi facets with their dual Delaunay

edges, and
• Minima are the sample points themselves as they are always contained in their

Voronoi cells.

In this discrete setting, the index of a critical point is the dimension of the lowest
dimensional Delaunay simplex that contains the critical point.

At every x ∈ R
3, a unit vector can be assigned that is oriented in the direction of

the steepest ascent of hP . The critical points are assigned zero vectors. This vector
field, which may not be continuous, nevertheless induces a flow in R

3. This flow tells
how a point x moves in R

3 along the steepest ascent of hP and the corresponding
path is called the orbit of x.

For a critical point c its stable manifold is the set of points whose orbits end at c.
The stable manifold of a maximum is a three dimensional polytope whose boundary
is composed of the stable manifolds of the index 2 saddle points which in turn are
bounded by the stable manifolds of index 1 saddle points and minima. See [16, 21]
for the detailed discussion on the structure and computation of the stable manifolds
of the critical points of hP .
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2.4 Betti Numbers

The i-th Betti number of a manifold is formally defined as the rank of its i-th
homology group, Hi. Homology groups are quotient groups; Hi is the i-th cycle
group modulo the i-th boundary group. Therefore, Hi is the free abelian group
generated by cycles of i-chains that are not boundaries of (i + 1)-chains. Hence, the
i-th Betti number counts the number of independent (i.e. non-homologous) non-
bounding cycles. Based on these definitions, we have the following informal notions
of Betti numbers for 2-manifolds. The 0-th Betti number equals the number of
connected components, the 1-st Betti number equals twice the number of through
holes, and the 2-nd Betti number equals the number of voids. For an isosurface (or
in general a 2-manifold) only the first three Betti numbers can be non-zero.

3 Algorithm

In this section, we describe an algorithm that detects the tunnels and pockets using
the critical point structure of the distance function.

3.1 Sampling of Level Set

In order to successfully apply the critical point structure of the discrete approxima-
tion of the distance function hΣ by hP , we require a suitable discrete approximation
of the level set. Apparently primal contouring (Marching Cubes [27]) and dual con-
touring [26] are good choices to extract a discrete approximation of the level set
from the scalar volume. Although variants of these approaches have been researched
extensively to produce a topologically consistent isosurface, the main disadvantage
lies in the fact that the sampling of the extracted surface is oblivious to the fea-
ture. Note, we need a set of points P to approximate hΣ by hP , and we also need
hP to follow hΣ closely so that we do not miss the topological features of Σ in
this process of translating it to the discrete setting. Recently, we have developed
an algorithm which ensures that the discretization of the level set has sufficiently
dense sampling for it to be a subcomplex of the Delaunay triangulation of the set
of samples. This guarantee that the sampling is feature-sensitive and therefore the
discretization follows closely the distance function induced by the true level set. Due
to space limitation, we omit the details of the algorithm here and refer the reader
to [23].

3.2 Classification and Clustering of Critical Points

The critical points of hP are detected by checking the intersection of the Voronoi and
its dual Delaunay diagram of the point set P sampled from Σ. The critical points
are primarily of three types depending on if the Voronoi/Delaunay object involved
lies interior, exterior to Σ, or if the Voronoi object crosses Σ. The maxima can not
lie on the surface and therefore they are only of two types - interior and exterior.
The minima are sample points themselves and therefore they are always on Σ. The
saddle points can be any of three types mentioned above.
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We use C2 to denote the set of index 2 saddles which is partitioned into three
classes C2,I , C2,O and C2,S . The set of maxima is denoted as C3 which is partitioned
into two classes C3,I and C3,O . Using the hierarchical nature, we build an incidence
graph over C2 ∪C3 where an edge is formed between c2,∗ and c3,∗ if stable manifold
of c2,∗ is on the boundary of the stable manifold of c3,∗. The edges are colored
depending on if c3,∗ ∈ C3,I (red) or ∈ C3,O (green). The graph is further augmented
by the edges within C2 (blue) if two index 2 saddles’ stable manifold have non-empty
intersection. For the sake of compactification, we also need to consider the point at
infinity which acts as an infinite maximum (m∞) and therefore is an element of
C3,O .

We are now equipped with a well-defined structure over the set C2 ∪ C3 which
leads to a natural way of clustering the elements in the graph following the hierar-
chical nature of the stable manifolds. We employ the following three rules to perform
the clustering. The rules are applied only on the subsets C2,O, C2,S and C3,O\{m∞}.

• Rule 1: Two index 2 saddles ci, cj ∈ C2,O are in the same cluster if there is a
blue edge between them.

• Rule 2: Two maxima mi, mj ∈ C3,O \ {m∞} are in the same cluster if there
is a common index 2 saddle ck which is connected to both mi and mj via green
edge.

• Rule 3: Two index 2 saddles ci, cj ∈ C2,S are clustered together if they each
have a green edge to possibly two different maxima mi, mj ∈ C3,O where both
mi, mj are in the same cluster by Rule 2.

3.3 Detection of Tunnels and Pockets

These three rules produce a clustering of the set C2,O ∪ C2,S ∪ C3,O \ {m∞}. Every
cluster is then examined more closely in order to bring out finer invariant features.
The index 2 saddles falling in a single cluster can again be of three types as enu-
merated below.

• Type A: If the stable manifold of an index 2 saddle point is at the boundary of
two finite maxima, both from the set C3,O.

• Type B: If the stable manifold of an index 2 saddle point is incident upon m∞

and a single finite maximum from the set C3,O.
• Type C: If the stable manifold of an index 2 saddle point is at the boundary of

no finite maximum.

The index 2 saddles of type B or type C whose stable manifolds share a common
boundary are collected together to form sub-clusters. The combined stable manifold
of each such sub-cluster gives a polygonal patch, called mouth.

The number of mouths helps detect the following topological features.

• 0 Mouth indicates that the cluster belongs to a void.
• 1 Mouth indicates that the cluster belongs to a pocket.
• k ≥ 2 Mouths indicate the cluster belongs to a tunnel. We call it a k-mouthed

tunnel.

We use the algorithms described in [21] for computation of the stable manifolds
of index 2 saddles. In order to have a computational description of the detected fea-
tures, we also compute the stable manifolds of the maxima falling into every cluster
using the algorithm described in [16]. This produces a tetrahedral decomposition of
the features captured. Figure 3 illustrates this process.
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3.4 Ranking and Selective Removal of Tunnels and Pockets

The tetrahedral solids describing the pockets and tunnels provide a nice handle to
those features and using these handles, the features can be ranked. We primarily
use the geometric attributes of the features in order to rank them. Such attributes
include, but are not limited to, the combined volume of the tetrahedra and the area
of the mouths. The pockets and tunnels are then sorted in order of their increasing
geometrically measured importance.

Removal of insignificant features are also made easy because of the volumetric
description of the features. As dictated by the applications, a cut-off is set below
which the features are considered noise. We remove the topological noise by marking
the outside tetrahedra as inside and updating the surface triangles.

4 Results

We show the results of our algorithm on two volumetric data. The top row in Figure
4 shows the electron density volume of Rieske Iron-Sulfur Protein (Protein Data
Bank Id: 1RIE). The volume rendering using VolRover [13] is shown in the leftmost
subfigure. The tool additionally supports the visualization and isosurface selection
using CT. The other subfigures show the selected interface and the detected tunnels
and pockets. Note, the mouth of the tunnel is drawn in red and the mouth of the
pocket is drawn in purple. The rest of the tunnel surface is drawn in yellow while
the pocket surface is drawn in green. The blue patches in the rightmost subfigure
shows the filling of the smaller tunnels and pockets. The second row shows the re-
sults on the three dimensional scalar volume representing the electron density of
the reconstructed image of the chaperonin GroEL from a set of two dimensional
electron micrographs. The resolution is 8Å. Using VolRover, a suitable level set is
chosen. Note the CT is very noisy and has many branches, because of which it is
not possible to extract a single-component isosurface. Nevertheless only one com-
ponent is vital and the rest of them are merely artifacts caused by noise. The main
component along with the detected tunnel is shown next. The result is particularly
useful in visualizing the symmetric structure of the chaperonin as depicted in the
symmetric set of mouths. In addition to detecting the principal topological feature,
the algorithm detects few small tunnels and pockets which are shown separately for
visual clarity (rightmost subfigure) and these are removed subsequently as part of
the topological noise removal process.

We must also mention that, the presented approach for curation can also be ap-
plied to the modeling of smaller subunits of macromolecular complex, like viruses. In
such cases, the complex is first segmented from into its building blocks [33] and they
are structurally analyzed either via image processing [34] or via geometry process-
ing [2]. A comprehensive survey on available computational approaches for modeling
biological entities from electron density maps can be found in [3].

5 Conclusion

In this paper, we have presented an algorithm which, given an isosurface extracted
from a scalar volume, captures the topological and geometric characteristics of the
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isosurface and allows for the selective removal of unwanted features. The strength
of the algorithm lies in its ability to connect the topology of the level set with the
critical point structure of the distance function induced by the level set.
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Appendix: Figures and Captions

(a.1)

(a.2)

(a.3)

(a.4)

(b.1) (b.2)

(b.3)

(c.1) (c.2) (c.3)

Fig. 1. Three examples of molecular surface selection are shown. (a.1-4) shows the
selection of Gramicidin A that preserves the ion channel. (b.1-3) shows the selection
of molecular surface for mouse Acetylcholinesterase (mAchE) where the pocket near
the active site for binding Acetylcholine is preserved. (c.1-3) shows the selection of
isosurface of the viral capsid of Nodavirus that brings out the inherent symmetry.
In all three examples, we show how our algorithm for detecting and evaluating
topological features aids the proper isosurface selection.

(a) (b) (c) (d)

index 1 saddle

Fig. 2. The relative position of Voronoi and their dual Delaunay objects that results
in the generation of critical points.
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(b) (c)(a)

Fig. 3. An illustration of our tunnel and pocket detection algorithm. An imaginary
molecular surface is shown with a 3-mouth tunnel and a single pocket. (a) Critical
points of hP are detected. Blue points are index 2 saddles and brown points are
maxima. (b) A point at infinity is added and critical points are clustered based on
adjacency of stable manifolds. (c) Based on the saddle points incident on infinity,
we detect and classify the tunnel (yellow with red mouths) and pocket (green with
purple mouth).

Contour TreeIsocontour Selection

Fig. 4. Results: Top row shows the interface selection for Rieske Iron-sulfur Pro-
tein molecule (PDB ID: 1RIE) from a blurred density map. Bottom row shows the
isosurface selection for the chaperonin GroEL from cryo-EM density map.


