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Abstract. Functional magnetic resonance imaging (fMRI) has become an 
exceedingly popular technique for studies of human brain activity. Typically, 
fMRI is performed with >3-mm sampling, so that the imaging data can be 
regarded as two-dimensional samples that roughly average through the typically 
1.5—4-mm thickness of cerebral cortex. The use of higher spatial resolutions, 
<1.5-mm sampling, complicates the use of fMRI, as one must now consider 
activity variations within the depth of the brain. We present a set of surface-
based methods to exploit the use of high-resolution fMRI for depth analysis. 
These methods utilize white-matter segmentations coupled with deformable-
surface algorithms to create a smooth surface representation at the gray-white 
interface. These surfaces provide vertex positions and surface normals, vector 
references for depth calculations. That information enables averaging schemes 
that can increase contrast-to-noise ratio, as well as permitting the direct analysis 
of depth profiles of functional activity in the human brain. 
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1   Introduction 

The human brain is a complex structure that exhibits neural activity on multiple 
spatial scales. The majority of human brain imaging research focuses on the laminated 
structure of the cerebral cortex gray matter. Cortical gray matter has a stereotypical 6-
layer laminar structure that forms a sheet of tissue 1.5—4-mm thick upon the white 
matter [2, 4, 11]. The spatial structure of neural activity within cortex can be inferred 
from its hemodynamic correlates using functional magnetic resonance imaging 
(fMRI) with blood oxygen-level dependent contrast [10]. High-resolution fMRI can 
also be used to probe other laminated brain structures such as the superior colliculus 
and lateral geniculate nucleus [13, 14]. 

At standard spatial sampling, e.g., 3-mm, activity within cortical gray matter is not 
resolved. Moreover, these resolutions engender blurring of activity across sulcal 
boundaries. Because the convoluted shape of the brain brings regions with highly 
disparate functions into close proximity within the sulci, this kind of blurring can 



greatly diminish spatial localization. High resolution is also advantageous because it 
reduces contamination of cortical activity with noisy and mislocalized activity 
produced in superficial vascular regions adjacent to cortex. Thus high-resolution 
fMRI can enhance localization and signal quality for reasons that go beyond the 
measure of smaller sampling intervals. 

In MRI, thermal signal-to-noise ratio varies linearly with voxel volume, so that 
high-resolution imaging must typically operate in a higher-noise regime for individual 
images. For example, a typical single T2

*-weighted functional image with 3-mm 
sampling will typically have a signal-to-noise ratio (SNR) ~ 250 on a 3T MRI 
scanner, while at 1-mm-sampling the same image would yield an SNR < 10. 
Although there are a variety of methods available to improve the SNR, some measure 
of appropriate spatial averaging is generally essential.  

To deal with these issues, our high-resolution methods generally seek to 
reconstruct the sampled signals into a very high-resolution (0.6- or 0.7-mm sampling) 
co-aligned reference anatomy that is segmented to precisely delineate the location of 
the active brain tissue (e.g., cortical gray matter). Analysis can then be restricted only 
to those spatial regions within cortex where we expect the best localization and signal 
quality. A smooth surface is constructed at the inner boundary of the gray matter, 
where it meets the white matter. The vector reference provided by this surface can 
then be utilized in two ways: depth averaging to improve the quality of high-
resolution surface topography measurements, and to resolve depth variations of 
cortical activity within a particular portion of the brain. 

We illustrate our methods in two portions of the brain: superior colliculus (SC), a 
small structure in the brainstem with critical functions in eye movements and 
orientation of attention, and in early visual cortex, the part of cerebral cortex most 
immediately involved in vision. 
 

2   Methods 

2.1   High-resolution structural imaging, segmentation, and surface generation 

Imaging was performed on human subjects using a 3-Tesla scanner (General Electric 
Signa Excite HD) using the product 8-channel head coil. Informed consent was 
obtained from all subjects based on a protocol approved by the appropriate 
Institutional Review Board. They were acquired using a three-dimensional (3D), 
inversion-prepared, radiofrequency-spoiled GRASS (SPGR) sequence (minimum TE 
and TR, inversion time = 450 ms, 15° flip angle, 2 excitations, ~28-min duration). 
MRI parameters were chosen so that the structural reference volumes were T1-
weighted with excellent gray-white contrast. We used an isometric voxel size of 0.6 
or 0.7 mm so that the reference volumes would precisely delineate brain tissue 
boundaries. 



Because all structural image volumes were obtained using surface coil arrays, they 
exhibited substantial spatial inhomogeneity on several scales. Therefore, volumes 
were preprocessed using a custom-made software application written in Matlab 
(MathWorks, Natick, MA). An expert user scanned through the image volume, using 
a graphical user interface to identify a number of points in the white matter near the 
gray-white interface on each slice. Intensity values in white matter were then 
averaged in a 3×3×3 neighborhood around each point, and these irregularly spaced 
samples were gridded onto a regular array. Points outside the hull of sampled points 
were filled in using nearest-neighbor extrapolation. Estimates of noise were also 
obtained at the sampled points, and this was combined with the interpolated white-
matter intensities to create a robust normalization mask that was applied to the brain 
volume. We then utilized the Brain Extraction Tool (BET) provided in the FSL 
package [15] to remove superficial non-brain tissue from the volume. 

 In SC, we segmented the tissue of the midbrain, brainstem, and portions of the 
thalamus using a combination of automatic and manual methods provided by the ITK-
SNAP application [17]. Because the superficial surface of SC exhibits a strong 
contrast boundary with the surrounding cerebrospinal fluid (CSF), this segmentation 
was straightforward. 

Segmentation of visual-cortex white matter was considerably more difficult. We 
began by applying the FAST tool in FSL to provide an approximate segmentation 
[15]. However, some regions exhibited residual inhomogeneity and/or low gray-white 
contrast-to-noise ratio, and therefore were not accurately segmented. For these 
regions extensive manual adjustment was necessary to achieve a satisfactory result. 

The CSF-tissue interface of the SC and the gray-white interface in visual cortex 
were interpolated from the corresponding segmentation using isodensity surface 
rendering. This initial surface was corrupted by aliasing artifacts. To obtain a 

Table: neuroimaging nomenclature used in this article. 



smoother representation of the surface and more accurate calculation of its associated 
surface normal vectors, we used a deformable-surface smoothing algorithm [1, 16].  
The deformable surface is based on a curvature-driven geometric evolution, which 
yields a family of smooth closed immersed orientable surfaces, {M(t): t ≥ 0} in ℜ3, 
according to the solution of the geometric flow, 

� 

∂p
∂t

= N p( )Vn k1,k2, p( )  (1) 

with M0 = M(0) defining the initial surface. Here p(t) is a surface point on the M(t), 
Vn(k1, k2, p) denotes the normal velocity of M(t) based on the principal curvatures, k1,2 
of M(t), and N(p) is the unit normal of M(t) at p(t).  

There are basically two classes of solution approaches for spatial discretization of 
geometric flow equations (1). One approach is based on the use of finite elements 
(e.g., [1]) and the other on use of finite differences (e.g., [16]). The spatial 
discretization approach we adopt here is based on finite divided differences obtained 
by use of discretized differential operators (such as the Laplace-Beltrami) over 
simplicial (triangulated) surfaces [3]. Discretization for higher order differential 
operators is defined recursively from the discrete Laplace-Beltrami (see [16] for 
details). The time discretization of the flow equation (1) is achieved by use of a semi-
implicit Euler scheme. Finally, the resulting sparse linear system is solved using an 
iterative Krylov subspace solver, such as GMRES [12].  

In SC, satisfactory results required three 
iterations of the algorithm; cortex required 6 
iterations. We evaluated the accuracy of the 
refined surfaces by calculating nearest-
neighbor distances between their vertices and 
the vertices of the original surfaces; mean 
distances were typically <0.3 voxel units, and 
rarely >0.7 voxels (Fig. 1). These surfaces 
provided a means to visualize the functional 
data, as well as vertices and normal vectors 
used as a reference for the laminar calculations 
described below. We also approximated the 
Gaussian curvature of the surface at each 
vertex as: 

� 

C = R
R + A 4

 (2) 

where R is the signed distance between each vertex and the best-fit plane containing  
its connected neighbors, and A is the area of all the triangles featuring that vertex. We 
used this metric as an intensity overlay on our surfaces: positive curvature marking 
protruding features (e.g., cortical gyri) appear at a light intensity and negative 
curvature marking intrusive features (e.g., cortical sulci) appear as a dark intensity. 
This binary curvature overlay improves the 3D perception of the surface, and also 
provides a useful indicator of aliasing artifacts.  
 

Fig. 1: vertex errors introduced by the 
mesh refinement procedure. 



2.2   Functional MRI 

We illustrate our methods with functional image sets obtained in two brain regions: 
SC and early visual cortex. In SC, we again used the product head coil array to obtain 
time series of images on eight 1.2-mm-thick quasi-axial slices (170-mm field-of-view 
[FOV]) with the prescription oriented roughly perpendicular to the local neuraxis. In 
visual cortex we used a custom-made 7-channel surface coil array packaged in a 
flexible former so that it could be closely positioned against the subject’s head. This 
array produces images with an SNR advantage of 2—4 over the product coil, 
depending upon depth. By choosing a tangential, quasi-coronal orientation at the back 
of the head, we could limit our FOV to 90—100 mm. Use of the surface coil and 
smaller FOV enabled imaging with 0.7 or 0.8-mm sampling. We obtained 8—12 such 
slices oriented approximately perpendicular to the calcarine sulcus 

 

Fig. 2. Visual stimulus configurations: A) rotating wedge of moving dots to map polar angle 
visual-field variation in SC; B) alternating annuli to stimulate portions of early visual cortex. 

The SC experiments used travelling-wave techniques to map its retinotopic 
coordinate representation of the visual field. Stimulus was a 90° wedge of moving 
dots that rotated slowly (24-s period) around a fixation mark (Fig. 2A). The entire 
stimulus rotated 9.5 times around fixation with a period of 24 seconds while subjects 
maintained fixation. Many MRI runs (14—18) were obtained using this stimulus 
presentation in each 2-hour-long scanning session. 

The visual cortex experiments used a stimulus designed to activate substantial 
portions of posterior early visual cortex. Subjects viewed a high-contrast grating 
within an annular mask (Fig. 2B) that alternated (18-s period) in position from small 
eccentricity (0.5—1.25°) to larger eccentricity (1.5—2.5°). This alternation was 
repeated 10.5 times to create ~3-min duration runs. Typically 8—12 runs were 
collected for each scanning session. 

Functional images were acquired during the stimulus presentations. For excitation, 
we utilized a 6.4-ms windowed-sinc pulse to provide sharp slice-select resolution. For 
acquisition, we used a three-shot outward-spiral trajectory [5, 6] in all imaging. In SC, 
echo time was 40 ms, while in cortex we used 30 ms because we measured a 
correspondingly longer T2

* in SC tissue (~60 ms) than typically observed in cortical 
gray matter (~45 ms). Acquisition bandwidth was limited to 60 kHz to reduce peak 



gradient current that causes unwanted heating on our scanner. We chose TR = 1 s, so 
that a volume was acquired every 3 s. 

The multiple shots were combined together after correction by subtracting the 
initial value and linear trend of the phase. Image reconstruction was done by gridding 
with a Kaiser-Bessel kernel using 2:1 oversampling. TE was incremented by 2-ms on 
the first frame to estimate a field map from the first two volumes acquired, and this 
map was used for linear correction of off-resonance image artifacts [7]. Concomitant 
field effects arising during the readout gradients were corrected with a time varying 
phase [5]. Reconstructed images had a SNR of ~20 in both experiments. 

In all imaging experiments, a set of T1-weighted structural images was obtained on 
the same prescription as the functional data at the end of the session using a 3D SPGR 
sequence (15° flip angle, 0.7-mm pixels). These images were used to align the 
functional data to the segmented structural reference volume.  

We estimated in-scan motion using a robust scheme [9] applied to a boxcar-
smoothed (3—5 temporal frames) version of the fMRI time-series data. Between-scan 
motion was corrected using the same intensity-based scheme, this time applied to the 
temporal average intensity of the entire scan. The first scan of the session was used as 
the reference. After motion correction, the many runs recorded during each session 
were averaged together to improve SNR. 

The intensity of the averaged data was spatially normalized to reduce the effects of 
coil inhomogeneity. The normalization used a homomorphic method, that is, dividing 
by a low-pass filtered version of the temporally averaged volume image intensities 
with an additive robust correction for estimated noise. A sinusoid at the stimulus 
repetition frequency was then fit to the normalized time series at each voxel, and from 
this fit we derived volume maps of response amplitude, coherence, and phase. The 
coherence value is equivalent to the correlation coefficient of the time-series data with 
its best-fit sinusoid. Functional data were then aligned and resampled to the reference 
volume [9]. 

2.3 Laminar analysis 

A distance map was calculated between the tissue voxels and the vertices of the 
associated surface.  We used these distances to measure laminar position (i.e., depth, 
s) in the reference volume. Thus, the functional data (e.g., complex amplitudes) at 
each volume voxel were now associated with a depth coordinate.  

These associations were used to calculate laminar profiles of functional activity 
within small disk-shaped regions (1.6—2.4-mm-diam) regions across the surface of 
the activated portion of the brain. Within these regions, we obtained the complex 
amplitude as a function of depth for all runs averaged together [11]. A boxcar-
smoothing kernel was convolved with the average complex amplitude data as a 
function of depth; the magnitude of this convolution was the laminar profile. 

For each profile, we define the functional thickness, sf, from spatial moments of 
the laminar amplitude profile, A(s): 

 (3)  



 (4)  

 (5)  

where smin and smax are the boundaries of the laminar segmentation. Typically, we 
chose an interval of [−2, 5] mm. Note that the subtraction of the depth centroid, , 
makes sf less sensitive to alignment errors. Thus, we associate the functional thickness 
with every vertex on the surface, enabling the display of functional thickness as a 
colormap overlay on the rendered surface. 

For the SC data, we also used the laminar segmentation process to enable depth 
averaging that improves the quality of data. For each point on the surface, the 
associated disk-shaped segmentation was used to average the complex amplitude data 
over a particular depth range. As part of our mapping process, we generally extracted 
the phase values from the mean complex amplitudes, and displayed these at the 
corresponding vertex of the surface. Coherence values were specified as the 
maximum value over the depth range. 

3   Results 

3.1   High-resolution structural imaging, segmentation, and surface generation 

We present two examples of the high-resolution MRI data. In SC, the images clearly 
delineate the strong contrast boundary at its superficial dorsal surface. The 
segmentation, which includes nearby portions of midbrain, thalamus, and brainstem, 
is shown by a blue overlay (Fig. 3A). The boundary of this segmentation was 
rendered as a surface, upon which a binary curvature map is overlaid, with a light  

 



Fig. 3. Human superior colliculus: A) segmentation, including adjacent midbrain, thalamus, 
and brainstem structures; B) initial surface; C) refined surface. 

shade indicating positive curvature, and a dark shade indicates negative curvature. 
The fine-scale structure evident in the curvature map is caused by aliasing artifacts in 
the initial surface (Fig. 3B). After application of the deformable surface algorithm 
[16], the high spatial frequency curvature artifacts largely disappear, leaving only the 
actual gross features of the anatomy (Fig. 3C).  

 

Fig. 4.  Human cerebral cortex: A) segmentation; B) initial surface; C) refined surface. 

For visual cortex, we segment the entirety of the cerebral hemispheres, but pay 
particular attention to manual adjustment of the initial segmentation in the occipital 
lobe (Fig. 4A). The initial isodensity surface once again shows extensive aliasing 
artifacts, visible as the fine stipple in the curvature overlay (Fig. 4B), that are again 
greatly reduced by application of the deformable surface algorithm [16] (Fig. 4C). 
 

3.2   Functional MRI 

For the SC visual field mapping experiments, we are principally interested in the 
phase of the sinusoidal fits. Typical data from one inplane slice, thresholded at a 
coherence of 0.3, is shown as a color overlay upon their corresponding inplane 
anatomy images in Fig. 5. The color wheel shows how the phase angle is related to 
visual field angle. Note the phase progression across the superficial surface of the SC, 
as well as in posterior visual cortex. This data is then transformed into the reference 
volume for that subject, so that it can be mapped onto the associated surface 
representations. The visual cortex data, where we are interested in the complex 
sinusoidal fit amplitudes, are similarly transformed from the inplane coordinates into 
the reference volume for that subject. 



 

Fig. 5. Functional MRI phase data as color overlay on inplane structural MRI (left) and 
transformed into reference volume (right). Color wheel shows relationship to visual field angle. 

3.3 Laminar analysis 

The SC data was analyzed in two ways. First we performed the disk-like 
segmentation described above, averaged the complex amplitudes through a depth 
range of 0—1.8 mm, and then extracted the phase. This procedures produces high-
quality visual field maps (Fig. 6A), despite fairly low response magnitudes (~0.3% 
modulation with respect to the mean intensities). Phase maps prepared without the 
laminar segmentation and depth averaging are much noisier, as can be quantified by 
calculating session-to-session correlations. We also used our depth-mapping 
techniques to form laminar profiles of the SC activity in three regions-of-interest 
(ROIs) that span the surface of the SC from lateral to medial (Fig. 6B). These profiles 
show that activity is evident principally in the superficial 2 mm of the SC tissue, 
which is known to correspond a preponderance of visually responsive neurons. The 
data also show significantly thinner profiles for the medial ROI than for the lateral 
and central ROIs, which is consistent with the known anatomy of human SC. 

The visual cortex data was analyzed to calculate the functional thickness metric, 
which was visualized as a color overlay upon surface renderings of the posterior 
portions of the left hemisphere of a brain (Fig. 7A). This data can then be compared to 
structural measurements of the actual gray-matter thickness visualized in the same 
fashion (Fig. 7B).  The functional and structural thickness data are strongly and 
significantly correlated. Both show the characteristic pattern of gray matter thickness: 
thicker on crowns of the gyri and thinner in depths of the sulci. 



 

Fig. 6. Analyzed data from human SC: A) Visual field maps on the surface of the SC, with 
quality enhanced by depth averaging. Boundaries of SC are indicated by the black outline. B) 
profiles of SC activity as a function of depth within the tissue for three ROIs (lateral: solid, 
central: long dashes, medial: short dashes). Inset shows the locations of the depth-profile 
ROIs: lateral, central and medial (left to right). 

 

Fig. 7. Data from human visual cortex: A) functional thickness; B) structural thickness. 

4   Discussion 

We have presented a set of surface-based methods for the analysis of high-resolution 
fMRI data. The analysis requires the acquisition of a high-resolution structural 
volume that is segmented to obtain a relevant tissue interface. This interface, in turn, 
is used for the generation of smooth surface that provides a geometric reference, in 



the form of vertices and surface. We make use of this geometry by transforming fMRI 
data into the reference volume. Specifically, we can construct depth profiles of the 
functional activity, or average the data along the surface to improve signal quality and 
enhance our visualization capabilities.  

These procedures can essentially be viewed as a solution to a classic digital 
reconstruction problem: converting data sampled in one coordinate system to another. 
Specifically, here we take regularly sampled MRI data, and resample them into the 
natural coordinates of the segmented tissue boundary. This procedure is particularly 
useful for fMRI data, which can be subject to artifacts and mislocalization associated 
with superficial vascular artifacts [8, 11]. The surface based methods become 
particularly attractive at high spatial resolution, where the Cartesian-space sampled 
data begin to resolve brain function in 3D, including both the transverse extent of the 
brain surface as well as its laminar depth. 
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