
Computational Inversion of Electron Tomography Images

Using L2-Gradient Flows ∗

Guoliang Xu 1)† Ming Li 1) Ajay Gopinath 2) Chandrajit Bajaj 2)

1) State Key Laboratory of Scientific and Engineering Computing
Institute of Computational Mathematics, Academy of Mathematics and
System Sciences, Chinese Academy of Sciences, Beijing 100190, China

2)Department of Computer Sciences and Institute of Computational
Engineering & Sciences, University of Texas at Austin, Austin TX 78712

Abstract

In this paper, we present a stable, reliable and robust method for reconstructing a three
dimensional density function from a set of two dimensional electric tomographic images. By
minimizing an energy functional consisting of a fidelity term and a regularization term, an
L2-gradient flow is derived. The flow is integrated by a finite element method in the spatial
direction and an explicit Euler scheme in temporal direction. The experimental results show
that the proposed method is efficient and effective.

Key words: Computational Inversion, Reconstruction, Electric Tomography.
MR (2000) Classification: 65D17

1 Introduction

Electron microscopy (EM) is a preferred tool for structural biologists to visualize three-dimensional
structures of molecular and cellular complexes in-vitro. Electron tomography (ET) involves
acquiring planar EM images of the biological sample from different projection angles and re-
constructing a 3D image from these projections. The forward operation assumes the Born
approximation of electron beam-specimen interaction. This holds true only when the specimen
is weakly scattering. The scattering function depends on the electrostatic properties of the spec-
imen. Images also suffer from effects of blurring owing to specimen deformation during exposure
to the electron beam. Another challenge is that the angle of rotation cannot exceed ±70◦(from
the horizontal plane) since the beam length becomes high at larger tilt angles as it passes along
the plane of the sample which results in poor images. Hence projections are available only for a

∗Supported in part by NSFC under the grant 60773165, NSFC key project under the grant 10990013.
†Corresponding author.

E-mail address: xuguo@lsec.cc.ac.cn

1

limited number of tilt angles, which is known as the missing wedge problem. Since there is no
unique solution to the inverse reconstruction problem it makes image processing and visualiza-
tion of ET data a huge challenge. Typically, acquisition and reconstruction processes contribute
largely to the error in modeling biological specimens from EM images.

In this paper, we propose an iterative reconstruction method. By minimizing an energy
functional consisting of a fidelity term and a regularization term, an L2-gradient flow is derived.
The flow is integrated by a finite element method in the spatial direction and an explicit Euler
scheme in temporal direction. The experimental results show that the proposed method is
stable, reliable and robust. By stable, we mean the reconstruction result does not depend on
the initialization of the iterative scheme and hence the reconstruction result is unique. By
reliable, we mean the reconstruction result is correct. Meaning the projected images of the
reconstructed function are as close to the given images as possible. The robustness implies that
the reconstruction process is not sensitive to the noise in the 2D images.

Our results are demonstrated on a phantom data as well as tomographic images of the AIDS
virus complex, specifically the Simian Immunodeficiency Virus (SIV) which is similar to the
HIV. Liu, et al. [11] describe the structure of the HIV virus and the action of the spike protein
in infecting the host. Prior work in segmenting the SIV/HIV complex [3] and building a model
of the spike have relied on a single reconstruction technique. The phantom data is shell, a sphere
surface with nonzero thickness.

The rest of these paper is organized as follows. In Section 2, we review the existing recon-
struction techniques. In Section 4, some basic setting is defined including image size, B-spline
basis function grid and volume grid are described. Section 5 and section 6 explain our algo-
rithms in details. Section 7 give some illustrative examples. In the end, we conclude this paper
in section 8. Some necessary materials for this paper are introduced in the Appendix.

2 A Review of Existing ET Reconstruction Techniques

Reconstruction methods try to solve the following system of equations that describe the projec-
tion process also called the forward problem,

Iθ =
N

∑

n=1

wθnfn (2.1)

where Iθ is a 2D projection image at angle θ through the space of unknown voxels fn ∈ R
3 : n <

N where N = I ∗ J ∗K and I, J,K are dimensions of 3D image. wnθ is a set of basis or weights
that describe the contribution of each voxel to a particular projection. Given Iθ, the measured
data and wθn, the projection matrix (forward operator), the goal or the reverse problem is to
estimate fn. Kak et al. [9] assume each ray to have a thickness and the weight w for a voxel
is the area of the voxel that is intersected by this ray. Matej et al. [12] use blobs to define the
basis, they center a set of overlapping blobs as a Body Centered Cube in the R

3 reconstruction
space. wnθ would be the line integral of the overlapping blobs for voxel n at angle θ.

2

The popular iterative approach to solve the reverse problem is to use the Kaczmarz method
[9] for solving the set of forward projection equations. In this technique each tomogram image
Iθ is treated like a hyperplane with the equation wθf in an N dimensional space. A solution to
the entire equation system for all tomograms I is a point in the N dimensional space where all
the hyperplanes intersect. To solve for this solution using an iterative method, the algorithm
starts off with a random solution (typically zero). This initial solution is then projected onto
the first hyperplane. The projected point on the first hyperplane is then projected onto the next
hyperplane and so on for all the images Iθ. The iterative process will converge to the point of
intersection of all the hyperplanes [9]. If there is no unique solution which is typically the case,
then the iterative scheme will not converge and will oscillate. To work around this problem a
regularizing term λ is used in the update equation [4].

f (θ+1) = f (θ) − λ
wθ+1.f

(θ) − Iθ+1

||wθ+1||2
wθ+1. (2.2)

The general update equation for a nth pixel element at ith iteration is given by the correction

value ∆f
(i)
n

∆f (i)
n = f (i)

n − f (i−1)
n =

Ii − qi
||wi||2

win. (2.3)

The i − 1 solution is projected on the i hyperplane and corrects the value of the nth pixel by
∆f i

j and qi = wif
(i−1).

2.1 Algebraic Reconstruction Technique(ART)

In this technique the update of f θ+1 with ∆f occurs at each iteration. Every projection ray will
update the entire estimate of the solution for f . Some variants of this technique assume all the
weights w to be 1’s [9], which speeds up the iteration process however results in errors. If the
weights are assumed to be 1’s then

∑N
n=1 n

2
nθ = Nθ where Nθ is the number of image cells that

a ray at the projection angle θ pass through. The update reduces to:

∆f θ+1
j =

Iθ − qθ
Nθ

. (2.4)

The advantages of this technique is faster convergence since the solution is obtained within a
single pass through all the projections. The disadvantage is that noisy measurements they can
alter the solution by updating f with a value that will take it away from the true solution.

2.2 Simultaneous Iterative Reconstruction Technique(SIRT)

In this technique, voxels are updated after completely iterating through all the projections.
The update for the jth pixel caused by the ith equation is not applied immediately. Instead the
update for jth pixel is averaged over the updates for that pixel from all the equations (projection

3

rays), making it less prone to noise. This constitutes one iteration and is repeated over several
iterations each time the update is done at the end of that iteration.

∆f iteration
j =

N
∑

i=1

∆f i
j

N
, (2.5)

where ∆f i
j which is the correction for the jth voxel at the ith projection is calculated for all

projections and the averaged value is used as the update for the jth voxel. This process is
performed for N iterations.

2.3 Weighted Back Projection(WBP)

In this technique, the projection data is weighted in Fourier space giving more weight to higher
frequencies and inverted using back-projection into the spatial domain. The weighting step is
equivalent to a high pass filter since it highlights the edges and removes blurring resulting in
better contrast in the reconstruction. Herman [8] describes the implementation details of the
back-projection operator and Radermacher [14] provides details of the general weighting function
for arbitrary tilt geometry. Let Ĩθ be the 2D Fourier transform of the 2D projection image Iθ at
tilt angle θ. A weighting function is used to weight the higher frequencies of Ĩθ and this weighted
Fourier transform is inverted and back-projected. Iweighted

θ = F−1
2D (|weight|Ĩθ)

f(x, y, z) =
∑

θ

Iweighted
θ (x cos(θ) + y sin(θ), z) (2.6)

According to the Fourier slice theorem, used by Crowther [5] in a seminal paper on tomography,
the 2D Fourier transform of the projection of a 3D function I onto a plane is equal to a slice
through the origin of the 3D Fourier transform of that function I parallel to the projection plane.
Due to the radial nature of the Fourier space, at higher frequencies the sampling is much smaller
than at lower frequencies. To offset this, a weighting function is used which gives more weight to
the higher frequencies than the lower frequencies. Further discussion and mathematical details
on iterative and Fourier based methods is available in [13].

2.4 Classical regularization methods

Typical classical regularization involves using a Total Variation (TV) or a norm based regularizer
[7]. Herman and Davidi [7] use a modified ART based method incorporating either a TV or a
2-norm based regularizer.

||f ||TV =
N−2
∑

i,j,k

√

(f(i+ 1, j, k) − f(i, j, k))2 + (f(i, j + 1, k) − f(i, j, k))2 + (f(i, j, k + 1) − f(i, j, k))2

(2.7)

4

||f ||2 =

√

∑

i,j,k

f(i, j, k)2 (2.8)

At each iteration (block ART), the TV or 2-norm based regularizer is evaluated and the
iterations are stopped when the regularizer is less than a predetermined value. Lei et al. [10]
use a Tikhonov based regularizer in a Newton’s method scheme to perform reconstruction. The
Tikhonov regularizer is used in the first update iteration and subsequent iterations are calculated
using Newton’s method.

f(0) = (HTH + αI)−1HT g

f(k+1) = f(k) − [∇2f(k)]
−1∇f(k) Newton

′s Method

3 Software packages for tilt series alignment and tomographic

reconstruction

Name of Package Alignment Method Reconstruction Platforms
Algorithms

TomoJ Fiducials and SIRT, ART, WBP Plugin to ImageJ
Cross correlation

XMIPP Landmark based SIRT, ART, WBP Linux, command line

IMOD Cross correlation WBP Mac and linux

Tom Toolbox Fiducials and WBP Matlab
Cross correlation

EM3D Tracking and Cross correlation WBP Mac and linux

Table 3.1: The above table shows some of the popular open source software packages and the
algorithms they use for preprocessing and reconstruction.

4 Problem Setting

Let {gd} be a set of the two-dimensional images measured from an unknown three-dimensional
function (electric-potential) f by the projection Xd in the direction d ∈ D ⊂ S2, here S2 stands
for the unit sphere in R

3, D is the collection of all the projection directions. Our problem is to
construct f(x), x = [x, y, z]T ∈ Ω ⊂ R

3, such that Xdf is as close to gd as possible and satisfies
the boundary condition f(x) = 0 for any x ∈ ∂Ω.

We assume that all the measured images have the same size (n+1)×(n+1), the pixel values

gd of each image are defined on integer grid points (i, j)T ∈
[

−n
2 ,

n
2

]2
(we assume n is an even

5

number). A resampling step can be taken if these assumptions are not satisfied. Since gd are
the projection of f , we therefore define Ω as

Ω =
[

−n
2
− 1,

n

2
+ 1

]2
×

[

−τ
2
− 1,

τ

2
+ 1

]

,

where τ/n is a small number since the sample to be reconstructed is thin. τ + 2 is the thickness
of the Ω. Again, we assume τ is an even integer. Setting one layer offset in Ω is for having room
to satisfy the zero boundary condition.

For a given d ∈ D. The image values of gd at the grid points are defined as

gd(i, j) =

∫ ∞

−∞
f(ie

(1)
d

+ je
(2)
d

+ td) dt, (i, j)T ∈
[

−n
2
,
n

2

]2

for the unknown function f , where e
(1)
d

and e
(2)
d

are two directions satisfying

‖e(1)
d

‖ = ‖e(2)
d

‖ = 1, , 〈e(1)
d
, e

(2)
d

〉 = 0, 〈e(1)
d
,d〉 = 0, 〈e(2)

d
,d〉 = 0. (4.1)

e
(1)
d

and e
(2)
d

also determine the in-plane rotation.
Given an even and positive integer m = 2(l + 2), let

h =
n+ 2

m
, t =

τ + 2

2h
− 2.

For simplicity, we require h and t are integers. The following two cases are the ones we often
use:

1. Take m = n+ 2, then h = 1, l = n
2 − 1, t = τ

2 − 1.

2. Take m = n+2
2 , then h = 2, l = n+2

4 − 2, t = τ+2
4 − 2.

Using spacing h, the domain Ω can be uniformly partitioned with grid point (i, j, k)h for
(i, j, k) ∈ [−l − 2, l + 2]2 × [−t− 2, t+ 2]. The function f to be reconstructed is represented as

f(x) =

l
∑

i=−l

l
∑

j=−l

t
∑

k=−t

fijkNi(x)Nj(y)Nk(z), x = (x, y, z)T ∈ Ω, (4.2)

where Nα are one dimensional cubic B-spline basis functions (see Appendix A) defined on the
uniform grid [−2h+ αh,−h+ αh, · · · , 2h+ αh].

5 Reconstruction of f

Let Γc = {x ∈ R
3 : f(x) = c} be a level-set of function f . To reconstruct function f , we

minimize the following energy functional.

J(f) = J1(f) + αJ2(f), (5.1)

6

where

J1(f) =
∑

d∈D

∫

R2

(Xdf − gd)2 dudv,

J2(f) =

∫ ∞

−∞

∫

Γc

g(x)dA dc,

and α ≥ 0 is a given number balancing the two J ′s. We first explain the roles played by J1 and
J2.

1. J1 is used to minimize the total error of the measured images and the projections of the
reconstructed function. Hence, this term is usually called the data fidelity term.

2. J2 is a regularization term that makes the iso-surface Γc smooth in certain sense, depending
on what kind g is used. From co-area formula (see [6]), we have

J2(f) =

∫

R3

g(x)‖∇f(x)‖dx,

where ∇ is the usual gradient operator acting on a three dimensional function. In this
paper, we take g(x) = 1 or g(x) = ‖∇f(x)‖. When g(x) = 1, J2 represents the total surface
area, and minimizing J2 leads to the level sets of the solution close to minimal surfaces.
When g(x) = ‖∇f(x)‖, minimizing J2 leads to f approaching a constant function.

Since the energy functional J(f) is nonlinear with respect to the unknown function f , we
use the following iterative algorithm to minimize the energy:

Algorithm 3.1 Reconstruction of f .

1. Load images gd for all d ∈ D.

2. Set k = 0, and choose an initial f (0).

3. Compute f (k+1) by minimizing J(f) by solving an L2-gradient flow.

4. Check the termination conditions, if they are satisfied, stop the iteration, otherwise set k
to be k + 1 and then go back to step 3.

5. Output f = f (k+1).

In principle, our initial f (0) can be arbitrarily chosen, including taking it to be zero. If a
rough approximation of f is available, e.g. from application of other ET reconstruction methods,
that can be used as an initial f (0). The choice of the initial f (0) can influence the overall running
time, but cannot affect the final reconstructed f . Hence our method can also be considered as
a further refinement of prior ET reconstruction schemes. The termination conditions are set as

|J(f (k+1)) − J(f (k))| < ǫ,

7

where ǫ is a chosen residual error threshold.
Obviously, the central task in the above algorithm is to minimize J(f). This goal is achieved

by solving an L2-gradient flow of J(f) in the B-spline function space. We construct the flow by
a variation of J1(f) and J2(f). Let δ(Ji(f), ψ) be the variation of Ji(f) with respect to a trial
function ψ. Then it is easy to derive that

δ(J1(f), ψ) = 2
∑

d∈D

∫

R2

(Xdf − gd)Xdψdudv.

For g(x) = 1 and g(x) = ‖∇f(x)‖, δ(J2(f), ψ) are respectively given as follows:

δ(J2(f), ψ) =

∫

R3

(∇f)T∇ψ
‖∇f‖ dx, (5.2)

and

δ(J2(f), ψ) = 2

∫

R3

(∇f)T∇ψdx. (5.3)

Using these first order variations, we construct the following weak form L2-gradient flow.
∫

R3

∂f

∂t
ψdx + δ(J1(f), ψ) + αδ(J2(f), ψ) = 0, (5.4)

for all ψ in the B-spline function space. We solve (5.4) using a numerical methods. For the
discretization in the temporal direction, we use the explicit forward Euler scheme. For the
discretization in the spatial direction, we use the finite element method in a finite element space
consisting of tri-cubic B-splines. Computational details are presented in the next section.

We choose B-splines as the finite element space for several reasons. First of all, our regu-
larizer involve partials computation. Hence smooth functions are required. Secondly, B-spline
functions have local support and a closed form Fourier transform. Finally, fast algorithms ex-
ist for transforming discrete sampled (i.e. imaging) data to B-spline representation. These
properties make our finite element computation using B-splines very efficient.

6 Computational Details

Let Ni(s) be the one-dimensional cubic B-spline basis functions defined on the 1-D uniform grid
[ih− 2h, · · · , ih+ 2h] (see Appendix for details). Then over the volume Ω, we represent f(x) as

f(x) =

l
∑

i=−l

l
∑

j=−l

t
∑

k=−t

fijkφijk(x), φijk(x) = Ni(x)Nj(y)Nk(z), x = [x, y, z]T , (6.1)

with fijk as unknown coefficients. Taking the test function ψ in (5.4) as φαβγ(x), we then obtain
a matrix form MX = B for (5.4). The elements of matrix M are in the form

∫

R3

φijk(x)φαβγ(x)dx =

∫

R

Ni(x)Nα(x)dx

∫

R

Nj(y)Nβ(y)dy

∫

R

Nk(z)Nγ(z)dz.

8

The one-dimensional integrals above can be computed by Gaussian quadrature formulas (see [1,
17]). Using the fact that the B-spline basis is locally supported, these one-dimensional integrals
can be efficiently calculated. Note that matrix M is fixed during the entire reconstruction
process. Hence, M−1 could be pre-computed. The elements of the vector B are

−[δ(J1(f), φαβγ) + δ(J2(f), φαβγ)]

that are represented as the integrations of f and basis functions and their derivatives. In the
following, we discuss how matrix M and vector B are efficiently computed.

6.1 Computation of M

Let L and T be the numbers of the utilized basis functions Ni(x) (and Nj(y)) and Nk(z),
respectively. Then the total number of tensor product basis functions φijk(x, y, z) is TL2. Hence
the number of the elements of M is T 2L4. It is very possible that the required space for
storing the matrix M is beyond the main memory capacity of the computer. To overcome
this difficulty, we orthogonalize the basis functions Ni(s) using the Schimidt orthogonalization
process, obtaining a set of new basis functions Ñi(s), such that

∫

R

Ñi(s)Ñj(s)ds = δij , i, j = −l,−l + 1, · · · , l.

Let

φ̃ijk(x) = Ñi(x)Ñj(y)Ñk(z).

Then by representing the function f using the new basis φ̃ijk and taking the test function
ψ = φ̃αβγ , we obtain a unit matrix M . Hence there is no need to store and invert the matrix.

Now we have representation (6.1) of f and the representation

f(x) =
∑

i

∑

j

∑

k

f̃ijkφ̃(x), x = [x, y, z]T . (6.2)

Since there is a lower-triangular matrix A connecting the old and the new basis,

[N1, N2, · · · , Nn]T = A[Ñ1, Ñ2, · · · , Ñn]T .

The two representations of f can be converted easily from one to the other. We take the advan-
tageous of having the above dual form representations to reduce the cost of the computation of
B.

6.2 Computation of δ(J1, ψ)

Consider the computation of the term δ(J1(f), ψ) in (5.4). Using (6.1) and taking ψ = φ̃αβγ ,
we have

δ(J1(f), φ̃αβγ) = 2
∑

d∈D

∫

R2

(Xdf − gd)Xdφ̃αβγdudv. (6.3)

9

We explain how (6.3) can be efficiently and accurately computed. The computation mainly
includes two steps:

1. Compute δ(J1(f), φαβγ) for all α, β, γ.

2. Convert the data set {δ(J1(f), φαβγ)} to the data set {δ(J1(f), φ̃αβγ)}.

Since the conversion from {δ(J1(f), φαβγ)} to {δ(J1(f), φ̃αβγ)} is straightforward, we focus
our attention on the computation of δ(J1(f), φαβγ). We compute these scalar values using
Parseval’s theorem. Let f1(t) and f2(t) be two integrable functions in the L2-sense, F1(λ) and
F2(λ) the Fourier transforms of f1(t) and f2(t), respectively. Then Parseval’s theorem yields

∫

R

f1(t)f2(t)dt =

∫

R

F̄1(λ)F2(λ)dλ,

where F̄1 stands for the complex conjugate of F1. This theorem also holds for higher dimensional
integrals. Let Φαβγ be the three dimensional Fourier transform of φαβγ . Then by Parseval’s
theorem and the central slice theorem (see Appendix), we have

δ(J1(f), φαβγ) = 2
∑

d∈D

∫

R2

(Xd(f) − gd)Xdφαβγdudv

= 2
∑

d∈D

∫

R2

F2 (Xd(f) − gd)F2(Xdφαβγ)dudv

= 2
∑

d∈D

∫

R2

(

F3(f)
∣

∣

∣

Pd

−F2(gd)

)

Φαβγ

∣

∣

∣

Pd

dudv, (6.4)

where Pd is the plane defined by {x : xTd = 0}. To speedup the computation of the double
integral in (6.4), we utilize the decay property of Φαβγ . It follows from (A.1) that

Φαβγ(ω1, ω2, ω3) = h3e−ih(αω1+βω2+γω3)
3

∏

i=1

(

sin(hωi/2)

hωi/2

)4

.

Hence the magnitude of Φαβγ(ω1, ω2, ω3) is bounded by h3
∏3

i=1

(

1
h|ωi|/2

)4
. Since the maximal

value of Φαβγ(ω1, ω2, ω3) is h3, we therefore, restrict the range of [ω1, ω2, ω3] in the following
region.

(

1

h|ωi|/2

)4

< ǫ, i = 1, 2, 3,

3
∏

i=1

(

1

h|ωi|/2

)4

< ǫ.

We define a restricted sub-domain Ωω on which Φαβγ(ω1, ω2, ω3) are evaluated and outside this
domain the function is ignored.

Ωω =
{

(ω1, ω2, ω3) ∈ R
3 : |ωi| < 2ǫ−

1
4h−1 and |ω1ω2ω3| < 8ǫ−

1
4h−3

}

.

10

It is not difficult to calculate that the volume of Ωω for h = 2 is

V (Ωω) = 16ǫ−
1
4 log(ǫ−

1
4)[1 + log(ǫ−

1
4)] + 8ǫ−

1
4 .

Comparing with the volume 8ǫ−
3
4 of the domain Ωǫ = [−ǫ− 1

4 , ǫ−
1
4]3, the ratio of the volumes

of the two domains is decreasing to zero. For instance, if ǫ = (2π)−4, the ratio is 0.289559.
Hence, there is more than 70% save by restricting the computation to the domain Ωω. In table
6.2, we list V (Ωω), V (Ωǫ) and the ratios of the two volumes for different ǫ. As we know, the

Table 6.2: Volumes and Ratios of Ωω and Ωǫ

ǫ V (Ωω) V (Ωǫ) V (Ωω)/V (Ωǫ)

100 8.0 8.0 1.000

10−1 40.03 44.98 8.899e-1

10−2 150.61 252.98 5.953e-1

10−3 468.70 1244.62 3.294e-1

10−4 1296.71 8000.0 1.620e-1

10−5 3318.25 44987.30 7.376e-2

approximation order of tri-cubic B-spline is O(h4) = O(n−4). Hence, if we require ǫ = O(n−4),

then ratio V (Ωω)/V (Ωǫ) = O
(

log(n)
n

)2
.

6.2.1 The first term of δ(J1, ψ)

Given a projection direction d, the plane Pd is defined by

[ω1(u), ω2(u), ω3(u)]T = u1e
(1)
d

+ u2e
(2)
d
, u = [u1, u2]

T ∈ R
2.

Denote

e
(1)
d

= [e(1)x , e(1)y , e(1)z]T , e
(2)
d

= [e(2)x , e(2)y , e(2)z]T .

Without loss of generality, we may assume that the two dimensional vectors [e
(1)
x , e

(1)
y]T and

[e
(2)
x , e

(2)
y]T are linearly independent. This assumption is surely satisfied for ET data, since there

are no projections in x- or y-directions. Then

u = E−1
d

[ω1, ω2]
T with Ed =

[

e
(1)
x e

(2)
x

e
(1)
y e

(2)
y

]

(6.5)

defines a linear transform between uv-plane and ω1ω2-plane, and

du = du1du2 = det(E−1
d

)dω1dω2, ω3(ω1, ω2) = [e(1)z , e(2)z]E−1
d

[ω1, ω2]
T .

11

Therefore, the first term of δ(J1(f), φαβγ), denoted by Tαβγ , can be represented as

Tαβγ = 2

∫

R2

[

F3(f)Φαβγ

]
∣

∣

∣

Pd

du

= 2

∫

R2

F3(f)(ω1(u), ω2(u), ω3(u))Φαβγ(ω1(u), ω2(u), ω3(u))du

= 2

∫

R2

F3(f)(ω1, ω2, ω3(ω1, ω2))Φαβγ(ω1, ω2, ω3(ω1, ω2)) det(E−1
d

)dω1dω2

= 2h3 det(E−1
d

)

∫

R

e−ihαω1dω1

∫

R

Q(ω1, ω2)Rβγ(ω1, ω2)dω2, (6.6)

where

Q(ω1, ω2) = F3(f)(ω1, ω2, ω3(ω1, ω2))

[

2
∏

k=1

sin(hωk/2)

hωk/2

]4
[

sin(hω3(ω1, ω2)/2)

hω3(ω1, ω2)/2

]4

,

Rβγ(ω1, ω2) = e−ih(βω2+γω3(ω1,ω2)).

Note that Q(ω1, ω2) does not depend on α, β and γ, but depends on f . To calculate the
integrations in (6.6), we define a uniform grid on the ω1ω2-plane, denoted by

Gd =
{

[ω
(j)
1 , ω

(k)
2]T ∈ R

2 : [ω
(j)
1 , ω

(k)
2 , ω3(ω

(j)
1 , ω

(k)
2)]T ∈ Ωω

}

,

where ω
(j)
1 = πj

2dhL
and ω

(k)
2 = πk

2dhL
are one dimensional uniform knots, L = 2l+3 is the number

of used B-spline basis in the x (and y) direction, d control the density of the grid. Larger d
leads to a denser grid. We usually take d = 0 or d = 1. Here two zero B-spline coefficients are
introduced in x and y directions for satisfying periodic condition. Then using the 2D version of
the trapezoid quadrature rule, we obtain the following approximation

Tαβγ ≈ 2h3 det(E−1
d

)
(π

2dhL

)2
M
∑

j=m

e−ihαω
(j)
1

Mi
∑

k=mi

Q(ω
(j)
1 , ω

(k)
2)Rβγ(ω

(j)
1 , ω

(k)
2). (6.7)

We explain how (6.7) is used to compute Tαβγ efficiently. First consider the computation of

Q(ω
(j)
1 , ω

(k)
2). Using the closed form of F3(f)(ω1, ω2, ω3(ω1, ω2)), we have

Q(ω
(j)
1 , ω

(k)
2) = h3Q1(ω

(j)
1 , ω

(k)
2)Q2(ω

(j)
1 , ω

(k)
2) (6.8)

with

Q1(ω
(j)
1 , ω

(k)
2) =

[

sin(hω
(j)
1 /2)

hω
(j)
1 /2

sin(hω
(k)
2 /2)

hω
(k)
2 /2

sin(hω3(ω
(j)
1 , ω

(k)
2)/2)

hω3(ω
(j)
1 , ω

(k)
2)/2

]8

, (6.9)

Q2(ω
(j)
1 , ω

(k)
2) =

∑

γ

eihγω3(ω
(j)
1 ,ω

(k)
2)Qγ(ω

(j)
1 , ω

(k)
2), (6.10)

12

where

Qγ(ω
(j)
1 , ω

(k)
2) =

∑

α

∑

β

fαβγe
ihαω

(j)
1 eihβω

(k)
2 . (6.11)

It is easy to see that Qγ(ω
(j)
1 , ω

(k)
2) has the following periodic property:

Qγ(ω
(j+s2d+1L)
1 , ω

(k+t2d+1L)
2) = Qγ(ω

(j)
1 , ω

(k)
2), 0 ≤ j ≤ 2d+1L− 1, 0 ≤ k ≤ 2d+1L− 1,

for any integers s and t. Using these formulations, Q(ω
(j)
1 , ω

(k)
2) can be computed as follows.

Algorithm 4.1. Computing Q(ω
(j)
1 , ω

(k)
2) , [ω

(j)
1 , ω

(k)
2]T ∈ Gd

1. For each γ, compute Qγ(ω
(j)
1 , ω

(k)
2) using (6.11) by 2D discrete fast Fourier transform.

2. Compute Q2(ω
(j)
1 , ω

(k)
2) using (6.10).

3. Compute Q(ω
(j)
1 , ω

(k)
2) using (6.8) and (6.9).

The computation in the second and third steps are straightforward. Details of the first step
are as follows. Let

Gs =

[

0,
π

2dhL
, · · · , π(2d+1L− 1)

2dhL

]

×
[

0,
π

2dhL
, · · · , π(2d+1L− 1)

2dhL

]

,

and α = α′ − (l + 1), β = β′ − (l + 1). Then

Qγ(ω
(j)
1 , ω

(k)
2) =

l+1
∑

α=−l−1

l+1
∑

β=−l−1

fαβγe
ihαω

(j)
1 eihβω

(k)
2

= e−ih(l+1)(ω
(j)
1 +ω

(k)
2)

L
∑

α′=0

L
∑

β′=0

fα′−l−1,β′−l−1,γe
ihα′ω

(j)
1 eihβ′ω

(k)
2

= e−ih(l+1)(ω
(j)
1 +ω

(k)
2)Q′

γ(ω
(j)
1 , ω

(k)
2) (6.12)

with

Q′
γ(ω

(j)
1 , ω

(k)
2) =

L
∑

α′=0

e−ihα′ω
(j)
1

L
∑

β′=0

fα′−l−1,β′−l−1,γe
−ihβ′ω

(k)
2 .

First compute Q′
γ(ω

(j)
1 , ω

(k)
2) using 2D fast Fourier transform for all [ω

(j)
1 , ω

(k)
2]T ∈ Gs, where

the involved coefficients with indices out of the range of [0, L] are set to zero. Then compute

Qγ(ω
(j)
1 , ω

(k)
2) using (6.12) for [ω

(j)
1 , ω

(k)
2]T ∈ Gd. If a [ω

(j)
1 , ω

(k)
2]T ∈ Gd \Gs, then Qγ(ω

(j)
1 , ω

(k)
2)

is obtained by periodic properties.

13

It is easy to see that the cost of computing Qγ(ω
(j)
1 , ω

(k)
2) in the first step is O(TL2 log(L)).

The cost of the second step is O(TL2). The cost of the last step is O(L2). Taking the projections
into account, the total cost is in the order of O(pTL2 log(L)). Here p, T and L stand for the
number of projection directions, the number of the utilized B-spline basis Bk(z) and the number
of the utilized B-spline Bi(x) (same as the number of Bj(y)), respectively. Note that Q1(ω1, ω2)
does not depend on α, β and γ. Hence, it should be computed out of the α, β and γ loops in
Algorithm 4.1.

Now we consider the computation of Tαβγ using (6.7). We describe the computational steps
involved via the following algorithm.

Algorithm 4.2. Computing Tαβγ

1. For each d ∈ D, compute Q(ω
(j)
1 , ω

(k)
2) using Algorithm 4.1.

2. For each integer γ ∈ [−t, t], compute Uγ(ω
(j)
1 , ω

(k)
2) := Q(ω

(j)
1 , ω

(k)
2)e−ihγω3(ω

(j)
1 ,ω

(k)
2).

3. For each integer β ∈ [−l, l], compute Vβγ(ω
(j)
1) :=

∑

k

Uγ(ω
(j)
1 , ω

(k)
2)e−ihβω

(k)
2 , using fast

Fourier transform.

4. For each integer α ∈ [−l, l], compute h3 det(E−1
d

)
(

4π
n

)2
∑

j

e−ihαω
(j)
1 Vβγ(ω

(j)
1), using fast

Fourier transform.

The usage of the fast Fourier transform in the third and the fourth step is similar to that

of Qγ(ω
(j)
1 , ω

(k)
2) in (6.12). But here it is one dimensional. Now let us analyze the complexity

of this algorithm. The cost of the first step has been analyzed, which is O(pTL2 log(L)). The
cost of step 2 is O(pTL2). The costs of step 3 and step 4 are O(pTL2 log(L)). The total cost of
this algorithm is O(pTL2 log(L)). Because p and T are small comparing with L, the algorithm
is fast.

Remark 6.1 A direct computation of Tαβγ leads to a cost O(pTL4). Our algorithms reduce the

cost to O(pTL2 log(L)).

6.2.2 The second term of δ(J1, ψ)

The second term in (6.4) can be computed together with the first term. At first the function
F2(gd) is represented as

F2(gd)(u) = F2

(

∑

i

∑

j

g
(ij)
d

NiNj

)

(u) =
∑

i

∑

j

g
(ij)
d

Bi(u)Bj(v),

where g
(ij)
d

are the coefficients of the B-spline representation of gd. A fast algorithm for con-
verting the discrete data to the B-spline representation is adopted from [2, 16]. Let

Sαβγ =

∫

R2

F2(gd)Φαβγ

∣

∣

∣

Pd

du.

14

Then for Sαβγ , we have the same form expression as (6.6) that is for Tαβγ ,

Sαβγ = h3 det(E−1
d

)

∫

R

e−ihαω1dω1

∫

R

Q(ω1, ω2)Rβγ(ω1, ω2)dω2 (6.13)

with the same Rβγ(ω1, ω2), but a different Q(ω1, ω2), which is

Q(ω1, ω2) = F2(gd)(u(ω1, ω2))

[

2
∏

k=1

sin(hωk/2)

hωk/2

]4
[

sin(hω3(ω1, ω2)/2)

hω3(ω1, ω2)/2

]4

= h2Q1(ω1, ω2)Q2(u(ω1, ω2)), (6.14)

where

Q1(ω1, ω2) =

[

2
∏

k=1

sin(huk(ω1, ω2)/2)

huk(ω1, ω2)/2

sin(hωk/2)

hωk/2

]4
[

sin(hω3(ω1, ω2)/2)

hω3(ω1, ω2)/2

]4

,

Q2(u, v) =
∑

α

∑

β

g
(αβ)
d

eihαu1eihβu2,

and u(ω1, ω2) are given by (6.5). Algorithm 4.2 could be adjusted by subtracting the values

Q(ω
(j)
1 , ω

(k)
2) of this Q from that Q in step 1. The values Q(ω

(j)
1 , ω

(k)
2) for this Q is computed as

follows.

Algorithm 4.3. Computing Q(ω
(j)
1 , ω

(k)
2)

1. Compute Q2(u
(j)
1 , u

(k)
2) over a uniform grid Gs in the uv-plane using 2D discrete fast

Fourier transform.

2. Compute Q2(u1(ω
(j)
1 , ω

(k)
2), u2(ω

(j)
1 , ω

(k)
2)) from Q2(u

(j)
1 , u

(k)
2) by the bilinear interpolation.

If
[

u1(ω
(j)
1 , ω

(k)
2), u2(ω

(j)
1 , ω

(k)
2)

]T
is out of the range of Gs, we use the periodical property

of Q2(u, v) to generate the requited data.

3. Computing Q(ω
(j)
1 , ω

(k)
2) by (6.14).

The computation of Q2(u
(j)
1 , u

(k)
2) in the first step is similar to that of Qγ(ω

(j)
1 , ω

(k)
2) in (6.12).

Hence, the cost of this step is O(pL2 log(L)), the cost of the second step is O(pL2). Therefore,
the computation cost of the Q in (6.13) is much smaller than that Q in (6.7).

Remark 6.2 Obviously, the computation of
∫

R2(Xdf − gd)Xdφαβγdudv is our main task. This

computation can also be conducted as follows basing on the central slice theorem:

1. Convert the discrete data of f to the discrete data of F in Fourier space using 3D discrete

fast Fourier transform.

2. Take the slices of F and Φαβγ obtaining F2(Xdf) and F2(Xdφαβγ).

15

3. Convert the slice datum to real space by the inverse 2D FFT, obtaining the data Xdf and

Xdφαβγ.

4. Compute the integral
∫

R2(Xdf − gd)Xdφαβγdudv in real space.

The above computational strategy is also efficient. However, our experience shows that it is

not accurate enough for our purpose. Our use of the discrete FFT is for fast summation only,

and there is no error introduced except for the round-off errors of arithmetic operations.

6.3 Computation of δ(J2, ψ)

The computation of δ(J2, ψ) is straightforward. Again the computation includes two steps:

1. Compute δ(J2(f), φαβγ) for all α, β, γ.

2. Convert δ(J2(f), φαβγ) to δ(J2(f), φ̃αβγ).

It is easy to see that, for a fixed function f , δ(J2(f), ψ) is a linear function with respect
to ψ. Hence the conversion from δ(J2(f), φαβγ) to δ(J2(f), φ̃αβγ) is feasible. Therefore, the
main task is the computation of δ(J2(f), φαβγ). Though there are O(TL2) three dimensional
integrations that need to be computed, using the local support property of the B-spline basis,
the computation cost is easily reduced to O(TL2).

For a uniform partitioning of Ω, the integration is computed by evaluating and summing
the integrand over the grid points, and then dividing by the volume of a voxel. Since f is a C2

continuous function, partial derivatives of f up to the second order can also be exactly computed.
Using these partial derivatives, the integrands in (5.3) or (5.2) can be easily calculated. For each
grid point, there are only 33 B-spline basis functions involved. Hence, the cost for evaluating
one point but for all the φαβγ is O(1). For all the grid points in Ω, the cost is O(TL2). Hence
the overall computation is very efficient.

7 Numerical and Illustrative Results

In this section, we present several numerical and illustrative results, showing that the presented
method is stable, reliable and robust.

7.1 Stability Experiments

In our stability experiments, we compute two steady solutions for two initial functions f (0) and
using three different regularizers. a. g(x) = 0 (means no regularizer); b. g(x) = ‖∇f(x)‖; c.
g(x) = 1. For each case, we compute the L2-error of the two solutions from the two initial
functions. The first initial function is taken as zero. The second one is taken as

f (0)(x) =

{

0, ‖x‖ > 10 and x ∈ Ω,
1, ‖x‖ ≤ 10 and x ∈ Ω.

16

In Table 7.3, we list the L2-errors for each case. From the table, we can see that the L2-errors
are around 10−4. Hence two different initial functions lead to almost the same solution. In this
experiment, 12 × 12 uniformly distributed projection directions are taken. The function to be
projected is defined as

f(x, y, z) =

{

1, if 25.0 <
√

x2 + y2 + z2 < 31.0,
0, otherwise.

(7.1)

Table 7.3: L2-errors for different initial functions

g g = 0 g = ‖∇f‖ g = 1

L2-error 2.365e-04 9.192e-05 1.426e-04

7.2 Reliability Experiments

In the experiments, given a function f on a volume Ω, we compute projection images from a set
of uniformly distributed projection directions. Next we reconstruct f using the projected data
and using g = 0. On increasing the projection directions, we obtain a sequence of reconstructed
functions. L2-error between the reconstructed functions and the exact function f are computed.
Table 7.4 lists these L2-errors. The exact function to be projected is taken as

f(x) =

10
∑

i=1

exp−(‖x−xi‖
2−r2

i), (7.2)

where [xi, ri] are taken as [16.0, 27.0, 26.0, 20.0], [19.2, 35.0, 32.0, 20.0], [22.4, 43.0, 38.0, 20.0],
[25.6, 31.0, 31.0, 20.0], [28.8, 39.0, 37.0, 24.0], [32.0, 27.0, 30.0, 24.0], [35.2, 35.0, 36.0, 24.0],
[38.4, 43.0, 29.0, 24.0], [41.6, 31.0, 35.0, 28.0], [44.8, 39.0, 28.0, 28.0]. From the table, we can see
that the errors decrease as the projection directions increase.

Table 7.4: L2-errors between reconstructed functions and exact function

Projection # 3 × 3 6 × 6 12 × 12 24 × 24

L2-error 0.0127 0.0072 0.0061 0.0059

7.3 Robustness Experiments

These experiments are similar to the reliability experiments. However, noise is added to each of
the projected images. The aim is to see how the noises affect the reconstructed results. Table
7.5 lists the L2-errors now in the presence of noise. Where the exact function to be projected is

17

defined by (7.1). In order to add Gaussian noise with the given signal-to-noise ratio (SNR), we
use xmipp [15] package to compute the standard deviation for each given SNR value and then
use the standard deviation to add Gaussian noise to each projection. For instance, for a SNR
of 0.33, a total noise with a standard deviation of 15.2614 is needed. From the table, we can see
that the L2 errors are quite small and the errors decrease as SNR increases.

Table 7.5: L2-errors between reconstructed functions from noised data and exact function

Projection # 3 × 3 6 × 6 12 × 12 24 × 24

SNR=0.33 0.056 0.0419 0.0431 0.0247

SNR=1.0 0.026 0.0179 0.0196 0.0126

SNR=10.0 0.012 0.0116 0.0089 0.0074

7.4 Comparative Experiments using Phantom Example

Fig 7.1: The first, second and third rows show the slices of the reconstructed functions using
ART, SIRT and WBP, respectively. The first, second and third columns are the slices on XY -
plane, XZ-plane and Y Z-plane, respectively.

18

(d) (e) (f)

Fig 7.2: The first, second and the third rows are extracted slices from the reconstructed functions
using g = 0, g = ‖∇f‖ and g = 1, respectively. The first, second and third columns are the
slices on XY -plane, XZ-plane and Y Z-plane, respectively.

To illustrate the efficiency of the proposed method, we compare the performance of our
method with ART, SIRT and WBP using phantom data. The function f(x, y, z) to be projected
is (7.1). The projected images are obtained by projecting f on 55 different directions (tilt series).
The projection angles are chosen as follows: In the range [−45◦, 45◦], 31 projections are taken
with 3 degree increments. In each of the ranges [45◦, 69◦] and [−69◦,−45◦], 12 projections are
taken with 2 degree increments. Hence, there are no projections in the ranges (69◦, 90◦] and
[−90◦,−69◦) (missing wedge).

The three rows of the Fig. 7.1 show the slices of the reconstructed functions using ART,
SIRT and WBP, where the first, second and third columns are the slices on XY -plane, XZ-
plane and Y Z-plane, respectively. Fig. 7.2 shows the reconstruction results of our method. The
slices of the first, second and third rows are extracted from the reconstructed functions using
g = 0, g = ‖∇f‖ and g = 1 , respectively. The first, second and third columns are the slices on
XY -plane, XZ-plane and Y Z-plane, respectively. The grey scale in these slices is taken as black
to white for density value from zero to one. From these figures we can see that our results are
better in general than the results from ART, SIRT and WBP. The best results of our method

19

(a) (b) (c)

(d) (e) (f)

Fig 7.3: Volume rendering: The first, second and third figures in the first row show the rendering
results of the reconstructed functions using ART, SIRT and WBP. The first, second and third
figures in the second row show the rendering results of the reconstructed functions using our
methods with g = 0, g = ‖∇f‖ and g = 1, respectively.

is for g = 1. Fig. 7.3 shows the results of volume rendering.

7.5 Application to the AIDS virus Tilt Series

The input is a set of 2D projection slices at different tilt angles taken from an electron microscope
of AIDS virus interacting with a neutralizing molecule D1D2-IgP [3]. Each 2D image is of
size 512 ∗ 512 and are imaged with a defocus of −8µm. Preprocessing this tilt series includes
alignment and image enhancement. The 2D projections are reconstructed into 3D volumes (also
called Maps) using an L2-gradient flow. In our data the number of projections images are 50 in
tilt angular increments from −60◦ to +60◦, with each projection image of size 512 × 512. The
tilt angle steps are 2◦ ∼ 3◦.

Fig. 7.4 shows the slices of the constructed volumetric function, where the the first, second
and third figures in the first row show the slices of the reconstructed functions using the methods
of ART, SIRT and WBP, respectively. The first, second and third figures in the second row
show the slices of the reconstructed functions using our methods with g = 0, g = ‖∇f‖ and
g = 1, respectively. All the slices are taken in the XY -plane. A 3D volume rendering of the
reconstructed AIDS virus is shown in the figure 7.5. Reconstruction results with different kinds
of regularizers and without regularizer are shown.

We perform a comparison of local contrast (LC) and signal-to-noise ratio (SNR) of the re-

20

(a) (b) (c)

(d) (e) (f)

Fig 7.4: The first, second and third figures in the first row show the slices of the reconstructed
functions using ART, SIRT and WBP. The first, second and third figures in the second row show
the slices of the reconstructed functions using our methods with g = 0, g = ‖∇f‖ and g = 1,
respectively. All the slices are taken in the XY -plane.

constructed volumes from our method with ART, SIRT and WBP. To quantify the differences of
the reconstructions and compare the SNR from various reconstruction techniques, a sub-volume
of the volume is extracted containing the same feature (virus spike) in all three reconstruction
schemes.

SNR for an image is given by:

SNR =
µforeground − µbackground

σbackground
(7.3)

where µforeground is the average foreground intensity value in a window placed on the virus spike,
µbackground is the average background intensity and σbackground is the standard deviation of the
background measured in a window placed in the background of the image as shown in figure 7.6.

To compare the local contrast between reconstruction techniques, the ratio of the difference
between average foreground (µforeground) and average background (µbackground) to the average
background (µbackground) intensity is calculated in the window shown in figure 7.6.

LC =
µforeground − µbackground

µbackground
(7.4)

21

(a) (b) (c)

(d) (e) (f)

Fig 7.5: Volume rendering: The first, second and third figures in the first row show the rendering
results of the reconstructed functions using ART, SIRT and WBP. The first, second and third
figures in the second row show the rendering results of the reconstructed functions using our
methods with g = 0, g = 1 and g = ‖∇f‖, respectively.

Reconstruction Method SNR LC

ART 12.512 0.0894

SIRT 24.11096 0.05932

WBP 7.8138 0.267

g = 1 9.144 0.3534

g = ‖∇f‖ 10.049 0.4275

g = 0 8.8968 0.3514

Table 7.6: The table shows the results of SNR and LC analysis on the reconstructed Maps.

For LC:

(g = ‖∇f‖) > (g = 1) > (g = 0) > WBP > ART > SIRT

For SNR:

SIRT > ART > (g = ‖∇f‖) > (g = 1) > (g = 0) > WBP

22

Fig 7.6: A window placed on the foreground (virus envelope) is used to calculate the average
foreground intensity. A window placed on the background is used to calculate the average
background intensity and the standard deviation of the background

LC of SIRT reconstruction is very low, but the signal to noise ratio is very good. This
means that there is low contrast but the overall image has less noise. High LC ensures that
segmentation and structure identification will be good and features are easy to identify from
background. High SNR means that background region is fairly uniform and low in intensity and
hence segmentation and structure identification will be cleaner. Ideally we would like both LC
and SNR to be high. The local contrast (LC) of the reconstructed volumes from our method is
superior compared to WBP, ART and SIRT.

8 Conclusions

We have presented a mathematically sound method for ET data reconstruction. From minimiz-
ing an energy functional consisting of a fidelity term and a regularization term, an L2-gradient
flow has been constructed. An efficient computational method for solving the derived PDE is
developed. The stability, reliability and robustness of the proposed method have been tested us-
ing phantom data as well as real data. The numerical experiments have shown that our method
is efficient and effective.

Acknowledgment. A part of this work was done when Guoliang Xu was visiting Chandrajit
Bajaj at UT-CVC. His visit was additionally supported by the J. T. Oden Faculty Fellowship
Research Program at ICES.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphics,

and Mathematical Tables. America Dover Publications, Inc., 1972.

[2] C. L. Bajaj, G. Xu, and Q. Zhang. High-order level-set method and its application in biomolecular
surface construction. J. Comput. Sci & Technol., 23(6):1026–1036, 2008.

23

[3] A. Bennett, J. Liu, D. V. Ryk, D. Bliss, J. Arthos, R. M. Henderson, and S. Subramaniam. Cryo-
electron tomographic analysis of an hiv-neutralizing protein and its complex with native viral gp120.
The Journal of Biological Chemistry, 282, 2007.

[4] J. Carazo, G. Herman, C. Sorzano, and R. Marabini. Algorithms for three dimensional reconstruction

from imperfect projection data provided by electron microscopy. Springer, 2006.

[5] R. A. Crowther, D. J. DeRosier, and A. Klug. The reconstruction of a three-dimensional structure
from projections and its application to electron microscopy. In Proceedings of the Royal Society of

London. Series B, Biological Sciences, volume 182, pages 89–102, 1972.

[6] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1992.

[7] G. Herman and R. Davidi. Image reconstruction from a small number of projections. Inverse

Problems, 24, 2008.

[8] G.T. Herman. Image Reconstructions from Projections: The Fundamentals of Computerized Tomog-

raphy. Computer Science and Applied Mathematics, 1980.

[9] A.C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. IEEE Press, 1988.

[10] Jing Lei, Shi Liu, Zhihong Li, H. Iñaki Schlaberg, and Meng Sun. An image reconstruction algorithm
based on the regularized total least squares method for electrical capacitance tomography. Flow

Measurement and Instrumentation, 2008.

[11] J. Liu, A. Bartesaghi, M. J. Borgnia, G. Sapiro, and S. Subramaniam. Molecular architecture of
native hiv-1 gp120 trimers. Nature, September 2008.

[12] S. Matej and R. M. Lewitt. Practical considerations for 3-d reconstruction using spherical symmetric
volume elements. IEEE Transactions on Medical Imaging, 15, 1996.

[13] Frank Natterer and Frank Wübbeling. Mathematical Methods in Image Reconstruction. SIAM, 2001.

[14] M. Radermacher. Weighted Back-projection Methods. Springer, 2006.

[15] C.O.S. Sorzano, R. Marabini, J. Velazquez-Muriel, J.R. Bilbao-Castroa, S.H.W. Scheresa, J.M.
Carazo, and A. Pascual-Montano. Xmipp: a new generation of an open-source image processing
package for electron microscopy. Journal of Structural Biology, 148:194–204, 2004.

[16] G. Xu. Geometric Partial Differential Equation Methods in Computational Geometry. Science Press,
Beijing, China, 2008.

[17] G. Xu and Y. Shi. Progressive computation and numerical tables of generalized Gaussian quadrature
formulas. Journal on Numerical Methods and the Computer Application, 27(1):9–23, 2006.

A Miscellaneous Important Facts

In this appendix, we introduce the necessary material used in the paper.

B-spline function. Let rect(t) denote the rectangular function defined as

rect(t) =















0 if |t| > 1
2 ,

1
2 if |t| = 1

2 ,

1 if |t| < 1
2 .

24

Then the degree n B-spline basis βn
0 (x) with support [−n+1

2 , n+1
2] is defined recursively by

βn
0 (x) = βn−1

0 (x) ∗ rect(x),

where ∗ denotes the convolution of two functions, and β0
0(x) = rect(x). Other basis functions

associate with the integer k is defined by the shifting of βn
0 (x), i.e.,

βn
k (x) = βn

0 (x− k), k = 0,±1,±2, · · · .

By scaling the independent variable x of βn
k (x), we obtain the B-spline basis on equal-spaced

knots

· · · , −3h, −2h, −h, 0, h, 2h, 3h, · · ·

as

Nn
k (x) := βn

k (h−1x) = βn
0 (h−1x− k),

where a > 0. The support of Nn
k (x) is [h(k − n+1

2), h(k + n+1
2)]. For cubic B-spline used in this

paper, we use notation Nk(x) to represent Nn
k (x).

Fourier transform of B-spline function. Let F denote the one dimensional Fourier trans-
form defined as

F (ω) = (Ff)(ω) =

∫ ∞

−∞
f(t)e−iωtdt.

Then it is easy to see that

F(f(at))(ω) =
1

|a|F (
ω

a
), F(f(t+ a))(ω) = eiωaF (ω).

Then by

Fβ0
0 =

sin(ω/2)

ω/2
,

we have

Bn
k (ω) = (FNn

k)(ω) = he−ikωh

(

sin(hω/2)

hω/2

)n+1

, k = 0,±1,±2, · · · . (A.1)

Note that Bn
k (ω) is not locally supported, but it goes to zero in the rate 1

ωn+1 as |ω| → ∞. Let
Fk stand for the k-dimensional Fourier transform, i.e.,

F (X) = (Fkf)(X) =

∫

Rk

f(x) exp
(

−ixTX
)

dx, x,X ∈ R
k.

25

Let Ni(x), Nj(y) and Nk(z) be the B-spline basis in the x, y and z directions, respectively, and
φijk(x) = Ni(x)Nj(y)Nk(z) their tensor product. Then

Φijk(X) = F3(φijk)(X)

=

∫

R3

Ni(x)Nj(y)Nk(z) exp (−i(xX + yY + zZ) dxdydz

=

∫

R

Ni(x) exp (−ixX) dx

∫

R

Nj(y) exp (−iyY) dy

∫

R

Nk(z) exp (−izZ) dz

= F(Ni)F(Nj)F(Nk)

= B
(1)
i (X)B

(2)
j (Y)B

(3)
k (Z).

Fourier transform and discrete Fourier transform. Let f(t) be a continuous function
defined on the interval [a, b] with the periodical condition f(a) = f(b). Let the Fourier transform
of f be defined as

F (ω) = (Ff)(ω) =
1√
2π

∫ b

a
f(t)e−iωtdt.

Let t = a+ (b− a)θ/2π, then we have

F (ω) =
b− a

2π
√

2π

∫ 2π

0
f(a+ (b− a)θ/2π)e−iω(a+(b−a)θ/2π)dθ

=
b− a

2π
√

2π
e−iωa

∫ 2π

0
g(θ)e−iω((b−a)θ/2π)dθ,

where

g(θ) = f(a+ (b− a)θ/2π).

Now let us sample F (ω) uniformly at

ωk =
2kπ

b− a
, k = −K, · · · ,−1, 0, 1, · · · ,K,

where K is a given integer. If a = −n
2 , b = n

2 ,W = 2π, we choose

K =
nW

2π
= n.

26

We have

F (ωk) =
b− a

2π
√

2π
e−iωka

∫ 2π

0
g(θ)e−ikθdθ

≈ b− a

n
√

2π
e−iωka

n−1
∑

j=0

g

(

2jπ

n

)

e−
2ijkπ

n

=
b− a

n
√

2π
e−iωkaGk(g)

=
2b

n
√

2π
(−1)kGk(g),

where the assumptions b > 0 and a = −b are imposed, and

Gk(g) =
n−1
∑

j=0

g

(

2jπ

n

)

e−
2ijkπ

n , k = −n, · · · ,−1, 0, 1, · · · , n.

G0(g), · · · , Gn−1(g) are discrete Fourier transform of g, which can be computed by discrete fast
Fourier transform, gn = g0. For k = −n,−n + 1, · · · ,−1, let γ = k + n, then it is easy to see
that

Gk(g) = Gγ(g).

Let g = gr + igi, where gr and gi are the real and imaginary parts of g. Then

Gk(g) = Gk(gr) + iGk(gi), k = 0, · · · , n,
Gk(g) = G−k(gr) + iG−k(gi), k = −n, · · · , 0,

G−K , · · · , G1 are the conjugate of GK , · · · , G1, respectively.
For two-dimensional Fourier transform

F (ω,̟) =
1

2π

∫ b

a

∫ d

c
f(s, t)e−i(ωs+̟t)dsdt,

we similarly have

F (ωk1,̟k2) ≈ (b− a)(d− c)

2πn1n2
e−i(ωk1

a+̟k2
c)Gk1k2,

where

Gk1k2 =

n1−1
∑

j=0

n2−1
∑

k=0

f

(

a+
j(b − a)

n1
, c+

k(d− c)

n2

)

e
−2πi

“

jk1
n1

+
kk2
n2

”

,

27

ωk1 =
2k1π

b− a
, ̟k2 =

2k2π

d− c
, k1, k2 = −n, · · · ,−1, 0, 1, · · · , n− 1.

For k1, k2 ≥ 0, Gk1k2 are computed by discrete fast Fourier transform. For k1 < 0 or k2 < 0,

Gk1k2 = Gγ1γ2 , with γ1 = k1(mod n1), γ2 = k2(mod n2) (A.2)

If we assume a = −b, c = −d, then

F (ωk1,̟k2) ≈ 2bd

πn1n2
(−1)k1+k2Gk1k2 ,

Central Slice Theorem of Fourier Transform. Let f(x, y, z) be a function defined in R
3,

(Xzf)(x, y) :=

∫

R

f(x, y, z)dz,

where Xz denotes the projection of f in the z-direction. Let F (X,Y,Z) = (F3f)(X,Y,Z). Then

(F2(Xzf))(X,Y) =

∫

R2

(Xzf)(x, y) exp (−i(xX + yY) dxdy

=

∫

R3

f(x, y, z) exp (−i(xX + yY) dxdydz

=

∫

R3

f(x, y, z) exp (−i(xX + yY + zZ) dxdydz

∣

∣

∣

∣

Z=0

= (F3f)(X,Y,Z)|Z=0

= F (X,Y,Z)|Z=0 .

This equality says that the 2D Fourier transform of the projection in the z-direction of f is the
same as the slice of the 3D Fourier transform of f at Z = 0. This fact, named as central slice
theorem, implies that if we know all the projections, then we know all the slices, and therefore,
we know F (X,Y,Z). By applying the inverse of the 3D Fourier transform to F , we obtain
f(x, y, z).

B The Existence and Uniqueness of Solution

In this section, we consider the existence and uniqueness problem of the minimizing problem of
(5.1). Let X be the function space consists of B-spline functions on the domain Ω satisfying the
zero boundary conditions:

∂i+j+kf(x, y, z)

∂ix∂jy∂kz
= 0, ∀x = [x, y, z]T ∈ ΓΩ, i+ j + k ≤ 2.

Under the inner product

〈f, g〉 =

∫

Ω
f(x)g(x)dx,

28

X is a finite dimensional Hilbert space. Therefore X is reflective.
Since the projection directions are limited, the energy functional

J1(f) =
∑

d∈D

∫

R2

(Xdf − gd)2 dudv,

may not be coercive. To illustrate this, let d be a direction in the x-direction. Then for any
coefficient fijk satisfying

∑

i

fijk = 0, ∀j, k,

then we have Xdf = 0. Hence, ‖f‖ → ∞, does not imply
∫

R2 (Xdf − gd)2 dudv → ∞. However,
if

J2(f) =

∫

R3

g(x)‖∇f(x)‖dx,

is coercive, then J(f) = J1(f) + αJ2(f) is coercive for α > 0.
Now let us prove that J2(f) is coercive. Let f ∈ X . Then if f(x) = c for all x ∈ Ω, then

c = 0. This implies that if f(x) 6= 0, then ∇f(x) ≡ 0 does not hold. This further implies that

∫

Ω
‖∇f(x)‖2dx > 0. (B.1)

Suppose f(x) =
∑N

i=1 ciϕi(x), where {ϕ1, · · · , ϕN} is a set of basis of X . Then we have from
(B.1) that the matrix

M =

[
∫

Ω
(∇ϕi(x))T ∇ϕj(x)dx

]N

ij=1

is nonsingular. Consider the case where g(x) = ‖∇f(x)‖. Then

J2(f) =

∫

Ω
‖∇f(x)‖2dx = CTMC,

where C = [c1, · · · , cN]T . Since M is nonsingular, J2(f) → ∞ in the rate O(‖C‖2) as ‖C‖ → ∞.
Therefore, J2(f) is coercive. Now let us consider the case g(x) = 1. Since

∫

Ω
‖∇f(x)‖2dx ≤ ‖∇f‖∞

∫

Ω
‖∇f(x)‖dx,

we have

J2(f) =

∫

Ω
‖∇f(x)‖dx ≥ 1

‖∇f‖∞

∫

Ω
‖∇f(x)‖2dx.

29

Noticing that ‖∇f‖∞ = O(‖C‖) as ‖C‖ → ∞, we have that J2(f) is coercive. Since X is
compact, the discussion above implies the existence of the minimization problem (5.1) for g = 1
and g = ‖∇f‖.

On the uniqueness of the solution, it is quite easy to prove that if g = ‖∇f‖, the uniqueness
valid, since the the minimization problem (5.1) is quadratic, and the Euler-Lagrange equation
is a nonsingular linear system.

30

