
Using lightweight formal methods to validate a key-value storage node in Amazon S3
James Bornholt1,2 Rajeev Joshi1 Vytautas Astrauskas3 Brendan Cully1 Bernhard Kragl1 Seth Markle1 
Kyle Sauri1 Drew Schleit1 Grant Slatton1 Serdar Tasiran1 Jacob Van Geffen4 Andrew Warfield1

1Amazon Web Services 2The University of Texas at Austin 3ETH Zurich 4University of Washington

ShardStore: S3’s new storage node
Amazon S3 is a cloud object storage service offering elastic storage with
extremely high durability and availability. ShardStore is a new single-host key-
value store we’re building to serve as a “storage node” within S3 to durably store
object data. We replicate each object’s data across multiple storage nodes:

PUT Amazon S3

Storage Nodes

Like other production storage systems, ShardStore’s Rust implementation code is
difficult to get right, because it combines a number of complexities:

• A soft-updates-based crash consistency protocol

• Extensive concurrency including background operations and integrity checks

• Optimizations to support efficient IO (scheduling, coalescing, etc.)

We’ve seen recent successes in using formal methods to validate the correctness
of storage systems in the face of complexities like these:

• FSCQ [Chen et al, SOSP’15] showed it was possible to formally prove the

correctness of a file system, but at a 10–20× lines of code overhead

• Yggdrasil [Sigurbjarnarson et al, OSDI’16] used an automated “push-button”

verification style to reduce this overhead, but required careful co-design with
the verifier to make automation tractable

• GoJournal [Chajed et al, OSDI’21] extended these verification guarantees to a
concurrent journaling system, but again at 10–20× overhead

We took inspiration from these efforts, but our key goal was to integrate formal
methods into our engineering practice, so we sought lower overheads.

Formal methods for storage systems

Lightweight formal methods to validate
ShardStore with low overhead
We developed a lightweight formal methods approach to validate deep
correctness properties of ShardStore in an automated fashion. Our approach has
three elements:

1. We develop executable reference models as specifications that live alongside

the implementation code

2. We apply a suite of automated conformance checking tools to validate that

the implementation code respects the specification

3. We implement mechanisms to measure the effectiveness of these checks to

ensure future changes to ShardStore are still correct

In return for being lightweight and automated, we accept weaker correctness
guarantees than full formal verification—we can still miss bugs. But we gain the
ability for future engineers to validate their changes without expensive new
verification work by formal methods experts.

Reference models make for simple,
maintainable specifications
We choose to write our specifications as executable reference models—small
pieces of code that offer the same interface as the component they specify, but
without concern for implementation efficiencies. These specifications are easy to
update over time because they’re written in Rust like the implementation, and are
reused for other purposes (e.g., as mocks for unit testing).

L1

L2

L3

L0

Implementation 
LSM tree

{

 k1=v1,

 k2=v2,

 …

}

Reference model 
Ordered hash map

Same interface

Automated “pay-as-you-go” checkers
validate the code on every commit
Rather than a one-size-fits-all tool, we decompose our correctness property into
smaller pieces and check each with a different tool.

For crash consistency we check that the implementation refines the reference
model using property-based testing to test random traces:

{} {a=5} {a=5} {}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Compare key-value
mapping at every step

For concurrency we check that the implementation is linearizable with respect to
the reference model using stateless model checking, which executes a piece of
code many times with a different thread interleaving each time.

All of these tools are “pay-as-you-go”—they scale with compute, so we can run
them at small scale on engineer laptops to test local changes, or at massive scale
in the cloud before deployments to gain confidence in correctness.

The result is that we can validate the correctness of every ShardStore commit,
preventing bugs from reaching production, or even reaching code review.

We’re hiring!

The S3 Automated Reasoning Group applies formal methods to build correct,
secure, durable, and highly available distributed storage systems.

We’re hiring for both full-time and intern positions.

Contact us at s3-arg-jobs@amazon.com.

